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Abstract

Universal adversarial texts (UATs) refer to
short pieces of text units that can largely affect
the predictions of Natural Language Process-
ing (NLP) models. Recent studies on universal
adversarial attacks require the availability of
validation/test data which may not always be
available in practice. In this paper, we propose
two types of Data-Free Adjusted Gradient
(DFAG) attacks to show that it is possible to
generate effective UATs with manually crafted
examples. Based on the proposed DFAG at-
tacks, we explore the vulnerability of com-
monly used NLP models from two perspec-
tives: network architecture and pre-trained em-
bedding. The empirical results on three text
classification datasets show that: 1) CNN-
based and LSTM models are more vulnera-
ble to UATsS than self-attention models; 2) the
vulnerability/robustness difference between of
CNN/LSTM models and self-attention models
could be attributed to whether or not they rely
on training data artifacts for predictions; and 3)
the pre-trained embeddings could expose vul-
nerability to both UAT and transferred UTA at-
tacks.

1 Introduction

Deep neural networks (DNNs) have enabled signif-
icant advancement in a range of natural language
processing (NLP) applications such as sentiment
analysis (Yang et al., 2019; Xu et al., 2019) and
topic classification (Sun et al., 2019). Despite the
superior performance, DNNs are known to be vul-
nerable to adversarial perturbations (Szegedy et al.,
2014; Goodfellow et al., 2015; Ma et al., 2018; Li
et al., 2019; Ma et al., 2021), i.e., small changes
on the input could lead to entirely incorrect predic-
tions (Croce and Hein, 2020; Jiang et al., 2020).
It has raised practical security concerns for the
deployment of DNNs in safety-critical scenarios
(Eykholt et al., 2018; Duan et al., 2020). Adver-

sarially perturbed inputs are known as adversarial
examples and the process of generating adversarial
examples is known as adversarial attack. It has
become a common practice to examine the vul-
nerability of DNNs to adversarial examples and
mitigate the vulnerability by involving adversar-
ial examples during the training process as a type
of augmented data (Nie et al., 2020; Madry et al.,
2018; Wang et al., 2019a; Zhang et al., 2019; Wang
et al., 2019b; Croce et al., 2020).

Most adversarial attack methods for NLP mod-
els (Alzantot et al., 2018; Ebrahimi et al., 2018b;
Jin et al., 2020) are sample-wise methods that craft
adversarial examples by manipulating each clean
example. Different from sample-wise attacks, uni-
versal adversarial attack (Behjati et al., 2019) aims
to generate Universal Adversarial Texts (UATS) or
universal triggers (Wallace et al., 2019) for each
class or the entire dataset to fool NLP models. How-
ever, existing methods (Wallace et al., 2019; Song
et al., 2021; Behjati et al., 2019) all require the
validation/test dataset of the task or some proxy
datasets in a similar domain to craft UATs.

To more easily and efficiently generate UATsS,
we propose Data-Free Adjusted Gradient (DFAG)
attacks. According to the evaluation, our proposed
DFAG attacks achieve a comparable performance
as the original linear approximation method (Wal-
lace et al., 2019) on most of the NLP models. We
find that UATs generated by our method highly
overlap with those from the original linear approx-
imation method (Wallace et al., 2019). This indi-
cates that the vulnerability of UATs may be inher-
ent in the models. To better understand the vul-
nerability, we take text classification as an exam-
ple and dive into different neural network architec-
tures. Empirical results show that CNN and LSTM
models are notebly more vulnerable to UAT's than
self-attention models. We also reveal that the effec-
tiveness of UATs generated for LSTM and CNN



models exposes certain training data artifacts, i.e.,
important words in the training data that are more
closely correlated with the targeted class. In con-
trast, self-attention models are relatively more ro-
bust to UATs. This finding is consistent with pre-
vious study on model robustness to training data
artifacts, so it is likely that self-attention models
suffer less from training data artifacts.

Apart from the neural architectures, we also
examine pre-trained embeddings, including static
pre-trained word embeddings (Pennington et al.,
2014; Mikolov et al., 2018) and contextualized
ones from the pre-trained language model BERT
(Devlin et al., 2018). These embeddings have been
widely used in different NLP applications. Our ex-
periments show that pre-trained word embeddings
could deteriorate model robustness to UAT's, and
even self-attention models can become vulnerable
with pre-trained embeddings. Upon further inves-
tigation, we find that UAT's are often transferable
among models that use the same pre-trained em-
beddings. This reveals one unique vulnerability of
NLP models to UATs.

2 Generating Universal Adversarial
Texts

Problem Formulation. Consider a text classifier
f mapping from input x to label y. The goal of
universal adversarial attack is to generate a small se-
quence of tokens t = (t1, ta, ..., tx) (i.e., an UAT),
which can be inserted into any clean example z to
cause misclassification towards a targeted wrong la-
bel y. Previous work (Behjati et al., 2019; Wallace
et al., 2019) showed the effectiveness of UAT when
three words are inserted at the beginning of the
input sequence. Here, we follow their settings and
predetermine the adversarial target class i. The
attack problem can be formally definedd as: for
any clean example {(x,y)|(x,y) € Dandy # 3},
we aim to make the classifier f predict the per-
turbed example t @ x as the targeted label y, i.e.,
f(t @ x) = 7. The problem can be solved by min-
imizing an adversarial loss L4, (t ® %, ), which
is the cross-entropy loss defined with the targeted
label.

argtmin E(x,y)~D [Ladn(t ©x,7)] €))

2.1 Gradient-based Attack

A UAT is composed of discrete tokens for which we
search from the vocabulary V = w1, wa, ..., wyy,

(|V| is the size of vocabulary). Each word w; in the
vocabulary is represented by a dense vector called
embedding e;. In order to find the optimal UAT,
Behjati et al. (2019) applied gradient descent for
t in the embedding space and identified the word
in the vocabulary by projecting the nearest embed-
dings of the word. More efficiently, Wallace et al.
(2019) proposed a linear approximation approach
to generate gradients to approximate the loss of
substituting t with typdate, 1., Lado (tupdate ® X, 7).
According to the first-order Taylor approximation,
we measure the effectiveness of the substitution by
the inner product of the gradient V, L4, with the
embedding of typdate-

arg min
ct

egpdmevet Eadv (2)

The approximation scores for all the possible
substitution words in the vocabulary can be effi-
ciently calculated via matrix multiplication, where
E e RIVIX™ denotes the embedding matrix with
vocabulary size |V'| and embedding size m. It only
needs one forward and backward pass to compute
the gradients for all the positions of UAT tokens.
The equation is shown below where V., L4, has
the dimensions for positions of UAT tokens and
embedding size m.

A = E X Vetﬁadv (3)

Both approaches require batches of data to up-
date the UAT ¢. However, we can still use the linear
approximation approach as a baseline for our exper-
iment due to its efficiency. This approach requires
a batch of examples to calculate the gradient for
each update of the UAT, as shown in Equation (4)
where n examples are consumed.

1 n
vet'cadv = ﬁ Z vet [’adv (t 2] xl) (4)
=1

2.2 Data-free Adjusted Gradient Attack

The universal property of UATs indicates that they
reflect the inherent vulnerability of well-trained
NLP models. Moreover, Wallace et al. (2019) re-
veals that UAT's are a form of training data artifacts
for natural language inference models. We sus-
pect the validity of this conclusion across all text
classification tasks, which is shown in Section 3.4.
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Figure 1: One iteration of the DFAG attack. The ar-
bitrary example x is a positive movie review selected
from the SST-2 test data, and the goal is to generate a
UAT to make any non-negative (positive) reviews to be
classified as negative ones. The UAT is generated by it-
erating the process: (1) concatenate the UAT ¢ and the
example = ; (2) generate dense text representation of
t @z, ie., e ey; (3) generate pseudo-samples e in
the embedding space; (4) compute the gradient of ad-
versarial loss w.r.t. e; and finally find the updated UAT
Lupdage Via the linear approximation method.

Therefore, using batches of data for universal attack
might be redundant. Our proposed algorithm only
requires an arbitrary example x = wy, w2, ..., W;
(! denotes the length of the text) which does not
belong to the targeted class ¢ to generate effective
UATs. In our experiment, we select the first valid
sample from the test data. The attack could be
data-free if the adversary chooses to manually craft
the example. This is feasible because the only re-
quirement for the example is that it does not belong
to the targeted class. An interesting parallel work
(Parekh et al., 2021) of data-free attack generates
what they defined as "class impressions" for this
purpose. We regard that the use of class impres-
sions does lead to faster convergence but are not
necessary, according to our experiments. Figure 1
demonstrates the process of updating the UAT in
one iteration of our DFAG attack.

Unreliable gradients. The gradient for one sin-
gle example might not be reliable since a DNN is
usually not a smooth function. One most notable
example is that an infinitesimal perturbation of the
input could change its prediction. The issue also
happens to the field of model interpretation, where
they attribute input features for model prediction.
Therefore, we generate pseudo-samples e,; which
are dense Vectors €, , .., €ps;, in the embedding
space and compute more reliable gradient by ag-
gregating the gradients of the pseudo-samples.

Generating pseudo-samples. We pass the t  x
into the embedding layer, which outputs the dense
representation e in the embedding space. We then
manipulate e to generate K pseudo-samples e, in
the embedding space during each iteration. The gra-
dients of the pseudo-samples are then aggregated
to apply the linear approximation attack. We refer
to this approach as the DFAG (Data-Free Adjusted
Gradient) attack.

We employ the following two techniques to gen-
erate pseudo-samples, which have been proved to
be effective in approximating gradients for model
interpretation (Smilkov et al., 2017; Sundararajan
etal., 2017).

* Smooth noise: the Gaussian noise 7 is gen-
erated with mean 0 and standard deviation o.
We denote this method as DFAG (Smooth)
to accredit the SmoothGrad method (Smilkov
etal., 2017).

eps ={e+mn;|iec[l.K]} )

where 7; ~ N(0, 0?)

» Path method: we sample K pseudo-samples

evenly along the straight path from the origin

to the given sample. We denote this method as

DFAG (Integrated) to accredit the Integrated
Gradient method (Sundararajan et al., 2017).

eps = {eps, | 1 € [1..K]}
N i y (6)
r = —
where ey, e

3 Attacking Text Classification Models

This section introduces model configurations and
attack settings, and analyzes the experimental re-
sults. We also publish the source code for all the
settings and experiments on Github ! to reproduce
the result.

3.1 Modeling Setup

Tasks and Datasets. Our experiments include
Stanford Sentiment Treebank (SST-2) (Socher
etal., 2013), Yelp (Zhang et al., 2015) datasets for
sentiment classification task, and AG-News con-
structed by (Zhang et al., 2015) for topic classifica-
tion task.

'https://github.com/xinzhel/attack_
alta
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Task Architecture | Pre- Attack Success Rate ASR Ratio
trained
Baseline | DFAG DFAG
(Smooth) | (Integrated)
/ 0.53 0.53 0.52 1
GloVe 0.43 0.44 0.3 1.02
LSTM FastText | 0.85 0.85 0.81 1
BERT 0.43 0.25 0 0.58
/ 1 0 1 1
SST-2 CNN GloVe 1 1 1 1
FastText 1 0 1 1
BERT 0.25 0.2 0.1 0.8
/ 0.43 0.43 0.43 1
Self-attention | GloVe 1 1 1 1
FastText 1 1 1 1
BERT 0.16 0.15 0 0.94
/ 0.55 0.26 1 1.82
LSTM GloVe 0.81 0.89 0.13 1.1
FastText | 0.58 04 0.24 0.69
BERT 0.16 0.14 0.05 0.88
Yelp / 1 0 0 0
CNN GloVe 0.91 0 0.37 041
FastText 1 0 0.98 0.98
BERT 0.24 0.14 0.02 0.58
/ 0.15 0.15 0 1
Self-attention | GloVe 0.97 0.97 0.68 1
FastText | 0.98 0.98 0 1
BERT 0.1 0.07 0.03 0.7
/ 0.3 0.3 0.3 1
LSTM GloVe 0.3 0.18 0 0.6
FastText | 0.2 0.2 0.2 1
BERT 0 0 0 /
AG-News / 1 1 1 1
CNN GloVe 0.88 0.91 0.41 1.03
FastText 1 0.98 1 0.98
BERT 0.04 0.06 0 1.5
/ 0.02 0.01 0 0.5
Self-Attention| GloVe 0 0 0 /
FastText | 0.1 0.38 0.13 3.8
BERT 0 0 0 /

Table 1: Attack success rates on different NLP models. One targeted class is selected to attack for each task:
"negative" class for SST-2, Yelp, "Business" class for AG-News. The baseline attack refers to Wallace et al.
(2019), while the DFAG (smooth) and DFAG (integrated) attacks use the smooth noise and path method. We use
the ASR ratio of the DFAG attack to the baseline attack to measure the effectiveness of our DFAG attacks. The
numbers in bold indicate that our DFAG attacks are more effective than the baseline. The ratios of less than 0.5
are marked in the italics and underlining, which indicate that our DFAG attacks are much less effective than the
baseline.

Model architectures. We use three classical neu- * LSTM: Two-layer LSTM with 512 hidden di-
ral networks as the text classifiers. mensions. We take the final hidden state of the
last time step for fully connected and softmax



layers to compute the probability distribution
of all the classes.

* CNN (Zhang and Wallace, 2017): Four 1-
dimensional convolution layers with filter
sizes (2, 3, 4, 5) respectively. Each layer
has six filters and is followed by the ReLU
activation function and max-pooling layers.
Therefore, the total output dimension is 24.

* Self-attention: One self-attention layer where
we set 5 parallel attention heads (Vaswani
et al., 2017) followed by a self-attentive pool-
ing layer (McCann et al., 2017).

Pre-trained embeddings. We use static word
embeddings GloVe (Pennington et al., 2014), Fast-
Text (Mikolov et al., 2018) and the contextualized
embeddings from the last hidden layer of the pre-
trained language model BERT (Devlin et al., 2018).
The pre-trained embeddings can then be fed into
the text classifiers. GloVe and FastText have differ-
ent designs for obtaining word embeddings. GloVe
embeddings are trained on a word co-occurrence
matrix using a log-bilinear function where any pairs
of word vectors are bilinearly mapped into the co-
occurrence counts, while FastText embeddings are
obtained by training a skip-gram model on word
pairs from negative sampling.

All the pre-trained parameters are fixed without
fine-tuning, as we aim to separate the vulnerabil-
ity of the pre-trained embeddings from that of the
model architectures and training. Specifically, we
want to avoid propagating the information of the
training data into pre-trained parameters, which
would benefit the analyses of pre-trained embed-
dings and training data artifacts. In addition, when
models use BERT embeddings with LSTM or CNN
for classification, self-attention building blocks of
BERT could interfere with our evaluation of archi-
tectures.

Training hyperparameters. We train all the
models with the Adam optimizer, learning rate
5e-5, and batch size 64. The maximum number
of training epochs is set to 5, and early stopping
would occur when the validation accuracy has no
improvement for one epoch.

3.2 Attack Setup

Attack hyperparameters. We select the first ex-
ample from the attack data used by the baseline
and then update the UATSs in a maximum of 10

iterations with an early stop if there is no decrease
of the loss L4, for more than three iterations. We
generate ten pseudo-samples during each iteration.
The standard deviation of Gaussian noise is set as
0.01.

Constraints of substitution tokens. The vocab-
ulary of BERT models has been built along with its
pre-trained tasks, whereas we construct the word-
level vocabulary from the training data for other
models. Since sentiment words have strong indica-
tions for sentiment classification, sentiment words
are filtered out following the practice in Wallace
et al. (2019). In addition, our test examples are
restricted to long sequences (>10 words) to pre-
serve semantics to a large extent. BERT employs
word-piece segmentation to process textual data
into a sequence of sub-word units. However, when
one or more sub-word are selected as the UAT to-
kens, the input may be re-segmented into a differ-
ent sequence, such as the sub-word "##oot" which
would be re-segmented into "#" "o" and "##ot".
Our experiment shows that the word-level attack
achieves similar performance, and tokens in the
word unit cover 76.6% tokens in the BERT vocabu-
lary. Therefore, we only consider substitution to-
kens in the word units to avoid the re-segmentation
issue. The word-level substitutions also prevent
that sub-words in UATs become unknown words
during the UAT transfer attack.

Evaluation. We calculate Attack Success Rate
(ASR) to measure the performance of the attack:
the percentage of examples that are misclassified
by the model as the targeted class among all the
evaluation samples. We select evaluation examples
that do not belong to the targeted class from the
original test data.

3.3 Experimental Results

We first empirically verify the effectiveness of our
attack on three neural network architectures, then
evaluate the vulnerability of pre-trained embed-
dings via UAT transfer attacks.

Attack effectiveness. As shown in Table 1, our
DFAG attacks with smooth gradients achieve com-
petitive results on LSTM and self-attention mod-
els to the baseline. Moreover, the DFAG (Inte-
grated) attack always performs better on CNN mod-
els, except the GloVe-CNN model on AG-News.
Note that this finding does not involve BERT-based



models since BERT composes of multi-head self-
attention layers.

To quantify how much effectiveness our DFAG
attacks achieve relative to the baseline attack, we
also report the ASR ratio of our DFAG attack to
the baseline, i.e.,

ASR of the DFAG
ASR of the baseline

Here, we choose the better one between the two
DFAG attacks. It shows that our DFAG attacks
achieve more than 50% effectiveness of the base-
line in most cases. An ASR ratio of more than 1
indicates that our DFAG (Smooth) attack even out-
performs the baseline on several models. Note that
our DFAG attacks are proposed to more easily and
efficiently examine the vulnerability of NLP mod-
els to universal adversaries, rather than competing
the ASR with existing attacks.

Failure cases on CNN models. Both DFAG at-
tacks exhibit low success rates against CNN mod-
els on the Yelp dataset. By contrast, the baseline
attack achieves nearly 100% success rates on all
CNN models, where only the GloVe embeddings
drop around 10% success rates on Yelp and AG-
News datasets. This marks some failure cases of
our DFAG attacks.

Comparing UATs generated by the baseline
and our DFAG attacks. By comparing the
UATs, we find that they actually generate many
overlapped UAT tokens, especially for SST-2 mod-
els, as shown in Table 3. We suspect that the low
overlap rates for AG_News and Yelp models are
due to their large vocabulary sizes.

The vulnerability of pre-trained embeddings.
As shown in Table 1, the use of pre-trained word
embeddings sometimes makes the models more
vulnerable, especially for self-attention models.
This counter-intuitive result indicates the existence
of embedding vulnerabilities in pre-trained embed-
dings. Our UAT transfer attacks also confirm the
vulnerability of pre-trained embeddings. The result
in Table 2 shows that UAT' tend to achieve the best
transferability on models with the same pre-trained
embeddings. This phenomenon is also observed
for BERT, although the success rate drops.

Measuring UAT transfer attacks. The absolute
transfer ASR is not suitable to measure transfer-
ability because vulnerable models tend to have low
ASRs. Therefore, in Table 2, we normalize the

absolute transfer ASR by dividing by the original
ASR of the victim model. The higher the normal-
ized ASR the more transferable the UATs are to
the target models (columns of Table 2). Take the
first row as an example: the absolute transfer ASR
of the BERT-LSTM model is only 0.06, while the
vulnerable models always have higher ASRs. The
normalized ASRs remove the effect of the varying
vulnerabilities of the target models since it would
amplify the absolute transfer ASR for the robust
models, causing the value for BERT-LSTM from
0.06 to 0.44 (0.06 dividing by 0.14).

3.4 Training Data Artifacts in UATSs

Training data artifacts are hypothesis words that are
highly correlated with the labels. The artifacts have
been explored by neural NLP models as the shallow
shortcut and spurious correlations for the predic-
tions (Gururangan et al., 2018; Branco et al., 2021).
Wallace et al. (2019) argues that effective UAT' for
Natural Language Inference (NLI) models expose
training data artifacts. Through our analyses, we
further prove that training data artifacts should be
attributed to the existence of UATSs. Interestingly,
we also find that the self-attention architecture pro-
vides certain robustness to such training data arti-
facts.

Measuring training data artifacts of UATSs.
We follow Gururangan et al. (2018); Wallace et al.
(2019) and compute the point-wise mutual informa-
tion (PMI) between each word w and the targeted
class 4 as:

The denominator is the expected probability of
the word w appearing in class ¢. The numerator is
the observed probability. PMI measures how much
more the word w occurs in the targeted class than
we expect. We measure the training data artifacts
of UAT words by their PMI ranks. We rank all the
words according to their PMI scores in descend-
ing order. Then, the high-rank words show a high
correlation with the targeted class, i.e., indicating
training data artifacts. We also measure the fre-
quency of each trigger word (i.e., the frequency in
a particular class vs. the total frequency) because
PMI would amplify words with low frequency.

Self-attention is robust to training data arti-
facts. The training data artifacts are highly re-
flected on UATSs generated for CNN and LSTM



Dataset FastText GloVe BERT
LSTM | CNN | Self- LSTM | CNN | Self- LSTM | CNN | Self-
Attention Attention Attention

FastText- | Yelp 1 0.8 0.42 0.2 0 0.05 0.44 0.08 0
LSTM SST 1 1 0.93 0.7 0.91 1 0.02 0.04 0.12
GloVe- Yelp 0.31 0.07 0 1 0.31 0.73 0.43 0.08 0
LSTM SST 0.96 1 0.82 1 0.96 1 0.02 0.04 0.12
BERT- Yelp 0.08 0.1 0.02 0.37 0.18 0.15 1 0.67 0.7
LSTM SST 0 0.1 0.05 0 0.01 0.01 1 1.16 1.56

Table 2: The vulnerability of pre-trained embeddings is reflected by the UAT transfer attack. Rows: Each row
represents the source models on which the UATSs are generated. Columns: each column specifies a target model of
the transfer attack. For example, the first row of the second column demonstrates the normalized ASR when we
apply UATs generated on the FastText-LSTM model to the FastText-CNN model.

Overlap | Total Overlap | vocabulary
Rates | Tokens | Tokens | Size
SST-2 | 76% 21 16 17,356
AG- 33% 6 2 114,068
News
Yelp 12% 8 1 746,663

Table 3: Overlap rates of the UATSs generated by the
baseline and our DFAG attacks.

models, while self-attention models generate UAT's
with low training data artifacts. The result is shown
in Table 4. In order to verify the robustness of self-
attention models to training data artifacts, the top 5
tokens with high training data artifacts are manu-
ally selected to evaluate the LSTM, CNN, and self-
attention models. Only the self-attention model
shows 0O attack success rates, as can be inferred
from Table 5. The robustness of self-attention mod-
els may be attributed to their contextualized to-
ken representations: each token is represented by
attending all the input tokens based on the atten-
tion scores. This type of architectures prevents the
model from leveraging shallow shortcuts (class-
wise triggers) for predictions.

4 Related Work

Universal adversarial perturbations. Behjati
et al. (2019); Wallace et al. (2019); Song et al.
(2021) generated the input-agnostic perturbations
of text for NLP models. These works follow the ini-
tial work (Moosavi-Dezfooli et al., 2017) of finding
Universal Adversarial Perturbations (UAPs) for im-
ages. Compared to the instance-specific adversarial
perturbations (Liang et al., 2018; Ebrahimi et al.,
2018b,a; Li et al., 2020), UAPs is a more severe
security issue (Ribeiro et al., 2020). Behjati et al.

(2019) employed projected gradient descent for de-
vising UATs. Wallace et al. (2019) followed the
linear approximation to generate adversarial text
(Ebrahimi et al., 2018b) to generate UAT's, which
converges faster than Projected Gradient Descent
(PGD). Song et al. (2021) generated natural UAT's
with less grammatical errors and more fluency via
Adversarially Regularized Auto Encoder (ARAE).
In this paper, we refer to the gradient approxima-
tion method. The original idea was proposed by
Ebrahimi et al. (2018b) called Hotflip and then uti-
lized by Wallace et al. (2019) to generate universal
triggers.

Gradient x Embedding scores for model inter-
pretation. The first-order Taylor approach and
Gradient x Embedding scores are also used to gen-
erate the saliency map in the field of model in-
terpretation (Sundararajan et al., 2017; Li et al.,
2016; Smilkov et al., 2017). However, they aim
to attribute the softmax output of a neural network
to input features while we identify the important
words for substitutions in terms of adversarial loss
Ladv- Hence, the gradient is calculated for the
output logits of the correct class rather than the
adversarial loss, and also they use the embeddings
of the original input instead of substitution words.

Adversarial transferability. Empirical study
also mentioned the transferability of universal ad-
versarial perturbations (UAPs) across models with
distinguished architectures and pre-trained mod-
ules, such as image adversaries from VGG-19 to
GoogleLeNet (Moosavi-Dezfooli et al., 2017) or
ResNets to other networks (Wu et al., 2020), and ad-
versarial texts from GloVe-based Reading Compre-
hensive models to ELMo-based models. In terms of
explanations for adversarial transferability, Liang



Tokens Models Frequencies H PMI Ranks
"appears" LSTM 11.0/11.0 3664
"Feels" CNN 12.0/12.0 3665
"Lawrence" CNN 11.0/12.0 4747
""pleasurable’ | Self-Attention 0.0/4.0 17181
"unique” LSTM 13.0/14.0 4990
"refreshingly" CNN 10.0/10.0 4305
""mess"' Self-Attention | 1.0/30.0 15939
(a) SST-2
Tokens Models Frequencies PMI Ranks
"quickinfo" LSTM 1813.0/1813.0 13250
"Qtr" LSTM 62.0/63.0 15775
"hellip" LSTM,CNN 80.0/80.0 13187
"Spitzer" CNN 220.0/238.0 16114
(b) AG-News

As shown in Table 1, self-attention models are robust to UAT's.
Therefore, there are no effective UATs listed for self-attention

models.
Tokens Models Frequencies PMI Ranks
"giving" LSTM 8184.0/12057.0 338822
"Horrible" LSTM 4136.0/4158.0 311571
"inedible" LSTM 2035.0/2108.0 311733
"Slowest" CNN 117.0/117.0 311557
"BUYER" CNN 97.0/97.0 309895
"disrespected” CNN 216.0/217.0 311570
"restrain' Attention 8.0/41.0 735421
(c) Yelp

Table 4: Training data artifacts of UAT tokens. Frequencies: In-class frequencies are displayed relatively to the

total frequencies.

et al. (2020) proved its correlation with knowledge
transferability, which relates to pre-trained knowl-
edge. Also, adversarial transferability between im-
itated models and victim models (Wallace et al.,
2020; He et al., 2021) also enhanced the relation-
ship between pre-trained, transferable knowledge
and adversarial transferability. These works mo-
tivate us to study the effect of pre-trained embed-
dings via the UAT transfer attack. Yuan et al. (2021)
also studies the transferability of different architec-
tures and pre-trained modules. Different from our
study, they generate the sample-wise adversarial
texts. Interestingly, they achieve an opposite con-
clusion that architecture types are more sensitive
than pre-trained embeddings to transfer attacks.

5 Conclusion

In this work, we investigated the vulnerability of
Natural Language Processing (NLP) models to Uni-
versal Adversarial Texts (UATs). We proposed two
types of Data-Free Adjusted Gradient(DFAG) at-
tacks which can generate effective UATs without
real data. Our DFAG attacks lower the requirement
of using UATS to understand the vulnerability of
NLP models. With DFAG-generated UATSs, we
found that the robustness of self-attention to words
with training data artifacts and revealed the unique
(transferable) vulnerability of pre-trained embed-
dings. Our findings could help build robust NLP
models against adversarial attacks. Future work
could expose whether the pre-trained vulnerability



PMI Ranks Models ASR

| LSTM 0.2

CNN 0.1
Self-Attention 0

) LSTM 0.1

CNN 0.1
Self-Attention 0

3 LSTM 0.1

CNN 0.1
Self-Attention 0

4 LSTM 0.2

CNN 04
Self-Attention 0

5 LSTM 0.2

CNN 0.5
Self-Attention 0

Table 5: Evaluating the performance of SST models
with the top-5 words out of the whole vocabulary ac-
cording to their PMI ranks.

could make UAT's transferable across different NLP
tasks. Moreover, our result should also be verified
on large-scale models. More detailed analyses of
different filter sizes and attention heads are also
interesting future works.
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