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Abstract

In this paper, we propose conditional adver-
sarial networks (CANs), a framework that
explores the relationship between the shared
features and the label predictions to im-
pose stronger discriminability to the learned
features, for multi-domain text classification
(MDTC). The proposed CAN introduces a con-
ditional domain discriminator to model the
domain variance in both the shared feature
representations and the class-aware informa-
tion simultaneously, and adopts entropy con-
ditioning to guarantee the transferability of the
shared features. We provide theoretical anal-
ysis for the CAN framework, showing that
CAN’s objective is equivalent to minimizing
the total divergence among multiple joint dis-
tributions of shared features and label pre-
dictions. Therefore, CAN is a theoretically
sound adversarial network that discriminates
over multiple distributions. Evaluation results
on two MDTC benchmarks show that CAN
outperforms prior methods. Further experi-
ments demonstrate that CAN has a good abil-
ity to generalize learned knowledge to unseen
domains.

1 Introduction

Text classification is a fundamental task in Natu-
ral Language Processing (NLP) and has received
constant attention due to its wide applications, rang-
ing from spam detection to social media analytics
(Pang et al., 2002; Hu and Liu, 2004; Choi and
Cardie, 2008; Socher et al., 2012; Vo and Zhang,
2015). Over the past couple of decades, super-
vised machine learning methods have shown domi-
nant performance for text classification, such as
Naive Bayes Classifiers (Troussas et al., 2013),
Support Vector Machines (Li et al., 2018) and Neu-
ral Networks (Wu et al., 2020). In particular, with
the advent of deep learning, neural network-based
text classification models have gained impressive

achievements. However, text classification is well
known to be highly domain-dependent, the same
word could convey different sentiment polarities in
different domains (Glorot et al., 2011). For exam-
ple, the word infantile expresses neutral sentiment
in baby product review (e.g., The infantile cart is
easy to use), while in book review, it often indi-
cates a negative polarity (e.g., This book is infantile
and boring). Thus a text classifier trained on one
domain is likely to make spurious predictions on
another domain whose distribution is different from
the training data distribution. In addition, it is al-
ways difficult to collect sufficient labeled data for
all interested domains. Therefore, it is of great
significance to explore how to leverage available
resources from related domains to improve the clas-
sification accuracy on the target domain.

The major line of approaches to tackle the
above problem is multi-domain text classification
(MDTC) (Li and Zong, 2008), which can handle
the scenario where labeled data exist for multiple
domains, but in insufficient amounts to training
an effective classifier. Deep learning models have
yielded impressive performance in MDTC (Wu and
Guo, 2020; Wu et al., 2021). Most recent MDTC
methods adopt the shared-private paradigm, which
divides the latent space into two types: one is the
shared feature space for all domains with the aim of
capturing domain-invariant knowledge, the other
one is the private feature space for each domain
which extracts domain-specific knowledge. To ex-
plicitly ensure the optimum separations among the
shared latent space and multiple domain-specific
feature spaces, the adversarial training (Goodfellow
et al., 2014) is introduced in MDTC. By employ-
ing the adversarial training, the domain-specific
features can be prevented from creeping into the
shared latent space, which will lead to feature re-
dundancy (Liu et al., 2017). In adversarial train-
ing, a multinomial domain discriminator is trained
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Figure 1: The mismatch risk when aligning the
marginal distributions in MDTC, we present the case
containing two domains D1 and D2. The blue regions
denote distributions of D1, and the yellow regions de-
note distributions of D2. (a) The scenario before per-
forming domain alignment. (2) When aligning the
marginal distributions, a mismatch may occur with re-
gard to the label.

against a shared feature extractor to minimize the
divergences across different domains. When the
domain discriminator and the shared feature ex-
tractor reach equilibrium, the learned shared fea-
tures can be regarded as domain-invariant and used
for the subsequent classification. The adversarial
training-based MDTC approaches yield the state-
of-the-art results (Liu et al., 2017; Chen and Cardie,
2018). However, these methods still have a signifi-
cant limitation: when the data distributions present
complex structures, adversarial training may fail to
perform global alignment among domains. Such a
risk comes from the challenge that in adversarial
training, only aligning the marginal distributions
can not sufficiently guarantee the discriminability
of the learned features. The features with different
labels may be aligned, as shown in Figure 1. The
critical mismatch can lead to weak discriminability
of the learned features.

In this paper, motivated by the conditional gener-
ative adversarial networks (CGANs), which aligns
distributions of real and generated images via con-
ditioning the generator and discriminator on extra
information (Mirza and Osindero, 2014), we pro-
pose conditional adversarial networks (CANs) to
address the aforementioned challenge. The CAN
method introduces a conditional domain discrimi-
nator that models domain variance in both shared
features and label predictions, exploring the rela-
tionship between shared feature representations and
class-aware information conveyed by label predic-
tions to encourage the shared feature extractor to
capture more discriminative information. More-
over, we use entropy conditioning to avoid the
risk of conditioning on the class-aware informa-

tion with low certainty. The entropy conditioning
strategy can give higher priority to easy-to-transfer
instances. We also provide a theoretical analysis
demonstrating the validity of CANs. Our approach
adopts the shared-private paradigm. We validate
the effectiveness of CAN on two MDTC bench-
marks. It can be noted that CAN outperforms the
state-of-the-art methods for both datasets. Finally,
we empirically illustrate that CAN has the ability
to generalize in cases where no labeled data exist
for a subset of domains. The contributions of our
work are listed as follows:

• We propose conditional adversarial networks
(CANs) for multi-domain text classification
which incorporate conditional domain dis-
criminator and entropy conditioning to per-
form alignment on the joint distributions of
shared features and label predictions to im-
prove the system performance.

• We present the theoretical analysis of the
CAN framework, demonstrating that CANs
are minimizers of divergences among multi-
ple joint distributions of shared features and
label predictions, and providing the condition
where the conditional domain discriminator
reaches its optimum.

• We evaluate the effectiveness of CAN on two
MDTC benchmarks. The experimental re-
sults show that CAN yields state-of-the-art
results. Moreover, further experiments on un-
supervised multi-source domain adaptation
demonstrate that CAN has a good capacity to
generalize to unseen domains.

2 Related Work

Multi-domain text classification (MDTC) was first
proposed by (Li and Zong, 2008), aiming to si-
multaneously leverage all existing resources across
different domains to improve system performance.
Currently, there are two main streams for MDTC:
one strand exploits covariance matrix to model the
relationship across domains (Dredze and Crammer,
2008; Saha et al., 2011; Zhang and Yeung, 2012);
the other strand is based on neural networks, shar-
ing the first several layers for each domain to ex-
tract low-level features and generating outputs with
domain-specific parameters. The multi-task convo-
lutional neural network (MT-CNN) utilizes a con-
volutional layer in which only the lookup table is
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shared for better word embeddings (Collobert and
Weston, 2008). The collaborative multi-domain
sentiment classification (CMSC) combines a classi-
fier that learns common knowledge among domains
with a set of classifiers, one per domain, each of
which captures domain-dependent features to make
the final predictions (Wu and Huang, 2015). The
multi-task deep neural network (MT-DNN) maps
arbitrary text queries and documents into semantic
vector representations in a low dimensional latent
space and combines tasks as disparate as operations
necessary for classification (Liu et al., 2015).

Pioneered by the generative adversarial network
(GAN) (Goodfellow et al., 2014), adversarial learn-
ing has been firstly proposed for image generation.
(Ganin et al., 2016) applies adversarial learning in
domain adaptation to extract domain-invariant fea-
tures across two different distributions (binary ad-
versarial learning). (Zhao et al., 2017) extends it to
multiple adversarial learning, enabling the model to
learn domain-invariant representations across mul-
tiple domains. However, only considering domain-
invariant features can not provide optimal solutions
for MDTC, because domain-specific information
also plays an important role in training an effec-
tive classifier. (Bousmalis et al., 2016) proposes
the shared-private paradigm to combine domain-
invariant features with domain-specific ones to per-
form classification, illustrating that this scheme
can improve system performance. To date, many
state-of-the-art MDTC models adopt the adversar-
ial learning and the shared-private paradigm. The
adversarial multi-task learning for text classifica-
tion (ASP-MTL) utilizes long short-term memory
(LSTM) without attention as feature extractors and
introduces orthogonality constraints to encourage
the shared and private feature extractors to encode
different aspects of the inputs (Liu et al., 2017).
The multinomial adversarial network (MAN) ex-
ploits two forms of loss functions to train the do-
main discriminator: the least square loss (MAN-
L2) and negative log-likelihood loss (MAN-NLL)
(Chen and Cardie, 2018). The multi-task learn-
ing with bidirectional language models for text
classification (MT-BL) introduces language model-
ing as an auxiliary task to encourage the domain-
specific feature extractors to capture more syntac-
tic and semantic information, and a uniform la-
bel distribution-based loss constraint to the shared
feature extractor to enhance the ability to learn
domain-invariant features (Yang and Shang, 2019).

Adversarial learning has several advantages,
such as Markov chains are not needed and no infer-
ence is required during learning (Mirza and Osin-
dero, 2014). However, there still exists an issue in
adversarial learning. When data distributions em-
body complex structures, adversarial learning can
fail in performing the global alignment. The con-
ditional generative adversarial network (CGAN)
is proposed to address this problem (Mirza and
Osindero, 2014). In CGAN, both the generator and
discriminator are conditioned on some extra infor-
mation, such as labels or data from other modalities,
to yield better results. The conditional adversarial
training mechanism has been explored in transfer
learning. The conditional domain adversarial net-
works (CDANs) condition the domain discrimina-
tor on a multilinear map of feature representations
and category predictions so as to enable discrimi-
native alignment of multi-mode structures (Long
et al., 2018). The conditional generative adversar-
ial networks for structured domain adaptation learn
a conditional generator to transform the feature
maps of source domain images as if they were ex-
tracted from the target domain, and a discriminator
to encourage realistic transformations for the se-
mantic segmentation of urban scenes (Hong et al.,
2018). Sharing some spirit of CGAN, this paper
extends conditional adversarial learning in MDTC,
enabling a domain discriminator on the shared fea-
tures while conditioning it on the class-aware infor-
mation conveyed by the label predictions. More-
over, in order to guarantee the generalizability of
the learned features, we also utilize the entropy
conditioning strategy.

3 Approach

In this paper, we consider MDTC tasks in the fol-
lowing setting. Assume there exist M domains
{Di}Mi=1. For each domain, both labeled and unla-
beled samples are taken into consideration. Specif-
ically, Di contains two parts: a limited amount of
labeled samples Li = {(xj , yj)}lij=1; and a large
amount of unlabeled samples Ui = {xj}ui

j=1. The
challenge of MDTC lies in how to improve the
system performance of mapping the input x to its
corresponding label y by leveraging all available re-
sources across different domains. The performance
is measured as the average classification accuracy
across the M domains.
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Input

Figure 2: The architecture of the CAN model. A shared feature extractor Fs learns to capture domain-invariant
features; each domain-specific feature extractor F i

d learns to capture domain-dependent features; a conditional do-
main discriminator D models shared feature distributions by conditioning on discriminative information provided
by label predictions; a classifier C is used to conduct text classification; JC is the classification loss function; J E

D
is the entropy conditioning adversarial loss function which guides the domain-invariant feature extraction.

3.1 Model Architecture

We propose conditional adversarial networks
(CANs), as shown in Figure 2, which adopt the
shared-private scheme and consist of four com-
ponents: a shared feature extractor Fs, a set of
domain-specific feature extractors {F i

d}Mi=1, a con-
ditional domain discriminator D, and a text clas-
sifier C. The shared feature extractor Fs learns to
capture domain-invariant features that are benefi-
cial to classification across all domains, while each
domain-specific feature extractor F i

d aims to learn
knowledge that is unique to its own domain. The
architecture of these feature extractors are flexible
and can be decided based on the practical task. For
instance, it can adopt the form of a convolutional
neural network (CNN), a recurrent neural network
(RNN), or a multi-layer perceptron (MLP). Here,
a feature extractor generates vectors with a fixed
length, which is considered as the hidden represen-
tation of certain input. The classifier C takes the
concatenation of a shared feature and a domain-
specific feature as its input and outputs label prob-
abilities. The conditional domain discriminator D
takes the concatenation of a shared feature and the
prediction of the given instance provided by C as
its input and predicts the likelihood of that instance
coming from each domain.

3.2 Conditional Adversarial Training

Adversarial learning has been successfully investi-
gated in minimizing divergences among domains
(Chen and Cardie, 2018; Zhao et al., 2017). In
standard adversarial learning for MDTC, a two-
player mini-max game is conducted between a do-
main discriminator and a shared feature extractor:

the domain discriminator is trained to distinguish
features across different domains, and the shared
feature extractor aims to deceive the discrimina-
tor. By performing this mini-max optimization,
the domain-invariant features can be learned. The
error function of the domain discriminator corre-
sponds well to the divergences among domains.
Most MDTC methods align the marginal distribu-
tions. However, the transferability with representa-
tions transition from general to specific along deep
networks is decreasing significantly (Yosinski et al.,
2014), only adapting the marginal distributions is
not sufficient to guarantee the global alignment.
In addition, when the data distributions embody
complex structures, which is a real scenario for
NLP applications, there is a high risk of failure by
matching features with different labels.

Recent advances in the conditional generative
adversarial network (CGAN) disclose that better
alignment on two different distributions can be
obtained by conditioning the generator and dis-
criminator on class-aware information (Mirza and
Osindero, 2014). The discriminative information
provided by the label prediction potentially reveals
the structure information underlying the data dis-
tribution. Thus, conditional adversarial learning
can better model the divergences among domains
on shared feature representations and label predic-
tions. Unlike the prior works that adapting the
marginal distributions (Liu et al., 2017; Chen and
Cardie, 2018), our proposed CAN framework is
formalized on aligning joint distributions of shared
features and label predictions. There exist two
training flows in our model. Due to the nature of
adversarial learning, the conditional domain dis-
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criminator is updated with a separate optimizer,
while the other components of CAN are trained
with the main optimizer. These two flows are sup-
posed to complement each other. Denote LC and
LD as the loss functions of the classifier C and the
conditional domain discriminator D, respectively.
We utilize the negative log-likelihood (NLL) loss
to encode these two loss functions:

LC(ỹ, y) = − logP (ỹ = y) (1)

LD(d̃, d) = − logP (d̃ = d) (2)

where y is the true label, ỹ is the label prediction,
d is the domain index and d̃ is the domain label
prediction. Therefore, we formulate CAN as a mini-
max optimization problem with two competitive
terms defined as follows:

JC =

M∑
i=1

E(x,y)∼Li
[LC(Ci, y)] (3)

JD =

M∑
i=1

Ex∼Li∪Ui [LD(D([Fs(x), Ci]), d)] (4)

where [·, ·] is the concatenation of two vectors,
Ci = C([Fs(x),F i

d(x)]) is the prediction prob-
ability of the given instance x. C and D adopt
MLPs with a softmax layer on top. For the domain-
specific feature extractors {F i

d}Mi=1, the training is
straightforward, as their objective is simple: help
C perform better classification. While the shared
feature extractor Fs has two goals: (1) help C re-
duce prediction errors, and (2) confuse D to reach
equilibrium.

3.3 Entropy Conditioning
We condition the domain discriminator D on the
joint variable (f, c) = (Fs(x), Ci). For brevity,
here we use f and c to denote Fs(x) and Ci, re-
spectively. If we enforce different instances to have
equal importance, the hard-to-transfer instances
with uncertain predictions may deteriorate the sys-
tem performance (Saito et al., 2019). In order to
alleviate the harmful effects introduced by the hard-
to-transfer instances, we introduce the entropy cri-
terion E(c) = −

∑2
k=1[cklogck] to quantify the

uncertainty of label predictions, where ck is the

probability of predicting an instance to category
k (negative: k = 1, positive: k = 2). By using the
entropy conditioning, the easy-to-transfer instances
with certain predictions are given higher priority.
We reweigh these instances by an entropy-aware
term: w(c) = 1 + e−E(c). Therefore, the improved
JD is defined as:

J E
D =

M∑
i=1

Ex∼Li∪Ui [w(c)LD(D([Fs(x), Ci]), d)]

(5)
Therefore, the mini-max game of CAN is formu-
lated as:

min
Fs,{Fi

d}
M
i=1,C

max
D

JC + λJ E
D (6)

where λ is a hyperparameter balancing the two ob-
jectives. The entropy conditioning empowers the
entropy minimization principle (Grandvalet and
Bengio, 2005) and controls the certainty of the
predictions, enabling CAN have the ability to gen-
eralize on unseen domains with no labeled data.
The CAN training is illustrated in Algorithm 1.

Algorithm 1 Stochastic gradient descent training
algorithm

1: Input: labeled data Li and unlabeled data Ui

in M domains; a hyperparameter λ.
2: for number of training iterations do
3: Sample labeled mini-batches from the mul-

tiple domains B` = {B`
1, · · · , B`

M}.
4: Sample unlabeled mini-batches from the

multiple domains Bu = {Bu
1 , · · · , Bu

M}.
5: Calculate loss = JC+λJ E

D on B` and Bu;
UpdateFs, {F i

d}Mi=1, C by descending along
the gradients ∆loss.

6: Calculate lD = J E
D on B` and Bu;

Update D by ascending along the gradients
∆lD.

7: end for

3.4 Theoretical Analysis

In this section, we present an analysis showing
the validity of the CAN approach for MDTC. All
proofs are given in the Appendix. The objective
of CAN is equivalent to minimizing the total di-
vergence among the M joint distributions. First,
we define different joint distributions as Pi(f, c) ,
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P (f = Fs(x), c = Ci|x ∈ Di). Combining LD
with JD, the objective of D can be written as:

JD = −
M∑
i=1

E(f,c)∼Pi
[logDi([f, c])] (7)

where Di([f, c]) yields the probability of the vec-
tor ([f, c]) coming from the i-th domain. We first
derive that CAN could achieve its optimum if and
only if all M joint distributions are identical.

Lemma 1. For any given Fs, {F i
d}Mi=1 and C, the

optimum conditional domain discriminator D∗ is:

D∗i ([f, c]) =
Pi(f, c)∑M
j=1 Pj(f, c)

(8)

Then we provide the main theorem for the CAN
framework:

Theorem 1. Let P̃ (f, c) =
∑M

i=1 Pi(f,c)
M , when D

is trained to its optimum D∗, we have:

JD∗ = M logM −
M∑
i=1

KL(Pi(f, c)||P̃ (f, c))

(9)

where KL(·) is the Kullback-Leibler (KL) diver-
gence (Aslam and Pavlu, 2007) of each joint distri-
bution Pi(f, c) to the centroid P̃ (f, c).

Finally, considering the non-negativity and con-
vexity of the KL-divergence (Brillouin, 2013), we
have:

Corollary 1. When D is trained to its optimum
D∗, JD∗ is M logM . The optimum can be ob-
tained if and only if P1(f, c) = P2(f, c) = ... =
PM (f, c) = P̃ (f, c).

Therefore, by using conditional adversarial train-
ing, we can train the conditional domain discrim-
inator on the joint variable (f, c) to minimize the
total divergence across different domains, yielding
promising performance on MDTC tasks.

4 Experiments

We evaluate the effectiveness of the CAN model on
both MDTC and unsupervised multi-source domain
adaptation tasks. The former refers to the setting
where the test data falls into one of the M domains,
and the latter refers to the setting where the test
data comes from an unseen domain without labels.
Moreover, an ablation study is provided for further
analysis of the CAN model.

Domain Train Dev. Test Unlabeled Avg. L Vocab.
Books 1400 200 400 2000 159 62K
Electronics 1398 200 400 2000 101 30K
DVD 1400 200 400 2000 173 69K
Kitchen 1400 200 400 2000 89 28K
Apparel 1400 200 400 2000 57 21K
Camera 1397 200 400 2000 130 26K
Health 1400 200 400 2000 81 26K
Music 1400 200 400 2000 136 60K
Toys 1400 200 400 2000 90 28K
Video 1400 200 400 2000 156 57K
Baby 1300 200 400 2000 104 26K
Magazine 1370 200 400 2000 117 30K
Software 1315 200 400 475 129 26K
Sports 1400 200 400 2000 94 30K
IMDB 1400 200 400 2000 269 44K
MR 1400 200 400 2000 21 12K

Table 1: Statistics of the FDU-MTL dataset

4.1 Experimental Settings

Dataset We conduct experiments on two MDTC
benchmarks: the Amazon review dataset (Blitzer
et al., 2007) and the FDU-MTL dataset (Liu et al.,
2017). The Amazon review dataset consists of four
domains: books, DVDs, electronics, and kitchen.
For each domain, there exist 2,000 instances: 1,000
positive ones and 1,000 negative ones. All data
was pre-processed into a bag of features (unigrams
and bigrams), losing all word order information.
In our experiments, the 5,000 most frequent fea-
tures are used, representing each review as a 5,000-
dimensional vector. The FDU-MTL dataset is a
more complicated dataset, which contains 16 do-
mains: books, electronics, DVDs, kitchen, apparel,
camera, health, music, toys, video, baby, magazine,
software, sport, IMDB, and MR. All data in the
FDU-MTL dataset are raw text data, tokenized by
the Stanford tokenizer. The detailed statistics of
the FDU-MTL dataset are listed in Table 1.

Implementation Details All experiments are im-
plemented by using PyTorch. The CAN has one
hyperparameter: λ, which is fixed as 1 in all ex-
periments, the parameter sensitivity analysis is pre-
sented in the Appendix. We use Adam optimizer
(Kingma and Ba, 2014), with the learning rate
0.0001, for training. The batch size is 8. We adopt
the same model architecture as in (Chen and Cardie,
2018). For the Amazon Review dataset, MLPs are
used as feature extractors, with an input size of
5,000. Each feature extractor is composed of two
hidden layers, with size 1,000 and 500, respectively.
The output size of the shared feature extractor is
128 while 64 for the domain-specific ones. The
dropout rate is 0.4 for each component. Classifier
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Domain CMSC-LS CMSC-SVM CMSC-Log MAN-L2 MAN-NLL CAN(Proposed)
Books 82.10 82.26 81.81 82.46 82.98 83.76± 0.20
DVD 82.40 83.48 83.73 83.98 84.03 84.68± 0.16
Electr. 86.12 86.76 86.67 87.22 87.06 88.34± 0.14
Kit. 87.56 88.20 88.23 88.53 88.57 90.03± 0.19

AVG 84.55 85.18 85.11 85.55 85.66 86.70± 0.11

Table 2: MDTC classification accuracies on the Amazon review dataset.

Domain MT-CNN MT-DNN ASP-MTL MAN-L2 MAN-NLL MT-BL CAN(Proposed)
books 84.5 82.2 84.0 87.6 86.8 89.0 87.8± 0.2
electronics 83.2 81.7 86.8 87.4 88.8 90.2 91.6± 0.5
dvd 84.0 84.2 85.5 88.1 88.6 88.0 89.5± 0.4
kitchen 83.2 80.7 86.2 89.8 89.9 90.5 90.8± 0.3
apparel 83.7 85.0 87.0 87.6 87.6 87.2 87.0± 0.7
camera 86.0 86.2 89.2 91.4 90.7 89.5 93.5± 0.1
health 87.2 85.7 88.2 89.8 89.4 92.5 90.4± 0.6
music 83.7 84.7 82.5 85.9 85.5 86.0 86.9± 0.1
toys 89.2 87.7 88.0 90.0 90.4 92.0 90.0± 0.3
video 81.5 85.0 84.5 89.5 89.6 88.0 88.8± 0.4
baby 87.7 88.0 88.2 90.0 90.2 88.7 92.0± 0.2
magazine 87.7 89.5 92.2 92.5 92.9 92.5 94.5± 0.5
software 86.5 85.7 87.2 90.4 90.9 91.7 90.9± 0.2
sports 84.0 83.2 85.7 89.0 89.0 89.5 91.2± 0.7
IMDb 86.2 83.2 85.5 86.6 87.0 88.0 88.5± 0.6
MR 74.5 75.5 76.7 76.1 76.7 75.7 77.1± 0.9

AVG 84.5 84.3 86.1 88.2 88.4 88.6 89.4± 0.1

Table 3: MDTC classification accuracies on the FDU-MTL dataset.

and discriminator are MLPs with one hidden layer
of the same size as their input (128 + 64 for classi-
fier and 128+2 for discriminator). ReLU is used as
the activation function. For the FDU-MTL dataset,
CNN with a single convolutional layer is used as
the feature extractor. It uses different kernel sizes
(3, 4, 5), and the number of kernels is 200. The in-
put of the convolutional layer is a 100-dimensional
vector, obtained by using word2vec (Mikolov et al.,
2013), for each word in the input sequence.

4.2 Multi-Domain Text Classification
Comparison Methods We first conduct exper-
iments of multi-domain text classification. The
CAN model is compared with a number of state-of-
the-art methods, which are listed below:

• MT-CNN: A CNN-based model which shares
the lookup table across domains for better
word embeddings (Collobert and Weston,
2008).

• MT-DNN: The multi-task deep neural net-
work model with bag-of-words input and
MLPs, in which a hidden layer is shared (Liu
et al., 2015).

• CMSC-LS, CMSC-SVM, CMSC-Log: The
collaborative multi-domain sentiment clas-

sification method combines an overall clas-
sifier across domains and a set of domain-
dependent classifiers to make the final predic-
tion. The models are trained on least square
loss, hinge loss, and log loss, respectively (Wu
and Huang, 2015).

• ASP-MTL: The adversarial multi-task learn-
ing framework of text classification, which
adopts the share-private scheme, adversarial
learning, and orthogonality constraints (Liu
et al., 2017).

• MAN-L2, MAN-NLL: The multinomial ad-
versarial network for multi-domain text classi-
fication (Chen and Cardie, 2018). This model
uses two forms of loss functions to train the
domain discriminator: least square loss and
negative log-likelihood loss.

• MT-BL: The multi-task learning with bidi-
rectional language models for text classifica-
tion, which adds language modeling and a uni-
form label distribution-based loss constraint to
the domain-specific feature extractors and the
shared feature extractor, respectively (Yang
and Shang, 2019).

All the comparison methods use the standard
partitions of the datasets. Thus, we directly cite
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Method Books DVD Electr. Kit. AVG
CAN (full) 83.76 84.68 88.34 90.03 86.70
CAN w/o C 82.45 84.45 87.30 89.65 85.96
CAN w/o E 83.60 84.80 87.70 89.40 86.38
CAN w/o CE 82.98 84.03 87.06 88.57 85.66

Table 4: Ablation study analysis on the Amazon review
dataset.

the results from (Chen and Cardie, 2018; Yang and
Shang, 2019) for fair comparisons.

Results We conduct MDTC experiments follow-
ing the setting of (Chen and Cardie, 2018): A 5-
fold cross-validation is implemented for the Ama-
zon review dataset. All data is divided into 5 folds
per domain: three of the five folds are used as the
training set, one is the validation set, and the re-
maining one is treated as the test set. The 5-fold
average test accuracy is reported. All reports are
based on 5 runs.

Table 2 and Table 3 show the experimental re-
sults on the Amazon review dataset and the FDU-
MTL dataset, respectively. From Table 2, it can be
seen that our model yields state-of-the-art results
not only for the average classification accuracy, but
also on each individual domain.

From the experimental results on the FDU-MTL
dataset, reported in Table 3, we can see that the
CAN model obtains the best accuracies on 10 of 16
domains and achieves the best result in terms of the
average classification accuracy. The experimental
results on these two MDTC benchmarks illustrate
the efficacy of our model.

Ablation Study The CAN model adopts the con-
ditional domain discriminator and entropy condi-
tioning. In this section, we investigate how these
two strategies impact the performance of our model
on the Amazon review dataset. In particular, three
ablation variants are evaluated: (1) CAN w/o C,
the variant of the proposed CAN model without
conditioning the domain discriminator on label pre-
dictions, which utilizes the standard domain dis-
criminator and entropy conditioning; (2) CAN w/o
E, the variant of the proposed CAN model with-
out the entropy conditioning, which hence imposes
equal importance to different instances; (3) CAN
w/o CE, the variant of the proposed CAN model
which only uses standard adversarial training for
domain alignment. The results of the ablation study
are shown in Table 4, where we can see that all vari-
ants produce inferior results. Thus, it indicates that
both strategies contribute to the CAN model.

4.3 Unsupervised Multi-Source Domain
Adaptation

In the MDTC scenario, the model requires labeled
training data from each domain. However, in real-
world applications, many domains may have no
labeled data at all. Therefore, it is important to
evaluate the performance of MDTC models on un-
seen domains (Wright and Augenstein, 2020).

In the unsupervised multi-source domain adap-
tation setting, we have multiple source domains
with both labeled and unlabeled data and one target
domain with only unlabeled data. The CAN has the
ability to learn domain-invariant representations on
unlabeled data, and thus it can be generalized to
unseen domains. Since the target domain has no
labeled data at all, the domain discriminator is up-
dated only on unlabeled data in this setting. When
conducting text classification on the target domain,
we only feed the shared feature to C and set the
domain-specific feature vector to 0.

We conduct the experiments on the Amazon re-
view dataset. In the experiments, three of the four
domains are regarded as the source domains, and
the remaining one is used as the target one. The
evaluations are conducted on the target domain.
In order to validate CAN’s effectiveness, we com-
pare CAN with several domain-agnostic methods:
(1) the MLP model; (2) the marginalized denois-
ing autoencoder (mSDA) (Chen et al., 2012); (3)
the domain adversarial neural network (DANN)
(Ganin et al., 2016). These methods ignore the dif-
ferences among domains. And certain state-of-the-
art unsupervised multi-source domain adaptation
methods: (4) the multi-source domain adaptation
neural network (MDAN(H) and MDAN(S)) (Zhao
et al., 2017); (5) the multinomial adversarial net-
work (MAN-L2 and MAN-NLL) (Chen and Cardie,
2018). When training the domain-agnostic meth-
ods, the data in the multiple source domains are
combined together as a single source domain.

In Table 5, we observe that the CAN model out-
performs all the comparison methods on three out
of four domains. In terms of the average classifica-
tion accuracy, the CAN method achieves superior
performance. This suggests that our model has a
good ability to generalize on unseen domains.

5 Conclusion

In this paper, we propose conditional adversarial
networks (CANs) for MDTC. This approach can
perform alignment on joint distributions of shared
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Domain MLP mSDA DANN MDAN(H) MDAN(S) MAN-L2 MAN-NLL CAN(Proposed)
Books 76.55 76.98 77.89 78.45 78.63 78.45 77.78 78.91
DVD 75.88 78.61 78.86 77.97 80.65 81.57 82.74 83.37
Elec. 84.60 81.98 84.91 84.83 85.34 83.37 83.75 84.76
Kit. 85.45 84.26 86.39 85.80 86.26 85.57 86.41 86.75

AVG 80.46 80.46 82.01 81.76 82.72 82.24 82.67 83.45

Table 5: Unsupervised multi-source domain adaptation results on the Amazon review dataset.

features and label predictions to improve the sys-
tem performance. The CAN approach adopts the
shared-private paradigm, trains domain discrimina-
tor by conditioning it on discriminative information
conveyed by the label predictions to encourage the
shared feature extractor to capture more discrimina-
tive information, and exploits entropy conditioning
to guarantee the transferability of the learned fea-
tures. Experimental results on two MDTC bench-
marks demonstrate that the CAN model can not
only boost the average classification accuracy for
MDTC but also promote the generalization ability
when tackling unseen domains.
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A Appendix

A.1 Proofs for CAN
Assume there exist M domains, for each domain
Di, we have a joint distribution defined as:

Pi(f, c) , P (f = Fs(x), c = Ci|x ∈ Di)
(10)

where Ci = C([Fs(x),F i
d(x)]) is the prediction

probability of the given instance x, [·, ·] is the con-
catenation of two vectors. The objective of D is to
minimize JD:

JD = −
M∑
i=1

E(f,c)∼Pi
[logDi([f, c])] (11)
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where Di([f, c]) is the probability of the vector
([f, c]) coming from the i-th domain. Therefore,
we have:

M∑
i=1

Di([f, c]) = 1 (12)

Lemma 1. For any given Fs, {F i
d}Mi=1 and C, the

optimum conditional domain discriminator D∗ is:

D∗i ([f, c]) =
Pi(f, c)∑M
j=1 Pj(f, c)

(13)

Proof. For any given Fs, {F i
d}Mi=1 and C, the opti-

mum

D∗ = arg min
D

JD

= arg min
D

−
M∑
i=1

E(f,c)∼Pi
[logDi([f, c])]

= arg max
D

M∑
i=1

∫
(f,c)

Pi(f, c) logDi([f, c])d(f, c)

= arg max
D

∫
(f,c)

M∑
i=1

Pi(f, c) logDi([f, c])d(f, c)

Here, we utilize the Lagrangian Multiplier for D∗
under the condition (12). We have:

L(D1, ...,DM , λ) =
M∑
i=1

Pi logDi − λ(
M∑
i=1

Di − 1)

(14)

Let∇L = 0, we have:{
∇Di

∑M
j=1 Pj logDj − λ∇Di(

∑M
j=1Dj − 1) = 0∑M

i=1Di = 1

From the two above equations, we have:

D∗i (f, c) =
Pi(f, c)∑M
j=1 Pj(f, c)

(15)

Theorem 1. Let P̃ (f, c) =
∑M

i=1 Pi(f,c)
M , when D

is trained to its optimum D∗, we have:

JD∗ = M logM −
M∑
i=1

KL(Pi(f, c)||P̃ (f, c))

(16)

where KL(·) is the Kullback-Leibler (KL) diver-
gence of each joint distribution Pi(f, c) to the cen-
troid P̃ (f, c)

Proof. Let P̃ (f, c) =
∑M

i=1 Pi(f,c)
M . We have:

M∑
i=1

KL(Pi(f, c)||P̃ (f, c)) =

M∑
i=1

E(f,c)∼Pi
[log

Pi(f, c)

P̃ (f, c)
]

When D is updated to D∗, we have:

JD∗ = −
M∑
i=1

E(f,c)∼Pi
[logD∗i ([f, c])]

= −
M∑
i=1

E(f,c)∼Pi
[log

Pi(f, c)∑M
j=1 Pj(f, c)

]

= −
M∑
i=1

E(f,c)∼Pi
[log

Pi(f, c)∑M
j=1 Pj(f, c)

+ logM ]

+M logM

= M logM −
M∑
i=1

E(f,c)∼Pi
[log

Pi(f, c)∑M
j=1 Pj(f,c)

M

]

= M logM −
M∑
i=1

E(f,c)∼Pi
[log

Pi(f, c)

P̃ (f, c)
]

= M logM −
M∑
i=1

KL(Pi(f, c)||P̃ (f, c))

In our model, a mini-max game is implemented to
achieve the optimum:

min
Fs,{Fi

d}
M
i=1,C

max
D

JC + λJD (17)

Therefore, by the non-negativity and convexity of
the KL-divergence, we can have the corollary:

Corollary 1. When D is trained to its optimum
D∗, JD∗ is M logM . The optimum can be ob-
tained if and only if P1(f, c) = P2(f, c) = ... =
PM (f, c) = P̃ (f, c).
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Figure 3: The parameter sensitivity analysis.

A.2 Parameter Sensitivity Analysis
The proposed CAN approach has one hyperpa-
rameter λ, which is used to balance JC and J E

D .
We conduct parameter sensitivity analysis on the
Amazon review dataset. The λ is evaluated in the
range {0.0001, 0.001, 0.01, 0.1, 1.0, 5.0}. The ex-
perimental results are shown in Figure 3. The av-
erage classification accuracies across the four do-
mains are reported. It can be noted that from 0.0001
to 1.0, the performance increases with λ increasing,
the performance change is very small. Then the
accuracy reaches the optimum at the point λ = 1.0,
while the further increase of λ will dramatically
deteriorate the performance. This suggests that
the selection of λ has an influence on the system
performance.


