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Abstract

Many military communication domains in-
volve rapidly conveying situation awareness
with few words. Converting natural language
utterances to logical forms in these domains
is challenging, as these utterances are brief
and contain multiple intents. In this paper,
we present a first effort toward building a
weakly-supervised semantic parser to trans-
form brief, multi-intent natural utterances into
logical forms. Our findings suggest a new
“projection and reduction” method that iter-
atively performs projection from natural to
canonical utterances followed by reduction of
natural utterances is the most effective. We
conduct extensive experiments on two military
and a general-domain dataset and provide a
new baseline for future research toward accu-
rate parsing of multi-intent utterances.

1 Introduction

Semantic parsing to map a natural language utter-
ance to its logical form is regarded as a challenging
task partly due to a lack of annotated data (Berant
and Liang, 2014; Yin et al., 2018; Gardner et al.,
2018). A promising avenue of research is to gener-
ate a set of candidate logical forms paired with their
canonical realizations in natural language. Then,
the canonical utterance that best matches the in-
put is identified by a model, and its logical form
is used as output (Berant and Liang, 2014). A
paraphrase/sequence-to-sequence model may ad-
ditionally be used to translate a canonical utter-
ance to a logical form (Wang et al., 2015; Herzig
and Berant, 2019; Cao et al., 2020; Marzoev et al.,
2020). While the results are promising, most ex-
isting works do not handle natural language utter-
ances with multiple intents. We refer to an intent as
a goal intended by a user’s utterance. Multi-intent
utterances allow people to communicate core as-
pects of a situation in a consistent and timely man-
ner, as illustrated in Figure 1.
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Figure 1: Example generated semantic parse. A parser must
(1) understand paraphrases of canonical utterances and (2)
parse multiple intents in one utterance.

Multi-intent semantic parsing is especially suit-
able for military domains where emphasis is
placed on communication skills, terminology, and
brevity (Weinstein, 1990). While communication
protocols are often published, variations are al-
lowed given the current situation. An area of in-
terest is Intelligence, Surveillance, and Reconnais-
sance (ISR) domains where contact reports (e.g.,
“Arriving at home base and ready to descend’) of-
ten contain multiple intents, and a system must
determine the number of intents, interpret the natu-
ral language and predict the exact logical forms for
every intent, which can be highly challenging.

We investigate new methods for semantic pars-
ing of utterances with multiple intents. Impor-
tantly, and distinguishing our work from earlier
literature (Iyer et al., 2017; Zhong et al., 2017; Yu
et al., 2018; Dong and Lapata, 2018; Zeng et al.,
2020), our domain areas have no supervised train-
ing data, nor can pseudo-language utterances be
created through crowdsourcing due to their sensi-
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tive nature and requirement of expert knowledge.
We thus operate in a weakly-supervised setting by
assuming only access to a grammar that generates
canonical utterances and logical forms. Obtaining
a comprehensive collection of natural utterances
for military applications is difficult; it can be eas-
ier to create a grammar that generates canonical
utterances for the application. In addition, there
are scenarios where there is insufficient time or
funding to obtain supervised data, e.g. quickly
building a virtual assistant for a new mobile app.
Our goal is distinct from related efforts in dialog
systems (Gupta et al., 2018; Vanzo et al., 2019; Lee
et al., 2019; Ham et al., 2020); the parser does not
have additional context or interaction but focuses
on modeling complex compositional intents. We
build on methods that project natural utterances
to the canonical space (Marzoev et al., 2020) and
investigate novel adaptations for handling multi-
intent utterances. Our contributions are as follows.

* We present a first effort at parsing brief, multi-
intent utterances into logical forms; this work
sheds light on parsing of airborne communica-
tions for which parallel resources are limited.

* We perform experiments on two military commu-
nications datasets and a general-domain dataset.
Our findings suggest that a new approach that
iteratively projects the natural language utterance
to a canonical utterance, followed by a reduction
step can achieve the best performance.

2 Hierarchical Projection

Let X and Y be the set of all natural language
utterances and logical forms (LF), respectively.
Given a natural language utterance x C X, we
wish to produce y C Y. We assume only access
to a grammar G that defines a set of n produc-
tion rules whose union forms a canonical set of
utterances Z. A grammar is assumed to be in the
form G = R|...|R,, where each production rule
R; — (a,7) is defined as rule expansion « and
a tag 7. Tags define the semantic content associ-
ated with a rule, which can be used to build LFs.
Figure 2 shows an example grammar. Canonical
utterances found in Z do not cover the full range
of variation available in natural language. A viable
option, described below, is to develop a projection
function 7 which maps X directly into Z and ob-
tain an appropriate y through G.

We follow Marzoev et al. (2020) and use a pre-
trained language model (LM) to obtain semantic
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Figure 2: (Top) Method to project a natural language utter-
ance to a canonical utterance; the logical form can then be
inferred directly. (Bottom) Grammar from our ISR data.

representations of utterances in R%. A distance
function 4 is used to compute the closest canonical
utterance in vector space to the natural language
utterance. The projection function is defined as:

m(x) = argmin §(LM(z),LM(2)) (1)
z€Z

LM(-) is calculated as the average of BERT-Base
(Devlin et al., 2018) representations, and ¢ is co-
sine similarity. Computing the arg min requires
O(Z) operations which can be intractable for many
grammars. To handle this, we use a hierarchical
projection method by performing a search through
the grammar (Marzoev et al., 2020). The $root
is expanded by taking one step in the grammar to
yield several partial instantiations 2’, which takes
the place of z in Eq. 1. We refer to a partial instan-
tiation 2’ as a canonical utterance that still contains
non-terminals. The 2z’ closest to x is chosen in
the next search iteration. Non-terminals in 2" are

expanded until only terminals remain (Figure 2).

3 Adaptation

3.1 Non-Terminal Averaging

Vector representations of partial instantiations in-
troduce difficulty as non-terminals are not well-



Single-Intent Multi-Intent Avg
Dataset Can. NL Can. NL Len
ISR 445 790 20,000 600 7.4
HELI 45 170 8,000 2,000 3.0
OVERNIGHT 302 2416 20,000 2,000 10.8

Table 1: Number of canonical (Can.) and natural language
utterances (VL) and average length of utterances. Each Can.
and NL utterance is paired with a gold standard LF. Can.
pairs are used for training and NL pairs are for evaluation.
OVERNIGHT numbers are averaged over its eight subdomains.

understood by pre-trained LMs. This can be some-
what resolved by replacing non-terminals with the
[MASK] token (Marzoev et al., 2020). It conveys
to the LM that a word or phrase should exist at
that position, but it’s not clear yet what exactly
belongs there, and allows the LM to form repre-
sentations for the other tokens with the knowledge
that something will exist there. However, partial in-
stantiations may contain few or no terminals at all,
meaning LM input will be dominated by [MASK]
tokens. For example, for the given partial instan-
tiation — $TypeNP whose $8RelNP is $EntityNP —
it is not clear what values may be used for the
non-terminals, and the resulting utterance represen-
tation will not be useful.

We introduce a strategy to mitigate this issue that
we call non-terminal averaging. We observe that a
non-terminal is restricted to certain values defined
by the grammar. We obtain a representation of the
non-terminal by averaging over the representations
of these possible values, which gives a much bet-
ter representation than the [MASK] token. This is
important when projecting over multiple intents, as
discussed in the next section.

3.2 Multi-Intent Projection

We explore two methods for parsing utterances
with multiple intents.

Meta-Grammar A simple method for handling
multiple intents is to create a meta-grammar based
on the original grammar. The $root is renamed to
$subroot while keeping all other rules unchanged.
A new $root is created with the rule $root —
$subroot | $subroot $subroot | . . . It encapsulates
all combinations of multiple intents, where each
combination is a concatenation of > 1 intents.

Reduction Another approach is to first greedily
project to the closest canonical utterance, remove
all tokens in the input utterance that appear in the
canonical utterance, and repeat to find another sim-
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ilar canonical utterance. This iterative process of
projection and reduction is repeated until no tokens
remain or a continuation threshold is met. Figure 1
presents an example.

To more accurately perform token removal for
our Reduction method, we compare BERT rep-
resentations of tokens rather than comparing ex-
act string matches between tokens, similar to
BERTScore (Zhang et al., 2019). If the cosine
similarity scores between two tokens meet a cer-
tain similarity threshold, then those two tokens are
treated as equivalent, and the token will then be
removed. This technique can better handle slight
variations in word choice (e.g. “survivor” and “sur-
vivors”, or “spotted” and “in sight”). We used 0.5
as the similarity threshold, but the model is not
very sensitive to this value.

4 Data

Most semantic parsers are given access to (natu-
ral language utterance, LF) pairs during training.
Our setting, however, assumes no access to these
pairs and are only given a grammar to generate
canonical utterances and their LFs. We use two
proprietary military communication datasets and a
general-purpose dataset OVERNIGHT (see Table 1).

ISR Intelligence, surveillance, and reconnais-
sance (ISR) subject matter experts were consulted
to develop a corpus of known utterances that an
intelligence operator would say during a mission.
The LFs appear in JSON format containing an in-
tent and slots to be filled. The utterances are con-
solidated into a grammar with a relatively deep
structure where an intent may contain slots for
nested intents, making it closer to semantic parsing
datasets like TOP (Gupta et al., 2018). It consists
of domain-specific words and acronyms outside of
ordinary vernacular, making this dataset particu-
larly challenging. The grammar contains 37 rules,
36 non-terminals, and approximately 60 terminals.

HELI Short commands were collected from he-
licopter communications and consolidated into a
similar grammar to ISR. The grammar has a shal-
low structure and does not contain many nested
intents, but each utterance is short (1-5 tokens),
which has its own challenges. The grammar con-
tains 48 rules, 47 non-terminals, and approximately
60 terminals. Example in Fig. 1.

Natural language utterances in both datasets are
wholly defined by its grammar. For evaluation,



ISR HELI

Single  seq2seq (Lewis et al., 2020) 34.4 58.2
Intent  proj (Marzoev et al., 2020) 82.5 74.1
NT-Avg 85.9 74.1

Multi seq2seq (Lewis et al., 2020)  48.1 45.5
Intent NT-Avg + MetaGrammar 16.3 25.2

NT-Avg + Reduction 49.1 38.8

Table 2: Logical form accuracies for internal ISR and HELI
datasets

we expand to a set of paraphrased canonical ut-
terances using an English-to-X — X-to-English
procedure similar to those used for augmentation
in paraphrase datasets (Wieting and Gimpel, 2018;
Hu et al., 2019).

OVERNIGHT (Wang et al., 2015) is a seman-
tic parsing dataset over eight domains, including
sports, restaurants, and social media. Each domain
contains a grammar to generate canonical utter-
ances and LFs, as well as natural language para-
phrases. As we are interested in weakly-supervised
parsing, we ignore natural language utterances in
training and only use those in the test set for evalu-
ation. The datasets we use contain grammars and
natural language data for utterances with a single
intent, but they lack multi-intent data. We create
simulated multi-intent utterances by concatenating
natural language utterances together, with target
LFs as concatenations of the utterances’ LFs. We
enforce a limit of three intents to keep task diffi-
culty manageable.

5 Results

We present several baselines in our experiments.
We train a sequence-to-sequence (seq2seq) model
on sequence pairs of the form (canonical utterance,
LF). At evaluation, the model is given a natural
language utterance associated with a canonical ut-
terance and evaluated based on the original LF. We
make use of pre-trained BART (Lewis et al., 2020)
by fine-tuning on task-specific data. Proj is the tech-
nique of projecting a natural language utterance to
a canonical utterance in the grammar, described
in Section 2. NT-Avg is the proposed method of
averaging the representations of a non-terminal’s
possible values. For the single-intent OVERNIGHT
datasets, we display baseline results presented in
Marzoev et al. (2020). Finally, we experiment with
two methods on top of NT-Avg for multi-intent
parsing — Meta-Grammar and Reduction.

Table 2 presents LF exact match accuracies for
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our internal datasets in both single-intent and multi-
intent settings. We observe that projection tech-
niques outperform seq2seq methods for single-
intent, consistent with prior work (Marzoev et al.,
2020). Our proposed method (NT-Avg) achieves
a sizeable improvement in ISR, but equal perfor-
mance on HELI. This disparity may be due to
HELI’s shallow grammar, demonstrating that non-
terminal averaging provides gains on domains with
deep, hierarchical grammars but less on simple
grammars. For multi-intent, Reduction outper-
forms MetaGrammar by a wide margin. Meta-
Grammar must simultaneously predict the number,
type, and location of intents. Reduction iteratively
simplifies the process by searching for one intent
at a time. We also observe that seq2seq achieves
much stronger performance for multi-intent with
similar accuracy to Reduction on ISR and achiev-
ing much higher accuracy on HELI. We believe the
improvement is due to the larger amount of data
available to train seq2seq models, since we can con-
catenate multiple single-intent canonical utterances
together to form large simulated training sets.

The OVERNIGHT dataset contains a more com-
plex grammar and longer utterances and LFs com-
pared to our internal datasets (Table 3). NT-Avg
outperforms other approaches on single-intent ut-
terances, similar to results on ISR and HELI.

All systems evaluated on the multi-intent split of
OVERNIGHT struggle to perform well. A system
must be able to determine the number of intents in
an utterance, interpret the natural language in each
intent, and predict LFs that exactly match the LFs
for every intent. Accuracies range between 0% and
2% (see supplementary). This demonstrates that
it is non-trivial to transfer parsing systems from
the single-intent setting to multi-intent. To tease
out performance differences between systems, we
instead evaluate a system prediction to be correct if
at least one predicted LF has an exact match with
any one of the gold standard LFs.

For multi-intent utterances, Reduction achieves
the highest accuracies. We believe the long struc-
ture of the LFs in OVERNIGHT provide a challenge
for current seq2seq models to generate accurately.
Meanwhile, grammar-based approaches can easily
side-step this issue by producing LFs directly from
the grammar, evidenced by the higher accuracies.

An additional phenomenon appearing in all

datasets is lower layers of BERT used for projection
perform better than higher layers (Figure 3). How-



Bas Blo Cal Hou Pub Rec Res Soc Avg

Single  seq2seq+BERT (Marzoev et al., 2020) 60.0 21.0 31.0 31.0 340 36.0 36.0 31.0 350
Intent proj (Marzoev et al., 2020) 470 27.0 320 360 340 490 43.0 28.0 370
NT-Avg 327 370 422 48.6 515 523 563 300 438

Multi  seq2seq (Lewis et al., 2020) 18.0 16.0 11.5 75 230 215 275 7.0 165
Intent NT-Avg + MetaGrammar 180 114 229 169 21.1 400 236 223 220
NT-Avg + Reduction 31.7 242 388 364 415 577 420 234 369

Table 3: Logical form accuracies against OVERNIGHT datasets. Partial accuracies are reported for multi-intent data.

ISR ® ISR-Multi Overnight @ Overnight-Multi
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Figure 3: LF accuracies for NT-Avg system by varying BERT
layer. Lower layers result in higher accuracies, especially in
the multi-intent setting.

ever, we notice that layers 0-1 achieve higher accu-
racies in ISR and HELI, while layers 1-3 achieve
higher accuracies in OVERNIGHT. We believe this
is due to the role that context plays in each do-
main. In terse military domains, words often carry
unambiguous meaning and require little context
to understand. In traditional domains, context is
required to interpret the meaning of a word.

6 Conclusion

We tackle multi-intent semantic parsing using
weakly-supervised methods. Our results show that
an iterative approach of projecting the natural utter-
ance to a canonical utterance followed by a token
reduction step achieves the best performance. Po-
tential further improvement could be achieved by
fine-tuning the BERT model on free text in the
desired domain (e.g. military training materials)
to create better utterance embeddings. Future re-
search includes parsing more complex multi-intent
utterances, borrowing ideas from dialogue systems
and capturing dependencies between intents (Gan-
gadharaiah and Narayanaswamy, 2019).

7 Ethics and Broader Impacts

Military Applications It is vital for military per-
sonnel to use precise language in the field to min-
imize confusion. This work is part of an effort to
train operators of specialized military equipment to
accurately communicate in search-and-rescue team

and aircraft management operations. Improvement
in these occupations leads to better airspace safety
and rescue outcomes.

Broader Impacts This work has a larger societal
impact outside of military domains. For example,
natural language understanding systems in health-
care require the use of audio data or transcripts of
patient interactions, and the collection of this sen-
sitive data has major ethical considerations. Our
technology is flexible enough to be used in these
specialized domains without the need for training
on sensitive data and thus has a positive impact in
the healthcare field. Potential misuses of this tech-
nology, however, could lead to decreased privacy
for individuals whose voice is recognized.

Environmental Impact As stated in the paper,
our models do not require any training, which
greatly reduces the number of computations and
thus lessens the environmental impact of natural
language technology. Instead our models are based
on pre-trained language models used in an unsuper-
vised manner, so the only computation time comes
from inference and experiments.
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Bas  Blo Cal Hou Pub Rec Res Soc Avg
Multi-Intent
seq2seq (Lewis et al., 2020) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NT-Avg + MetaGrammar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NT-Avg + Reduction 035 035 035 130 130 195 175 030 0.96

Table 4: Exact match logical form accuracies against OVERNIGHT multi-intent datasets

A Model Details

We use BART-base (Lewis et al., 2020) to closely
match the number of parameters and amount of
pre-training data used by BERT-base (Devlin et al.,
2018), which is used for the projection approaches.
BART-base uses the Transformer encoder-decoder
architectures with 6 layers in the encoder and de-
coder, 12 attention heads in the encoder and de-
coder, and hidden size of 768. We train with a batch
size of 4, optimized with Adam, a learning rate of
4e-5. The model converged after an average of five
epochs for the OVERNIGHT single-intent datasets
and one epoch for multi-intent. The model took
longer to converge on the ISR and HELT datasets
taking 20 epochs and 40 epochs, respectively. This
is likely because of the unfamiliar military terms
and terse utterances. A beam size of 10 is used for
all projection techniques (including the proposed
approaches).

Our results for proj differ from those presented
in (Marzoev et al., 2020) because we use the hier-
archical projection method, which forces a search
through the grammar to find the closest canoni-
cal utterances. Marzoev et al. (2020) use a linear
projection method, which instead compares to all
canonical utterances directly, which generally per-
forms better but is not tractable for complex gram-
mars.

B Full Logical Form Results

All semantic parsing systems that we evaluated
OVERNIGHT struggle to perform well on parsing
multi-intent utterances. It can be difficult to simul-
taneously determine the number of intents in an
utterance, interpret the natural language in each in-
tent, and predict LFs that exactly match the LFs for
every intent. Table 4 presents the exact match logi-
cal form accuracies for OVERNIGHT multi-intent.
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