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Abstract

This paper provides the first experimental
study on the impact of using domain-specific
representations on a BERT-based multi-task
spoken language understanding (SLU) model
for multi-domain applications. Our results on
a real-world dataset covering three languages
indicate that by using domain-specific repre-
sentations learned adversarially, model per-
formance can be improved across all of the
three SLU subtasks domain classification, in-
tent classification and slot filling. Gains are
particularly large for domains with limited
training data.

1 Introduction

Spoken Language Understanding (SLU) is a key
task in voice-controlled devices, such as Amazon
Alexa or Google Home. It is often divided into
the two subtasks intent classification (IC) determin-
ing the user intent and slot filling (SF) extracting
semantic constituents. For instance, given an utter-
ance “play madonna”, IC should determine Play-
Music as the intent, while SF should label “play”
and “madonna” as Other and Artist slots, respec-
tively. The third subtask, domain classification
(DC) which classifies user utterances into differ-
ent domains, is sometimes required, especially in
large-scale industry applications. DC helps when
the data comes from different domains and the SLU
labeling results require some domain-specific post-
processing steps.

Aiming at reducing model building efforts, in
this paper, we focus on single multi-task models
solving the three subtasks of DC, IC and SF jointly
for multi-domain data. Traditionally, these mod-
els learn shared-representations for all domains
(e.g. Kapoor and Tirkaz (2019); Hakkani-Tiir
et al. (2016); Kim et al. (2017)). However, us-
ing only domain-shared representations may limit
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model performance as it ignores potentially use-
ful domain-specific knowledge. For instance, let
us consider two user requests “play madonna”
and “play star wars”, belonging to the Music and
Video domains, respectively. In this case, the car-
rier phrase “play” is shared while the slot values
“madonna” and “star wars” are specific to Music
and Video, respectively. Thus, both domain-shared
and domain-specific representations could poten-
tially be useful.

In order to shed a light on whether (missing)
domain-specific knowledge may play an impact
on the model performance, we carry out a wide
range of experiments on real-world data comparing
the performances of DC-IC-SF multi-task models
with and without domain-specific representations.
To assure that the models used in the experiments
are close to the current state-of-the-art systems, we
adapt one of the most recent BERT-based language-
adversarial approaches for IC-SF (Do et al., 2020)
to our problem. In particular, we use its adversarial
architecture to learn domain-shared and domain-
specific representations, and extend the model to
solve DC in addition to IC and SF.

Our contribution in this paper is studying the
impact of using domain-specific representations on
a modern multi-task DC-IC-SF model for multi-
domain data. Our experiments on a real-world
dataset covering three languages (German, English,
Japanese) indicate that the domain-specific repre-
sentations can improve model performance across
all of the three SLU subtasks, especially for do-
mains with limited training data.

2 Related Work

A majority of existing work in SLU has focused on
modeling IC and SF only, for which mostly DNN-
based joint models are currently used (e.g. Liu and
Lane (2016); Do and Gaspers (2019); Chen et al.
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(2019a)). There have been also several researches
studying the use of different representation types
in these DNN models. He et al. (2020); Chen et al.
(2019b); Do et al. (2020) used adversarial train-
ing to learn language-shared and language-specific
representations for SLU in multilingual settings.
Our model architecture can be considered as an
extension of the BERT-based language-adversarial
model proposed by Do et al. (2020). However, in-
stead of focusing on only IC and IF, our model can
deal with an extra DC subtask, which can be used
effectively in real-world applications. Moreover,
the adversarial training is applied on multi-domain
data instead of multilingual data.

Multi-domain joint SLU models have been ex-
plored aiming to solve all three tasks via multi-task
learning (e.g. Kapoor and Tirkaz (2019), Hakkani-
Tiir et al. (2016), Kim et al. (2017)). However,
none of these studied the impact of domain-shared
and domain-specific representations on model per-
formance.

While some previous work followed the idea of
leveraging domain-specific representations, we are
not aware of a previous study using a full BERT-
based multi-domain SLU model with domain-
adversarial learning. Liu and Lane (2017) ex-
plored adversarial training in multi-domain SLU,
but focus on SF only. In another work, Lee et al.
(2019) applied adversarial training to obtain locale-
specific and locale-agnostic features for the DC
task. More recently, Qin et al. (2020) explored
domain-specific parametrization for multi-domain
SLU in a cascade approach, i.e. a domain classifier
is applied as a first step instead of a completely
joint system like our focus.

3 Method

In the following, we first describe the multi-domain
baseline SLU model, which uses BERT as a sin-
gle shared feature extractor, and subsequently the
adversarial approach, where additionally a domain-
specific feature extractor is used for each domain.

3.1 Multi-domain SLU model

We started from a common BERT-based IC-SF ar-
chitecture (Do et al., 2020), and extended it for DC.
In particular, our model (see Fig. 1) consists of:
1) a single BERT encoder to learn domain-shared
representations for words and utterances. ii) a CRF-
based slot decoder for SF, iii) a 2-layer perceptron
for both IC and DC. Since DC and IC are both sen-
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tence level classification tasks and there is a strong
interaction between the two, as usually the intent
is conditioned on the domain, we simply use the
DC-IC decoder to predict a joint label of domain
and intent which is of format DOMAIN_INTENT.

3.2 Domain-adversarial SLU model

We adapted the language-adversarial BERT-based
architecture for joint SF and IC from Do et al.
(2020) to our problem. In particular, in our sys-
tem, the IC decoder predicts the DC-IC joint la-
bels instead of only IC labels, and the language
identification information is changed to domain
identification information.

Our model (see Fig. 2) comprises: i) a regu-
lar pre-trained BERT encoder (encpe,t), ii) a 1-
layer CNN encoder (encspgreq) to learn domain-
shared representations, iii) n 1-layer CNN en-
coders (ency, ...) to learn domain-specific repre-
sentations for n domains, iv) a 1-layer CNN en-
coder (encqyomain) is used to learn features for pre-
dicting the domain, v) a domain predictor, vi) a do-
main discriminator, vii) a DC-IC decoder, and viii)
an SF decoder. Here, the decoders have the same
architectures as in 3.1, while the domain predictor
and domain discriminator are simply soft-max out-
put layers. The information flow of the token and
sentence representations between the model com-
ponents can be seen in Fig. 2. Given the sentence
representations from encqymaqin, the domain pre-
dictor predicts the domain distributions of the input
data, which are in turn used as weights to compute
the domain-specific features from the token-level
outputs of ency, .... Meanwhile, the domain dis-
criminator receives the sentence representations
from the shared encoder as inputs and also predicts
domain distributions. However, the discriminator
is trained to fool the system such that the domains
become indistinguishable. The domain-shared and
domain-specific representations are concatenated
before being fed to the DC-IC and SF decoders.

The model is trained via an adversarial training
strategy. For the SF task, we use CRF loss L,
and for the DC-IC decoder, language predictor and
language discriminator we use cross-entropy loss
denoted by Lg;, L, and Lg, respectively. Given
training data annotated with intent, slot and domain
labels, and g, ovg;, as, v, B4 being model hyper-
parameters, i) some data batches are generated ran-
domly, ii) L = a4L4 is computed, iii) weights are
updated, iv) some data batches are generated ran-
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Figure 1: A BERT-based multi-task multi-domain SLU model.
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Figure 2: An adversarial model architecture for multi-domain SLU. The figure is adapted from Do et al. (2020).

domly, v) L = ag; Lg; + asLs + apr — ByLg is
computed, and vi) model weights are updated.

4 Experiments

4.1 Datasets and settings

We extracted random data samples from large-scale
commercial SLU systems for English, German and
Japanese. The data is comprised of user requests
to voice-controlled devices which were suitably
anonymized, and each request was manually an-
notated with domain, intent and slot labels. For
each language we used data from three domains,
namely Music, Books and Video. In each experi-
ment, the data is composed from all of these three
domains with different data distributions. To re-
flect a real-world scenario, we randomly sampled
different training and development data amounts
per domain. For Video, we randomly sampled data
samples of 100, 500, 1,000 and 5.000 utterances.
to study domain bootstrapping with growing data
amounts. For each sample, we used 90% and 10%
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of the data to create a training and a development
set, respectively. The dataset statistics per domain
are summarized in Table 2. Note that for Video we
have different samples with growing data amounts.

For our experiments, we use pre-trained multi-
lingual BERT (size 768) (Devlin et al., 2018). We
use two dense layers of size 768 with gelu activa-
tion for the task decoders, and dropout values of
0.5 and 0.2 for the DC-IC and SF decoders, respec-
tively. Each domain decoder has one dense layer of
size 768 with gelu activation and a dropout value
of 0.5. Each CNN encoder has one layer with a
kernel size of three and a hidden dimension of 512.
Max-pooling is used in all encoders for computing
sentence representations. For adversarial models,
the g, ag;, s, p, and 35 hyper-parameters are
setto 1.0, 1.0, 1.0, 1.0, and 0.2, respectively. We
train our models with a batch size of 64 for 80
epochs with early stopping using Adam optimizer
with a learning rate of 0.1 and a Noam learning rate
scheduler. We report F1 score for SF (computed
with the CoNLL2002 script) and accuracy for IC



Lang #Video Music Books Video

* samples | DCacc. | ICacc. | SFF1 | DCacc. | ICacc. | SFF1 | DCacc. | ICacc. | SFFI
German 100 -0.58 +2.11 +6.14 +0.79 +7.44 +2.56 +338.65 | +10.5 +13.13
German 500 +0.03 +2.14 +5.98 -0.35 +5.29 +4.11 +75.62 +26.26 +24.92
German 1,000 -0.37 +1.93 +6.3 +1.09 +6.2 +4.09 +32.5 +22.76 +17.34
German 5,000 +0.7 +2.1 +4.32 +1.05 +4.37 +5.21 +1.69 +6.37 +6.73
German | Avg. -0.06 +2.07 +5.69 +0.64 +5.82 +3.99 +66.38 +16.47 +15.53
English 100 -0.3 +2.02 +3.55 +1.15 +5.23 +2.65 +504.9 +153.31 | +27.15
English 500 -0.61 +1.59 +4.9 +1.39 +5.25 +2.36 +47.69 +41.83 +12.85
English 1,000 -1.49 +0.46 +5.74 +0.88 +3.67 +2.31 +27.98 +29.7 +13.32
English 5,000 -2.1 -0.43 +4.57 +0.83 +3.66 +3.12 +4.44 +7.51 +5.12
English Avg. -1.12 +0.91 +4.69 +1.06 +4.45 +2.61 +146.25 | +58.9 +14.61
Japanese | 100 +0.03 +3.99 +19.84 | +1.96 +8.42 +15.57 | +191.02 | +3.1 +100.24
Japanese | 500 +0.77 +2.4 +11.62 | +0.88 +5.61 +7.62 +23.53 +17.61 +44.6
Japanese | 1,000 +1.2 +3.25 +14.22 | +2.15 +6.61 +8.88 +4.68 +11.12 +40.6
Japanese | 5,000 +1.17 +1.58 +17.31 | +2.75 +6.11 +10.33 | +2.72 +15.07 +19.93
Japanese | Avg. +0.79 +2.8 +15.75 | +1.93 +6.69 +10.6 +55.49 +11.72 +51.34
Avg. [ Avg. [ 013 | +#1.93 [ +871 | +121 | 4565 | +5.73 | +89.37 | +29.03 | +27.16

Table 1: Relative change in domain classification (DC) accuracy, intent classification (IC) accuracy and slot (SF)
F1 for domain-adversarial training compared to multi-domain training using a single shared feature as the baseline.
For the Music domain 10,000 samples are used for model training, and 5,000 are used for Books. For Video, a
growing amount of samples is used, ranging from 100 to 5,000.

Domain [ Train | Dev. [ Test

Music 9,000 | 1,000 | 3,000
Books 4,500 | 500 3,000
Video - samples 100 90 10 3000
Video - samples 500 450 50 3000
Video - samples 1,000 | 900 100 3000
Video - samples 5,000 | 4,500 | 500 3000

Table 2: Number of utterances per domain and dataset
(available in English, Japanese and German).

and DC tasks.

5 Results

In our experiments Video is considered as a new
domain, where initially few domain data samples
are available, and data amounts are growing over
time. In particular, we consider samples with sizes
of 100, 500, 1,000 and 5,000 utterances for the
new domain. For each experiment, the total data
amounts for the domains Music and Books are kept
constant at 10,000 and 5,000 utterances, respec-
tively. For each considered Video sample size, we
combine the corresponding Video training and de-
velopment data with the other domain’s training
and development data, respectively. We then train i)
a multi-domain SLU model as described in Section
3.1, and ii) an adversarial SLU model as described
in Section 3.2, which are subsequently applied on
the test datasets for all domains. The results are pre-
sented in Table 1. Due to confidentiality reasons,
relative numbers are reported.

Overall, the domain-adversarial approach con-
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sistently outperforms the baseline model across all
tasks and languages, except for some small fluctua-
tions for the DC task in the Music domain, which
has the largest data amounts in our scenario. In turn,
DC performance is improved slightly for Books and
greatly for Video. In particular, averaged across lan-
guages and sample sizes, DC accuracy is improved
by 1.21% and 89.37% relative for the Books and
Video domains, respectively. Performance gains in
the Video domain are particularly large for smaller
samples sizes. For the IC and SF tasks, the largest
gains are also achieved for the Video domain. Aver-
aged across languages and sample sizes, we achieve
relative improvements in IC and SF of 29.0% and
27.16%, for the Video domain. Again, the largest
relative improvements are achieved when only a
few Video samples are available.

The results suggest that the adversarial approach
is particularly useful to boost performance of do-
mains with a limited amount of data, which could
be new or low-frequency domains. While the high-
est gains are achieved when only few domain data
is available, consistent gains in IC and SF perfor-
mance are achieved for all domains and data sizes,
with gains being larger for the SF task. A poten-
tial reason could be that the amount of relevant
domain-specific information is higher for SF than
for IC, and thus larger gains are possible by adver-
sarial training. Note that domain-shared informa-
tion can also be leveraged by the baseline model
(though it may not be domain-agnostic). The re-
sults also reveal that there are language-specific



differences. Specifically, the domain-adversarial
training approach seems to be particularly useful
for Japanese. Averaged across sample sizes, rel-
ative improvements in slot filling performance of
15.75% and 10.6% for Music and Books, respec-
tively, are achieved.

6 Conclusion

We studied the impact of using both domain-
specific and domain-shared representations vs. us-
ing only domain-shared representations on the ap-
plication of multi-domain SLU. In particular, we
compared a baseline which uses BERT as a sin-
gle shared feature extractor to learn domain-shared
representations to an adversarial model which ad-
ditionally uses a domain-specific feature extractor
for each domain to learn domain-specific represen-
tations in addition to the standard domain-shared
representations. Our results on a real-world dataset
covering three languages indicate that by using a
domain-adversarial approach, model performance
can be improved across all of the three SLU sub-
tasks. Performance gains were particularly large
for the use case of bootstrapping a new domain,
where little target domain data are available.
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