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Abstract

Compound probabilistic context-free gram-
mars (C-PCFGs) have recently established a
new state of the art for phrase-structure gram-
mar induction. However, due to the high time-
complexity of chart-based representation and
inference, it is difficult to investigate them
comprehensively. In this work, we rely on a
fast implementation of C-PCFGs to conduct
evaluation complementary to that of Kim et al.
(2019). We highlight three key findings: (1) C-
PCFGs are data-efficient, (2) C-PCFGs make
the best use of global sentence-level informa-
tion in preterminal rule probabilities, and (3)
the best configurations of C-PCFGs on English
do not always generalize to morphology-rich
languages.

1 Introduction

Probabilistic context-free grammars (PCFGs) have
been used for unsupervised constituency grammar
learning since decades ago (Lari and Young, 1990),
while learning PCFGs with the Expectation Max-
imization algorithm (Dempster et al., 1977) has
been difficult as being involving non-convex op-
timization. Recently, Kim et al. (2019) propose
compound PCFGs, an over-parameterized neural
model that extends corpus-level PCFGs by defining
a mixture of PCFGs per sentence. C-PCFGs have
achieved the state-of-the-art performance on En-
glish and Chinese treebanks. They are also shown
to be effective in a visually-grounded learning set-
ting (Zhao and Titov, 2020). However, because of
the high time-complexity of chart-based represen-
tation and inference, it is hard to inspect C-PCFGs
comprehensively.

In this work, we rely on a fast implementation1

of C-PCFGs to conduct a set of experiments com-
plementary to those of Kim et al. (2019). Our

1https://github.com/zhaoyanpeng/cpcfg.

first experiment concerns data efficiency and length
generalization of C-PCFGs. We empirically find
that though trained only on short sentences, e.g.,
shorter than 30 tokens, C-PCFGs can generalize
to longer sentences while maintaining high per-
formance (54.8% F1) at test time. We further in-
vestigate which factors contribute to the good per-
formance of C-PCFGs. Since a major difference
between C-PCFGs and vanilla PCFGs is that C-
PCFGs define sentence-dependent rule probabili-
ties by using global sentence-level information, we
ablate C-PCFGs by removing it from start, preter-
minal, and nonterminal rules,2 individually. Our
experimental results show that sentence-level in-
formation is most effective for preterminal rules.
Despite the impressive performance of C-PCFGs
on English, it is still unclear whether they can gen-
eralize to other languages. We thus conduct mul-
tilingual evaluation of C-PCFGs on the SPMRL
dataset (Seddah et al., 2014). The experimental
results suggest that the best configurations of C-
PCFGs on English do not necessarily generalize to
morphology-rich languages.

2 Compound PCFGs

Compound PCFGs provide a novel parameteriza-
tion of PCFGs. Unlike PCFGs, which assign each
grammar rule r a non-negative scalar πr such that∑

r:A�γ πr = 1 for each given left-hand-side sym-
bol A, C-PCFGs relax the strong context-free as-
sumption of PCFGs by assuming that rule proba-
bilities follow a compound distribution:

πr = gr(z; θ), z ∼ p(z) ,

2Start rules generate a nonterminal symbol from the start
symbol S (e.g., S � A), preterminal rules generate a word
from a nonterminal symbol (e.g., A � w), and nonterminal
rules are binary rules of the form A � BC, which involve
only nonterminal symbols.

https://github.com/zhaoyanpeng/cpcfg
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where p(z) is a prior distribution and allows for
capturing interdependencies between the rules;
gr(z; θ) takes a latent z as input and incorporates
the interdependencies into rule probabilities. Typi-
cally, gr(z; θ) is parameterized by flexible neural
networks and is amenable to gradient-based opti-
mization techniques (we refer interested readers
to Kim et al. (2019) for the detailed parameteriza-
tion).

Learning C-PCFGs is formalized as maximizing
the log likelihood of each observed sentence w =
w1w2 . . . wn:

log pθ(w) = log

∫
z

∑
t∈TG(w)

pθ(t|z)p(z) dz ,

where TG(w) consists of all parses of a sentence
w under a PCFG G. As standard in learning latent
variable models, C-PCFGs resort to variational in-
ference for tractable learning and instead maximize
the evidence lower bound (ELBO):

log pθ(w) ≥ ELBO(w;φ, θ) =

Eqφ(z|w)[log pθ(w|z)]− KL[qφ(z|w)||p(z)] ,

where the first term computes the expected log like-
lihood under a variational posterior qφ(z|w); the
KL term can be estimated analytically when p(z)
and qφ(z|w) are normally distributed. qφ(z|w) is
parameterized by a neural network and defines a
distribution over the latent z.

C-PCFGs satisfy the context-free assumption
conditioned on z and thus admit tractable inference
for each given z. Inference with C-PCFGs seeks
the most probable parse t∗ of w:

t∗ = argmax

∫
z
pθ(t|w, z)pθ(z|w) dz .

Though given z, the maximum a posterior (MAP)
inference over pθ(t|w, z) can be exactly solved
by using the CYK algorithm, the integral over z
renders inference intractable. The MAP inference
is instead approximated by:

t∗ ≈ argmax

∫
z
pθ(t|w, z)δ(z− µφ(w)) dz ,

where δ(·) is the Dirac delta function and µφ(w)
is the mean vector of the variational posterior.

Similarly to C-PCFGs, neural PCFGs (N-
PCFGs) also use neural networks to parameterize
PCFGs, but their parameterization does not rely on
the sentence-dependent z. In the following discus-
sion, we will refer to z as ‘sentence embedding’.

3 Experimental setup

Datasets: We investigate the parsing performance
of C-PCFGs across ten languages. Specifically,
we conduct experiments on the Wall Street Jour-
nal (WSJ) corpus of the Penn Treebank (Marcus
et al., 1994) for English, the Penn Chinese Tree-
bank 5.1 (CTB) (Xue et al., 2005) for Chinese, and
eight additional treebanks from the SPMRL 2014
shared task (Seddah et al., 2014) for the other eight
languages (Basque, German, French, Hebrew, Hun-
garian, Korean, Polish, Swedish). We use the stan-
dard data splits for each treebank. Following Kim
et al. (2019), punctuation is removed from all data;
the top 10000 frequent tokens in the training data
of each treebank are kept as the vocabulary.3 Un-
less otherwise specified, we train C-PCFGs on sen-
tences no longer than 40 tokens.
Model hyperparameters and evaluation: We
re-implement C-PCFGs relying on Torch-
Struct (Rush, 2020) and adopt the same hyperpa-
rameter settings as in Kim et al. (2019). We train
C-PCFGs for each language separately. On each
treebank we run C-PCFGs four times with different
random seeds and for 30 epochs. The best model
in each run is selected according to the perplexity
on the validation data. At test time, trivial spans,
such as single-word and sentence-level spans,
are ignored. We report average corpus- and
sentence-level F1 numbers as well as the unbiased
standard deviations.

4 Results and discussion

4.1 Main results

We compare C-PCFGs against three trivial base-
lines (left- / right-branching model and random
trees) and a neural PCFG model. In short, C-
PCFGs beats all baselines in terms of corpus- and
sentence-level F1 (see the second row of Table 1).
Our re-implementation of C-PCFGs reaches the
highest sentence-level F1, slightly outperforming
the model of Kim et al. (2019) by 0.5% F1. To
give an in-depth analysis of the model gains, we
present recall numbers on six most frequent con-
stituent labels in the test data (NP, VP, PP, SBAR,
ADJP, ADVP). Unsurprisingly, C-PCFGs achieve
the best recall for most labels (4 out of 6 constituent
labels). However, on verb phrases (VPs) they fall
far behind the right-branching baseline (-30.8%

3A unified data preprocessing pipeline is available at
https://github.com/zhaoyanpeng/xcfg.

https://github.com/zhaoyanpeng/xcfg
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Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 10.4 0.5 5.0 5.3 2.5 8.0 6.0 8.7
Right Branching 24.1 71.5 42.4 68.7 27.7 38.1 36.1 39.5

Random Trees 22.5±0.3 12.3±0.3 19.0±0.5 9.3±0.6 24.3±1.7 26.9±1.3 15.3±0.1 18.1±0.1
†N-PCFG 71.2 33.8 58.8 52.5 32.5 45.5 50.8
N-PCFG 72.2±4.8 31.4±9.7 66.8±4.7 50.2±9.1 46.3±5.7 55.2±5.0 49.0±3.5 50.8±3.8
†C-PCFG 74.7 41.7 68.8 56.1 40.4 52.5 55.2
C-PCFG 76.7±2.0 40.7±5.5 71.3±2.1 53.8±3.1 45.9±2.8 64.2±2.8 53.5±1.4 55.7±1.3

L50C-PCFG 76.9±3.6 40.7±3.7 72.3±0.6 60.1±5.5 46.9±5.8 63.2±5.0 53.8±2.1 55.9±1.9

L40C-PCFG 76.7±2.0 40.7±5.5 71.3±2.1 53.8±3.1 45.9±2.8 64.2±2.8 53.5±1.4 55.7±1.3

L30C-PCFG 74.5±2.8 38.4±1.7 71.1±1.2 59.7±4.8 44.2±4.1 64.3±3.1 52.5±1.5 54.8±1.4

L20C-PCFG 72.4±2.3 36.5±1.1 69.2±1.7 54.1±3.2 41.9±2.3 58.1±7.1 50.6±0.9 52.8±0.7

L10C-PCFG 67.1±3.8 31.0±9.8 61.3±2.2 45.9±8.2 36.7±2.3 41.3±6.0 45.5±2.4 48.2±2.3

Table 1: Recall on six frequent constituent labels (NP, VP, PP, SBAR, ADJP, ADVP) in the WSJ test data, corpus-
level F1 (C-F1), and sentence-level F1 (S-F1) results. The best mean number in each column is in bold. † denotes
results reported by Kim et al. (2019). L# indicates that the models are trained on sentences no longer than # tokens.

recall), presumably because VPs are longer and
involve more complex linguistic structures. We
further plot distributions of the six labels across
constituent lengths (see Figure 1). We can see that
VPs are nearly uniformly distributed over different
constituent lengths. In contrast, noun phrases (NPs)
account for 61% of short constituents that have less
than 6 tokens and cover 51% of total constituents.
It suggests that C-PCFGs can recognize local and
short constituents with a high accuracy but strug-
gles with long constituents; there is clearly a room
for improvement on VPs.

2 3 4 5 6 7 8 9 10 11 12

Constituent Length

NP

VP

PP

SBAR

ADJP

ADVP

ALL

0.16 0.08 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01

0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

0.03 0.04 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.21 0.14 0.09 0.07 0.05 0.04 0.04 0.03 0.02 0.02 0.02

Figure 1: Label distribution over constituent lengths
on the WSJ test data. All denotes frequencies of con-
stituent lengths. Zero frequencies are due to the limited
numerical precision.

4.2 Data efficiency and length generalization

A crucial aspect of human languages is their com-
positionality. Humans can derive grammar rules
from a few sentences and combine the rules to gen-
erate new sentences compositionally. As C-PCFGs

are backed by context-free grammar, we hypoth-
esize that C-PCFGs are data-efficient and have a
good generalizability to unseen sentences and con-
stituents.

We design a length-generalization test to verify
our hypothesis. Specifically, we train C-PCFGs
using training sentences of length equal to or below
a chosen sentence length. We choose five sentence
lengths, 10, 20, 30, 40 and 50, indicated by L10,
L20, L30, L40 and L50, respectively (see the third
row of Table 1)). Figure 3 illustrates sentence-level
F1 numbers on the test data of WSJ. Overall, train-
ing C-PCFGs on more / longer sentences results in
higher F1 numbers. But using training sentences
longer than 40 tokens only trivially improves the
performance (+0.2% F1). Given that 97% test sen-
tences are shorter than 40 tokens, we conjecture
that training sentences shorter than 40 tokens can
adequately cover lexical / structural characteristics
in the test data. On the other hand, longer sentences
have a larger tree space and probably make it harder
for the model to learn. Notably, discarding training
sentences longer than 30 tokens only decreases the
model performance by 1.2% F1, suggesting that
C-PCFGs are data-efficient.

We also conduct a constituent-length generaliza-
tion test to study the generalizability of C-PCFGs
on unseen long constituents. Since the test data of
WSJ is too small to provide reliable statistics across
constituent lengths, we test C-PCFGs on training
sentences and report F1 numbers across constituent
lengths (see Figure 2). In general, F1 numbers be-
come lower as constituent length increases. This is
reasonable because large constituents merge from
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Figure 2: F1 numbers broken down by constituent lengths on the WSJ training data. During training, constituents
(sentences) longer than 30 tokens (L30) are unseen to L30C-PCFG and are unseen to L40C-PCFG and L40N-PCFG
when longer than 40 tokens (L40).
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Figure 3: F1 numbers on the WSJ test data with vary-
ing maximum lengths of training sentences.

small constituents; errors in small constituents ac-
cumulate when composing larger constituents.

We further investigate the influence of training
data on length generalization. We use sentence
lengths 30 and 40 as an illustration. Compare with
L40C-PCFG, when tested on constituents longer
than 40 tokens, L30C-PCFG shows a slightly better
generalizability (see Figure 2b). It consistently
outperforms L40C-PCFG on sentences of length
ranging from 30 to 40, though L40C-PCFG can
access all sentences shorter than 40 tokens during
training. This implies that C-PCFGs generalize
well from short sentences; using additional long
training sentences may hurt the generalizability.
We also plots the proportions of constituent lengths.
For example, there are about 6400 constituents of
length from 30 to 40, which account for about 1.1%
of total constituents, suggesting that the conclusion
about the better generalizability of L30C-PCFGs is
reliable.

Figure 2b visualizes the performance of an
L40N-PCFG. Surprisingly, L40N-PCFG shows the
best generalizability on long constituents. Where
does the F1 improvement of C-PCFGs over N-
PCFGs come from? Look at the F1 numbers on
shorter constituents in Figure 2a, clearly C-PCFGs
are better on constituents that are shorter than 11
tokens, while L40N-PCFGs consistently outper-
form C-PCFGs on constituents of length above 11.
L30C-PCFGs fall in between L40C-PCFGs and
L40N-PCFGs, once again showing that restricting
training to short sentences can endow C-PCFGs
good parsing performance as well as lead to im-
proved generalization.

4.3 Model ablation

C-PCFGs demonstrate a significant improvement
over N-PCFGs. Compare with N-PCFGs, C-
PCFGs use an additional sentence embedding (i.e.,
the latent variable z, see Section 2) to parameterize
sentence-specific PCFGs. Concretely, the sentence
embedding is used to parameterize three types of
rules: preterminal rules (P), nonterminal rules (N),
and start rules (R). We would like to know which
type of rules makes the best use of the sentence
embedding? To this end, we let a C-PCFG use
corpus-level parameters for each of the three types
of rules, individually, i.e., parameters for a rule
type are shared among sentences. Interestingly,
C-PCFGs degenerate into N-PCFGs when using
corpus-level parameters for preterminal rules (see
Figure 4). It implies that the sentence embedding is
most crucial for the parameterization of preterminal
rules, presumably because the sentence embedding
helps preterminal rules derive the knowledge of
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Model Chinese Basque German French Hebrew Hungarian Korean Polish Swedish Mean

Left Branching 7.2 17.9 10.0 5.7 8.5 13.3 18.5 10.9 8.4 11.2
Right Branching 25.5 15.4 14.7 26.4 30.0 12.7 19.2 34.2 30.4 23.2

Random Trees 15.2 19.5 13.9 16.2 19.7 14.1 22.2 21.4 16.4 17.6
N-PCFG 30.1±4.6 30.2±0.9 37.8±1.7 42.2±1.4 41.0±0.6 37.9±0.8 25.7±2.8 31.7±1.8 14.5±12.7 32.3
C-PCFG 35.1±6.1 27.9±2.0 37.3±1.8 40.5±0.8 39.2±1.2 38.3±0.7 27.7±2.8 32.4±1.1 23.7±14.3 33.6

Table 2: Sentence-level F1 numbers on multilingual treebanks. Similarly to Kim et al. (2019), we observe that
C-PCFGs suffer a huge variance, e.g., on the Chinese and Swedish treebanks.

part-of-speech tags, which is beneficial for parsing.

N-PCFG Shared P Shared N Shared R C-PCFG
0

10

20

30

40

50

60

F1
 (%

)

50.8 50.7
53.0 53.8 55.7

Figure 4: F1 numbers on the WSJ test data. Shared
P / N / R indicates C-PCFGs that use corpus-level pa-
rameters for preterminal / nonterminal / start rules (see
Section 4.3).

4.4 Multilingual evaluation

Despite the surprisingly good performance on En-
glish, it is still unclear whether C-PCFGs can gen-
eralize to languages beyond English. We thus con-
duct multilingual evaluation of C-PCFGs on nine
additional languages (see Tablel 2). When training
C-PCFGs on the nine languages, we use the hy-
perparameters of the best-performing C-PCFG on
English, i.e., we tune C-PCFGs only on WSJ and
use the best configurations on the other treebanks.
We can see that C-PCFGs achieve the highest over-
all mean F1 (average F1 number over all treebanks),
though they have two fewer winning treebanks than
N-PCFGs. Notably, both C-PCFGs and N-PCFGs
outperform the trivial baselines by a large margin,
suggesting their nice generalizability on languages
beyond English. However, they are worse than the
right-branching baseline on the Polish and Swedish
treebanks. As these languages have rich morpholo-
gies, we anticipate an improvement from encoding
the knowledge of morphologies into the sentence
embedding.

5 Conclusion

We have presented an in-depth analysis of C-
PCFGs from a quantitative perspective. The anal-
ysis concerns three aspects of C-PCFGs: data ef-
ficiency and length generalization, the role of the
latent sentence embedding, and multilingual per-
formance. Our experimental results show that C-
PCFGs can learn well only from short sentences
and maintain good performance at test time. The la-
tent sentence embedding is crucial for the good per-
formance of C-PCFGs. Among the three rule types,
preterminal rules make the most of it. However, the
configurations of the best-performing C-PCFGs on
English do not always generalize to morphology-
rich languages.
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