
Generating and Modifying Natural Language Explanations

Abdus Salam and Rolf Schwitter and Mehmet A. Orgun
Macquarie University, Sydney, Australia

{abdus.salam, rolf.schwitter, mehmet.orgun}@mq.edu.au

Abstract

HESIP is a hybrid explanation system for im-
age predictions that combines sub-symbolic
and symbolic machine learning techniques to
explain the predictions of image classification
tasks. The sub-symbolic component makes a
prediction for an image and the symbolic com-
ponent learns probabilistic symbolic rules in
order to explain that prediction. In HESIP, the
explanations are generated in controlled natural
language from the learned probabilistic rules
using a bi-directional logic grammar. In this
paper, we present an explanation modification
method where a human-in-the-loop can mod-
ify an incorrect explanation generated by the
HESIP system and afterwards, the modified ex-
planation is used by the symbolic component
of HESIP to learn a better explanation.

1 Introduction

In recent years, the development of explanation
systems has gained a lot of attention. Most of
these explanation systems (Ribeiro et al., 2016,
2018; Lundberg and Lee, 2017) can explain pre-
dictions made by machine learning (ML) models.
Researchers are focusing on building explanation
systems for ML models, because these models have
shown excellent performance for different predic-
tion tasks (Zhang et al., 2020; LeCun et al., 2015)
and most of these models are sub-symbolic black-
box models that are not easily understandable, and
therefore lead to difficulties explaining the predic-
tions to the users. Explanation systems such as
Lime (Ribeiro et al., 2016), Anchor (Ribeiro et al.,
2018) and SHAP (Lundberg and Lee, 2017) use
existing information of the datasets to explain pre-
dictions. However, sometime information that is
not present directly in the dataset such as relation
information can play an important role in the ex-
planation; especially, in image prediction tasks as
shown in LIME-Aleph (Rabold et al., 2019).

HESIP is a hybrid explanation system for im-
age predictions. The HESIP system explains the
predictions to the users using natural language ex-
planations. The explanations are generated in a con-
trolled natural language (CNL) (Kuhn, 2014) using
a logic programming based bi-directional gram-
mar that is similar to Schwitter (2018). The gener-
ated explanations of the HESIP system are human-
understandable as well as machine-processable.
Since the explanations are represented in a natural
language, they are immediately understandable by
all types of users. The bi-directional grammar of
the HESIP system can also process a generated ex-
planation that has been modified by the user. The
HESIP system aims to generate an explanation for
the predicted image that represents the object in-
formation together with the relation information.
It is expected that such as system is not perfect,
and HESIP is not an exception. HESIP sometimes
generates wrong explanations. To the best of our
knowledge, there is no explanation system that al-
lows a user to modify an explanation in order to
improve the explanation generation process of the
system. It is important that a user can modify an
incorrect explanation so that the system can learn
how to generate a better explanation taking the
feedback from the user into consideration. In this
paper, we present a method that involves a human-
in-the-loop who can fix incorrect explanations by
modifying them.

2 HESIP: System Architecture

HESIP is a hybrid system that explains image pre-
dictions by integrating sub-symbolic and symbolic
ML techniques in two separate components. For
an input image, HESIP makes a prediction using
a sub-symbolic ML model. Afterwards, HESIP
uses a symbolic ML technique to learn symbolic
probabilistic rules that are used to explain predic-



tions. Based on a definition of hybrid systems intro-
duced in Kautz’s classification (Kautz, 2020), the
HESIP system follows the architecture of a Type-3
hybrid system, since HESIP uses a sub-symbolic
component to work on a task, and then a symbolic
component to finalise that task. Figure 1 shows
the architecture of the HESIP system. More details
about the HESIP system can be found in (Salam
et al., 2021).

Figure 1: Architecture of the HESIP system

Rabold et al. (2019) have developed an explana-
tion system called LIME-Aleph that explains image
predictions using the learned rules. The HESIP sys-
tem is motivated by the LIME-Aleph system and
extends the architecture of LIME-Aleph in order to
achieve a more generalised method. LIME-Aleph
depends on two datasets that consist of synthetic
images while the HESIP system can be applied to
datasets that consist of real-world images. A de-
tail comparison between the HESIP system and the
LIME-Aleph system is provided in (Salam et al.,
2021).

The steps of the HESIP system are demonstrated
here using the PASCAL-Part dataset (Chen et al.,
2014) that consists of real-world images. We want
to learn the concept of a potted plant from the dif-
ferent parts of the concept that are present in an
image. For this learning task, only those images
that contain potted plants and bottles are used from
the dataset. The potted plant concept has two parts:
pot and plant. We say that there is a potted plant
concept in an image, if it represents a pot that is
located below a plant. Similarly, the bottle concept
consists of two parts: body and cap. There are
images of bottles in the dataset that contain only
a body part. In our case, we work with the bottle
images that contain both parts. Figure 2 shows
images that contain a potted plant and a bottle.

2.1 The Sub-symbolic Component
As sub-symbolic ML model, HESIP uses an artifi-
cial neural network (ANN) (see Russell and Norvig,

Figure 2: Example of a potted plant (a) and a bottle (b).

2020, for an introduction) to make a prediction
with a probability for an input image. Therefore,
positive and negative images are selected from the
dataset in order to learn explanatory probabilis-
tic rules in the symbolic component. The sample
images are selected based on the similarity to the
input image. Predictions with their probabilities
for all sample images are made with the ANN. A
sample image is considered as a positive instance,
if the prediction probability of the input image is
less than or equal to the prediction probability of
the sample image; otherwise, the sample image is
considered as a negative instance.

Once the sample images are selected, the HESIP
system extracts all image information and repre-
sents it using an ontology. After that, the symbolic
component uses this image information as data to
learn the probabilistic rules. In the image informa-
tion extraction step, the objects present in the image
and their property information, the location infor-
mation of the objects and the relations between the
objects are extracted. The location of an object is
determined from its position in the image grid con-
sidering the image as a grid. For an image, HESIP
detects the objects and their location information
using Detectron2 (Wu et al., 2019) that implements
the Mask R-CNN (He et al., 2017) object detection
algorithm. The relations between the objects in an
image are determined using the location informa-
tion of the objects. We assume that two objects
are related in any of the following ways: left of,
right of, top of, bottom of, on, under and contain.
The relation between two objects is on or under, if
one object is at the top or at the bottom of another
object and they are adjacent.

2.2 The Symbolic Component

The symbolic component of the HESIP system
learns the explanatory rules using the sample im-
age information. As a symbolic component, HESIP
uses cplint that is a probabilistic logic programming
framework (Riguzzi and Azzolini, 2020). The in-



formation about the positive and negative sample
images are used as data in the symbolic component
that learns probabilistic rules and the predictions
of the images are then explained using these rules.
A probabilistic rule has the following form:

h:p :- b1,..., bn.

where h is a head literal, b1,..., bn are body lit-
erals and p is a real number between 0 and 1 that
indicates the probability of the rule. The if-symbol
(:-) separates the head and the body of the rule. A
colon (:) is used to associate the probability with
the literal in the head of the rule.

To represent the sample image information, the
HESIP system uses an ontology that has four
predicates: object/1, type/2, property/3 and
relation/3. The predicates object/1, type/2

and property/3 are used to represent an object,
the type of the object and the property of the object.
The relation between two objects is presented using
the predicate relation/3. The probabilistic rules
learned in the HESIP system may contain either
the predicate type/2 or relation/3 in the head of
the rule and may contain any predicates of the on-
tology in the body of the rule. This ontology makes
sure that the explanation generation method used
in the HESIP system can be applied to different
application domains.

Once the information of the sample images is
represented with the help of the ontology, it can
be used as data in the symbolic component where
the information about each image represents an ex-
ample instance. The decision of the sub-symbolic
component is used to determine whether an exam-
ple instance is a positive or negative instance. In
our case, the images of the potted plant concept are
determined as positive example instances while the
images of the bottle concept are determined as neg-
ative example instances. Listing 1 shows a positive
example instance for the potted plant concept in
the symbolic component.

Listing 1: A positive example instance for the potted
plant concept.
begin(model(pp1)).

object(pp1_obj1).
object(pp1_obj2).
object(pp1_obj3).
type(pp1_obj1, potted_plant).
type(pp1_obj2, pot).
type(pp1_obj3, plant).
relation(pp1_obj1, pp1_obj2, contain).
relation(pp1_obj1, pp1_obj3, contain).
relation(pp1_obj2, pp1_obj3, under).

end(model(pp1)).

Using these example instances, the symbolic
component of the HESIP system learns the proba-
bilistic rule in Listing 2 for the potted plant concept.
This rule specifies that an object A is of type potted
plant with the probability 1, if all the literals in the
body of the rule are satisfied.

Listing 2: An example of a learned rule for the potted
plant concept.
type(A, potted_plant):1.0 :-
type(B, pot), object(B),
type(C, plant), object(C),
relation(B, C, under),
relation(A, C, contain),
relation(A, B, contain),
object(A).

After the rule is learned in the symbolic com-
ponent, the HESIP system uses this rule in the
explanation generation module in order to gener-
ate a natural language description that will explain
the image prediction. Before we go into details
how this is done and how an explanation can be
modified, we first present an overview of the user
interface of the HESIP system in the following
section.

3 HESIP: User Interface

A prototype of a graphical user interface for the
HESIP system has been developed to illustrate the
interaction between a user and the system for gen-
erating and modifying explanations. As illustrated
in Figure 3, a user clicks on the “Choose File” but-
ton to select an image for predicting the image.
After selecting the image, it is displayed and a
new “Predict & Explain” button appears. When
the user presses on the “Predict & Explain” but-
ton, the HESIP system predicts the image in the
sub-symbolic component and learns a probabilis-
tic rule in the symbolic component to explain the
prediction. The prediction for the image and the
explanation of the prediction along with the prob-
ability of the explanation are displayed in a panel
(see Figure 3).

Because the interface of the HESIP system dis-
plays the predicted image, the prediction and the
explanation together, the user can relate and inspect
them immediately and can see whether the explana-
tion is correct or not. After showing the prediction
and the explanation to the user, two buttons “Mod-
ify Explanation” and “Confirm Explanation” are
displayed (see Figure 3). After inspection, the user
can either modify or confirm the explanation. If
the user feels that there is something wrong with



Figure 3: The HESIP system is displaying the prediction of the selected image and the corresponding explanation
together with the probability.

the generated explanation, then they can fix the in-
correct information so that the HESIP system can
learn a better one.

After pressing the “Modify Explanation” button,
the HESIP system shows the explanation inside a
text editor that allows one to modify the explana-
tion generated by HESIP. When the user uses the
text editor to modify the explanation, the editor
guides the user using appropriate word suggestions
according to the grammar of the CNL used for gen-
erating the explanation (see Figure 4). There exist
several projects where predictive editors have been
developed to guide users for writing sentences in
a CNL (Guy and Schwitter, 2017; Franconi et al.,
2011; Bernstein and Kaufmann, 2006; Schwitter
et al., 2003). When writing a CNL sentence, the
next word is predicted and suggested to the user
by the predictive editor. Since the explanations are
expressed in a CNL, the text editor of the HESIP
system can be developed as a predictive editor sim-
ilar to the PENGASP system. The user can select a

word from the suggested list of words or can write
the word manually.

Figure 4: The HESIP system is showing suggestions to
the user during the modification of an explanation.

The altered parts of the explanation are displayed
as coloured text so that the user can easily identify
which parts of the explanation are altered. The
user clicks on the “Submit” button once they are
done with the modification. Afterwards, HESIP
learns a new explanatory rule for the predicted im-
age by taking the modified explanation into account
(see Section 5). The modified explanation is first
processed using the bi-directional grammar that



Listing 4: Definite Clause Grammar Rule of the Bi-directional Grammar
np([mode:M, ctx:body, fcn:subj, def:_D, num:N, arg:X, clause:C1-C5, ante:A1-A4]) -->

det([mode:M, morph:O, num:N, def:D, clause:C1-C2]),
noun([mode:M, morph:_, num:N, arg:X, clause:C2-C3, ante:A1-A2]),
prep([mode:M, ctx:head]),
rnoun([mode:M, morph:_, num:N, arg:X, clause:C3-C4, ante:A2-A3]),
{ anaphora_resolution(det_noun_prep_rnoun, [M, D, X, C1, C4, C5, A1, A3, A4]) }.

produces a rule. Therefore, this rule is used to
obtain the modified information and the example
instances are updated accordingly in the symbolic
component. Finally, the symbolic component uses
these updated example instances to learn a new
explanatory rule. HESIP generates a new expla-
nation from the newly learned rule and displays it
on the interface. The HESIP system compares the
previous and the new explanation to identify the
differences between them. If any difference was
found, then the HESIP system shows that part as
coloured text in order to highlight what is different
with respect to the previous explanation. The mes-
sage “New explanation has been learned using the
feedback.” is displayed along with the new expla-
nation to assure the user that the explanation has
been learned taking the user’s modified explanation
into consideration. At this point, the user can press
the “Confirm Explanation” button to approve the
new explanation; otherwise, they can make further
modifications to the explanation.

4 Generating Explanations

In Section 2, we showed how the HESIP system
learns symbolic representation for generating ex-
planations. Now let us have a closer look at how
these explanations are generated. Once the explana-
tory rule is learned in the symbolic component, the
HESIP system generates an explanation for the
image prediction from the learned rule using a bi-
directional logic grammar. The generated explana-
tion can be processed with the same bi-directional
grammar to produce a rule that is semantically
equivalent to the learned rule from which the ex-
planation was generated. This is important for the
modification process, since we want to make sure
that the grammar produces correct rules after pro-
cessing the generated explanations as we will see
in the following section.

The learned rule needs to be pre-processed be-
fore it can be used by the grammar for generating a
natural language explanation. In the pre-processing
steps, the literals of the rule are first reordered in

a linguistically-motivated way; therefore, subject
grouping is applied to remove redundant informa-
tion in the reordered rule; and finally, variables that
serve as names are added to the rule if required
in order to resolve ambiguity of definite descrip-
tion. After pre-processing, HESIP sends the re-
constructed rule to the grammar that generates the
explanation. Listing 3 shows a reconstructed rule
for the learned rule (see Listing 2) of the potted
plant concept.

Listing 3: A reconstructed rule for the potted plant
concept after pre-processing.
class(A, object), type(A, potted_plant) :-
class(A, object),
relation(A, B, contain),
class(B, object), type(B, pot),
relation(A, C, contain),
class(C, object), type(C, plant),

class(B, object), type(B, pot),
relation(B, C, under),
class(C, object), type(C, plant).

For the reconstructed rule in Listing 3, the gram-
mar of the HESIP system generates the following
explanation: If an object contains an object of type
pot and contains an object of type plant and the
object of type pot is located under the object of type
plant then the object is of type potted plant.

Listing 4 shows an example of a grammar rule
that generates a noun phrase in the subject position
for a clause pattern that occurs in the body of a rule.
In the generation mode (mode:gen), this grammar
rule takes a class and a type (for example, class(B,
object) and type(B, pot)) as input and gener-
ates an indefinite noun phrase (an object of type
pot) or a definite noun phrase (the object of type
pot) as output. The argument clause holds a differ-
ence list (C1-C5) with the incoming and outgoing
literals. The argument ante holds a difference list
(A1-A4) with the incoming and outgoing accessible
antecedents. The call to anaphora resolution/2

updates these two difference lists. It is important to
note that exactly the same grammar rule can also
be used in the processing mode (mode:proc), since



the grammar is bi-directional. In the processing
mode, the grammar rule takes the generated verbal-
isation as input and produces a rule as output that
is semantically equivalent to the rule from which
the verbalisation was generated.

5 Modifying Explanations

The bi-directional property of the grammar enables
the HESIP system to modify the generated explana-
tions. In Section 3, we have shown how a human-
in-the-loop can alter explanations that are displayed
to the user for explaining image predictions. In this
section, we show the steps (see Figure 5) that are
performed by the HESIP system in order to gen-
erate a new explanation from a newly learned rule
for the predicted image after modification by the
user. Note that the explanation modification steps
are completed in the symbolic component of the
HESIP system.

Let us assume that a user wants to see the pre-
diction and the explanation for an image shown in
Figure 2a that represents a potted plant concept. As
discussed in Section 2, HESIP selects sample im-
ages for a predicted image, extracts information of
the sample images, represents the sample image in-
formation using an ontology. Finally, HESIP uses
the information of the sample images as example
instances in the symbolic component to learn the
explanatory rule for explaining the image predic-
tion. Let us assume that HESIP uses the example
instances shown in Listing 5 and learns the explana-
tory rule in Listing 6 for explaining the prediction
of the image in Figure 2a. In this case, HESIP
generates the explanation “If an object contains
an object of type pot and contains an object of
type plant and the object of type pot is located on
the object of type plant then the object is of type
potted plant.” from the learned rule in Listing 6
using the bi-directional grammar after applying the
pre-processing steps (as discussed in Section 4).

Listing 5: Three example instances that are used to learn
the explanatory rule for the potted plant concept.
begin(model(pp1)).

object(pp1_obj1).
object(pp1_obj2).
object(pp1_obj3).
type(pp1_obj1, potted_plant).
type(pp1_obj2, pot).
type(pp1_obj3, plant).
relation(pp1_obj1, pp1_obj2, contain).
relation(pp1_obj1, pp1_obj3, contain).
relation(pp1_obj2, pp1_obj3, on).

end(model(pp1)).

begin(model(pp2)).
object(pp2_obj1).
object(pp2_obj2).
object(pp2_obj3).
neg(type(pp2_obj1, potted_plant)).
type(pp2_obj1, bottle).
type(pp2_obj2, body).
type(pp2_obj3, cap).
relation(pp2_obj1, pp2_obj2, contain).
relation(pp2_obj1, pp2_obj3, contain).
relation(pp2_obj2, pp2_obj3, under).

end(model(pp2)).

begin(model(pp3)).
object(pp3_obj1).
object(pp3_obj2).
object(pp3_obj3).
neg(type(pp3_obj1, potted_plant)).
type(pp3_obj2, pot).
type(pp3_obj3, plant).

end(model(pp3)).

Listing 6: A learned explanatory rule for the potted
plant concept.
type(A, potted_plant):1.0 :-
type(B, pot), object(B),
type(C, plant), object(C),
relation(B, C, on),
relation(A, C, contain),
relation(A, B, contain),
object(A).

When this explanation is displayed to a user,
then the user may want to modify the explanation
after noticing that the relation on between the pot
and the plant objects is not correct. Let us assume,
the user has changed the explanation to “If an ob-
ject contains an object of type pot and contains an
object of type plant and the object of type pot is lo-
cated under the object of type plant then the object
is of type potted plant.” where the preposition on is
replaced by under. After submission of the modi-
fied explanation, HESIP processes the explanation
using the bi-directional grammar to obtain a rule.
The generated rule for the modified explanation is
shown in Listing 7.

Listing 7: A rule obtained using the bi-directional gram-
mar by processing the modified explanation for the pot-
ted plant concept.
type(C, potted_plant) :-
class(C, object),
relation(C, A, contain),
class(A, object),
type(A, pot),
relation(C, B, contain),
class(B, object),
type(B, plant),
relation(A, B, under).

The rule (see Listing 7) derived from the altered
explanation is then compared with the rule previ-



Figure 5: Steps for modifying explanations in the HESIP system.

ously learned by HESIP (see Listing 6) to identify
the modifications. In this case, the user has updated
the relation information and the rule in Listing 7
reflects that change. After identifying the changes,
the amended information is updated in the example
instances. In our case, we update the relation from
on to under between the pot and the plant objects
for all positive example instances. We do not up-
date any information about the negative example
instances, since the user modified an explanation
in order to correct it and the positive example in-
stances represent the correct information for the
concept to be learned. Afterwards, an explanatory
rule is learned using the updated example instances.
The new rule is shown in Listing 8. We can see
that the new rule is different from the previous one
(see Listing 6) and that the preposition has been
replaced.

Listing 8: A new explanatory rule learned for the potted
plant concept after the explanation is modified by the
user.
type(A, potted_plant):1.0 :-

type(B, pot), object(B),
type(C, plant), object(C),
relation(B, C, under),
relation(A, C, contain),
relation(A, B, contain),
object(A).

Once the new explanatory rule is learned, HESIP
first pre-processes the new learned rule as discussed
in Section 4 that results in a reconstructed rule.
After that, HESIP verbalises the reconstructed rule
to obtain a new explanation for the prediction. For
this scenario, HESIP generates the new explanation
“If an object contains an object of type pot and
contains an object of type plant and the object of
type pot is located under the object of type plant
then the object is of type potted plant.” using the
new learned rule in Listing 8. The new explanation
is then displayed on the interface.

This example illustrates the explanation modifi-

cation steps for changing the relation information.
The HESIP system applies the same process to
generate a new explanation for updating any infor-
mation in the explanation. As mentioned earlier,
a predictive editor is used in the HESIP system
to modify an explanation that supports the user in
making a modification. After generating an ex-
planation for a prediction, it is possible that the
explanation may have the following incorrect infor-
mation and a user can update that information in
the explanation:

• The user can update the relation information
of an explanation as shown for the explanation
of the potted plant concept.

• The user can modify the object property infor-
mation (for example, the object colour infor-
mation of a concept).

• The user can update the object type informa-
tion in the conditional part of the explanation
sentence.

Practically, in an explanation sentence, the user
can update any content word introduced by the on-
tology used in the system. In the modification step,
the predictive editor will ensure that the explana-
tion is grammatically correct. In the case of updat-
ing the relation information, there should not be
any issue, since the relevant relation words will be
suggested by the predictive editor and the user can
select the relation from a list of words. However,
a problem may occur while updating any object
property or type information in an explanation. An
explanation may contain an anaphoric reference
to an object. If the user updates the property or
the type information of an object that is used as
an anaphoric expression, then the user has to make
sure that all the other parts of the explanation are
also updated. Let us consider an example from a
tower concept learning task (Rabold et al., 2019)



to illustrate this scenario. In tower concept learn-
ing, an image consists of three squares with green,
blue and pink colours, and if the image contains a
square on top of another square without repeating
the same colour, then the image represents a tower
concept. For the tower concept, the HESIP system
may generate the following explanation: “If an ob-
ject A contains a blue object and contains a green
object and the blue object is located on the green
object then the object A is of type tower.” where
the user may update the colour green to pink only
for the first occurrence (a green object to a pink
object). This will lead to incorrect information in
the later part of the explanation (the noun phrase
the green object should be changed to the pink ob-
ject). The predictive editor usually will not identify
this information as incorrect, since the sentence is
grammatically correct. One possible solution to
overcome this problem is to design the predictive
editor in such a way that whenever a word related
to an anaphoric expression will be updated, the
editor will highlight all relevant anaphoric expres-
sions in the explanation and the user can then fix
the relevant words.

6 Evaluation

We evaluate the explanation generation and mod-
ification process of the HESIP system using four
datasets: potted plant concept learning, house con-
cept learning, tower concept learning and single
relation learning. The LIME-Aleph system has
used the tower concept learning and the single re-
lation learning tasks in order to demonstrate their
method. For the house concept learning task, an
image consists of a triangle and a square, and if
the image contains a triangle on top of a square,
then the image represents a house concept. For sin-
gle relation learning, if an image contains a green
square on the left side of a blue square, then the
image represents the left of relation. For evaluation,
we use 382 test images for the potted plant concept
and 1000 test images for all other concepts.

The explanation generation process is evaluated
in two ways. First, if the generated explanation
represents the literals that correspond to the literals
of the image, then we consider the explanation as a
correct one. Second, we check if the bi-directional
grammar works in both directions using a tech-
nique known as semantic-round tripping (Hossain
and Schwitter, 2020). Using this technique, we
store the formal representation R1 of an explana-

tion. The explanation is then processed by the
grammar that produces second formal representa-
tion R2. Therefore, we compare if R1 and R2 are
semantically equivalent. For the 1000 test images,
HESIP generates all correct explanations for single
relation learning and tower concept learning, and
999 correct explanations for house concept learn-
ing leading to the accuracy of 100%, 100% and
99.9%. For the 382 test images of potted plant
concept, HESIP generates 310 correct explanations
with an accuracy of 81.15%.

To evaluate the explanation modification process,
we take the test images for which the HESIP system
could not generate the correct explanations. HESIP
could not generated correct explanations for 1 test
image of the house concept and for 72 test images
of the potted plant concept learning. To check
if the modification process works correctly, we
first modify an incorrect explanation; therefore,
HESIP learns a new explanatory rule taking the
modified explanation into consideration and finally,
we check if the explanation generated from the
newly learned rule is correct or not.

Among the 72 test images of the potted plant
concept for which HESIP could not generate the
correct explanations, it generated 53 explanations
with wrong relations. We discussed one such expla-
nation in Section 5 where the explanation is learned
for the relation on instead of the relation under. For
all 53 explanations, we modified the explanations
with correct relations and follow the steps discussed
in Section 5 to generate the new explanations. We
found that the HESIP system generated the new
explanations with correct relations for all of them.
For two test images, we could not modify the ex-
planation using a correct relation, since the images
contain only plants and there was no pot in these
images. We also observe that there were 17 test
images of potted plants for which the HESIP sys-
tem learned incomplete explanatory rules and as a
result, the system could not generate suitable expla-
nations that can be modified to generate the correct
explanations. We also notice a similar problem
for one test image of the house concept for which
the HESIP system could not generate a suitable
explanation.

7 Conclusion

In this paper, we presented an explanation modi-
fication method for HESIP, a hybrid explanation
system for image predictions. Using the prototype



of the HESIP system, we showed how a human
working in the loop can fix an incorrect explana-
tion generated by the system. For an image pre-
diction, the HESIP system learns an explanatory
rule and generates an explanation in CNL using a
bi-directional logic grammar. If the user decides
that the generated explanation is wrong, then they
can modify the explanation to fix it following the
grammar rules of the CNL. After modifying the
explanation, HESIP learns a new explanatory rule
taking the user’s modified explanation into account
and generates an explanation from the new learned
rule to better explain the image prediction. The
result of the evaluation shows that the modification
process of the HESIP system is very effective in
learning better explanations in the symbolic com-
ponent of the system.

References
Abraham Bernstein and Esther Kaufmann. 2006. GINO–

a guided input natural language ontology editor. In
International Semantic Web Conference, pages 144–
157. Springer.

Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja
Fidler, Raquel Urtasun, and Alan Yuille. 2014. De-
tect what you can: Detecting and representing ob-
jects using holistic models and body parts. In Proc.
CVPR’14, pages 1971–1978.

Enrico Franconi, Paolo Guagliardo, Sergio Tessaris, and
Marco Trevisan. 2011. Quelo: an ontology-driven
query interface. Proceedings of the 24th Interna-
tional Workshop on Description Logics, 745:488–
498.

Stephen C. Guy and Rolf Schwitter. 2017. The
PENGASP system: architecture, language and au-
thoring tool. Language Resources and Evaluation,
51(1):67–92.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask R-CNN. In 2017 IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 2980–2988.

Bayzid Ashik Hossain and Rolf Schwitter. 2020. Se-
mantic round-tripping in conceptual modelling us-
ing restricted natural language. In Australasian
Database Conference, pages 3–15. Springer.

Henry Kautz. 2020. The Third AI Summer, AAAI
Robert S. Engelmore Memorial Lecture. AAAI’20.
Retrieved November 13, 2021 from https:
//www.cs.rochester.edu/u/kautz/talks/
KautzEngelmoreLectureDirectorsCut.pdf.

Tobias Kuhn. 2014. A survey and classification of con-
trolled natural languages. Computational Linguistics,
40(1):121–170.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
4768–4777. Curran Associates Inc.

Johannes Rabold, Hannah Deininger, Michael Siebers,
and Ute Schmid. 2019. Enriching visual with ver-
bal explanations for relational concepts–combining
LIME with Aleph. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 180–192. Springer.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should I trust you?: Explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1135–1144. ACM.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision model-
agnostic explanations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Fabrizio Riguzzi and Damiano Azzolini. 2020. cplint
Manual. SWI-Prolog Version. Retrieved Novem-
ber 13, 2021 from http://friguzzi.github.
io/cplint/_build/latex/cplint.pdf.

Stuart Russell and Peter Norvig. 2020. Artificial Intelli-
gence: A Modern Approach. Pearson.

Abdus Salam, Rolf Schwitter, and Mehmet A. Orgun.
2021. HESIP: a Hybrid System for Explaining Sub-
symbolic Predictions. In 34th Australasian Joint
Conference on Artificial Intelligence, Sydney, Aus-
tralia. (accepted).

Rolf Schwitter. 2018. Specifying and verbalising an-
swer set programs in controlled natural language.
Theory and Practice of Logic Programming, 18(3-
4):691–705.

Rolf Schwitter, Anna Ljungberg, and David Hood. 2003.
Ecole: a look-ahead editor of controlled language.
In EAMT Workshop: Improving MT through other
language technology tools: resources and tools for
building MT.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-
Yen Lo, and Ross Girshick. 2019. Detectron2. Re-
trieved November 13, 2021 from https://github.
com/facebookresearch/detectron2.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep
Learning on Graphs: A Survey. IEEE Transac-
tions on Knowledge and Data Engineering. DOI:
10.1109/TKDE.2020.2981333.

https://www.cs.rochester.edu/u/kautz/talks/Kautz Engelmore Lecture Directors Cut.pdf
https://www.cs.rochester.edu/u/kautz/talks/Kautz Engelmore Lecture Directors Cut.pdf
https://www.cs.rochester.edu/u/kautz/talks/Kautz Engelmore Lecture Directors Cut.pdf
http://friguzzi.github.io/cplint/_build/latex/cplint.pdf
http://friguzzi.github.io/cplint/_build/latex/cplint.pdf
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333

