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Abstract

Word embedding learning methods require a
large number of occurrences of a word to ac-
curately learn its embedding. However, out-
of-vocabulary (OOV) words which do not ap-
pear in the training corpus emerge frequently
in the smaller downstream data. Recent work
formulated OOV embedding learning as a few-
shot regression problem and demonstrated that
meta-learning can improve results obtained.
However, the algorithm used, model-agnostic
meta-learning (MAML) is known to be unsta-
ble and perform worse when a large number of
gradient steps are used for parameter updates.
In this work, we propose the use of Leap, a
meta-learning algorithm which leverages the
entire trajectory of the learning process instead
of just the beginning and the end points, and
thus ameliorates these two issues. In our exper-
iments on a benchmark OOV embedding learn-
ing dataset and in an extrinsic evaluation, Leap
performs comparably or better than MAML.
We go on to examine which contexts are most
beneficial to learn an OOV embedding from,
and propose that the choice of contexts may
matter more than the meta-learning employed.

1 Introduction

Distributional methods for learning word embed-
dings require a sufficient number of occurrences
of a word in the training corpus to accurately learn
its embedding. Even though the embeddings can
be trained on raw text implying that an embed-
ding for every word is obtained, in practice out-
of-vocabulary (OOV) words do occur in the down-
stream applications embeddings are used, for ex-
ample due to domain-specific terminology. Never-
theless, OOV words are often content words such
as names which convey important information for
downstream tasks; for example, drug names are key
in the biomedical domain. However, the amount
of downstream language data is typically much

smaller than the corpus used for training word em-
beddings, thus methods that rely on distributional
properties of words across large amounts of data
perform poorly (Herbelot and Baroni, 2017).

Researchers often assign OOV words to ran-
dom embeddings or to an “unknown” embedding,
however these solutions fail to capture the distribu-
tional properties of words. Zero-shot approaches
(Pinter et al., 2017; Kim et al., 2016; Bojanowski
et al., 2017) attempt to predict the embeddings for
OOV words from their characters alone. These ap-
proaches rely on inferring the meaning of a word
from its subword information, such as morphemes
or WordPiece tokens used in BERT (Devlin et al.,
2019). While this works well for many words, it
performs poorly for names and words where mor-
phology is not informative.

Given that an OOV word occurs once, the chance
of a second occurrence is much higher than the first
(Church, 2000). Hence while OOV words can be
rare and not seen in training, it is reasonable to
expect that a limited number of occurrences will
be present in the data of a downstream application.
Few-shot approaches (Garneau et al., 2018; Kho-
dak et al., 2018; Hu et al., 2019) leveraged this to
predict the embeddings for OOV words from just a
few contexts, often in conjunction with their mor-
phological information. Hu et al. (2019) proposed
an attention-based architecture for OOV word em-
bedding learning as a few-shot regression problem.
The model is trained to predict the embedding of
a word based on a few contexts and its character
sequence. Such a model is trained by simulating
OOV words in the training corpus, with their target
embeddings provided by learning them on the same
corpus. As OOV words must have their embed-
dings inferred from contexts outside the training
corpus, the authors show that using an adaptation
of the model-agnostic meta-learning (MAML) al-
gorithm (Finn et al., 2017) to adapt the model’s
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parameters to the target domain improves the qual-
ity of the learned OOV word embeddings.

However, MAML is known to be unstable due to
the calculation of gradients requiring backpropaga-
tion through multiple instances of the model, as the
learning process must be unrolled to calculate gra-
dients with respect to the initial parameters (Anto-
niou et al., 2019). In practice, the learning process
is often truncated to a small number of gradient
steps, but has been shown to have a short-horizon
bias (Wu et al., 2018), causing it to underperform.

In this work we explore OOV word embedding
learning using Leap (Flennerhag et al., 2019), a
meta-learning framework which takes into consid-
eration the entire learning trajectory, not only the
beginning and end points. Each task is associated
with a loss surface over the model’s parameters on
which the learning process travels, and the aim is to
minimize the expected length of this process across
tasks. Leap also does not require backpropagation
through the learning process, allowing it to adapt
over a larger number of gradient steps and thus not
suffering from the short-horizon bias that MAML
is prone to.

We conduct an intrinsic evaluation of MAML
and Leap on the dataset of Lazaridou et al. (2017)
which simulates OOV words by combining the con-
texts of two semantically similar words to form a
’chimera’. We find that Leap performs better than
MAML at adapting model parameters to a new
corpus. We also conduct an extrinsic evaluation
on NER in the biomedical domain where the re-
sults are comparable to MAML, without improving
in most cases on a random embedding baseline.
Finally, we examine which contexts are more ben-
eficial to learn an embedding from, and note that
the contexts from which an embedding is learned
matters more than the meta-learning method em-
ployed.

2 Meta-Learning

Meta-learning algorithms aim to capture knowl-
edge across a variety of learning tasks such that
fine-tuning a model on a specific task both avoids
overfitting and leads to good performance. Ap-
proaches include learning a similarity function by
which to cluster and classify data points (Vinyals
et al., 2016; Snell et al., 2017); learning an up-
date rule for neural network optimization (Ravi
and Larochelle, 2017); and learning an initializa-
tion from which to fine-tune a model. We consider

algorithms for the latter.
Formally, we consider task T to consist of a

dataset DT of labelled examples (x, y) and loss
function LT (θ) → R which maps a model’s pa-
rameters θ to a real-valued loss. For batch gradient
descent this loss is constant for a given set of pa-
rameters, however for stochastic gradient descent it
depends on the sampled examples. During training,
tasks T ∼ p(T ) are sampled from a distribution
p(T ) over the tasks the model should be able to
adapt to. The aim is then to train the model’s pa-
rameters such that they capture features common to
all tasks in p(T ), and thus are a promising initial-
ization for any of these tasks. Below we describe
the approaches taken by MAML and Leap.

2.1 MAML

During training with MAML, for each task T the
model’s parameters are updated from an initializa-
tion θ to θKT through K gradient steps according
to LT . The final parameters θKT are then used to
calculate the final task losses, and the original pa-
rameters θ are updated to minimize their sum. This
meta-objective is given below in equation 1, where
uT (θ) = θ−α∇θLT (θ) is a single gradient step:

min
θ

∑
T ∼p(T )

LT (θKT ) =
∑
T ∼p(T )

LT (uKT (θ)) (1)

The final task losses LT (θKT ) are usually computed
using examples held out from training θKT to simu-
late a testing loss. The meta-optimization is then
performed by backpropagating with respect to the
original parameters, θ, rather than the trained pa-
rameters θKT . This aims to optimize θ such that a
small number of gradient steps, K, on a particu-
lar task produces a low testing loss. Algorithm 1
below gives the overview of the training.

Algorithm 1: MAML
Input: p(T ): a distribution over tasks
Input: α, β: step size parameters

1 define uT (θ) = θ − α∇θLT (θ);
2 initialize model parameters θ;
3 while not done do
4 sample batch B of tasks T ∼ p(T );
5 forall T ∈ B do
6 θKT ← uKT (θ);
7 end
8 θ ← θ − β∇θ

∑
T ∈B LT (θKT );

9 end
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Algorithm 2: Leap
Input: p(T ): a distribution over tasks
Input: α, β: step size parameters

1 initialize model parameters θ;
2 while not done do
3 ∇F̄ ← 0;
4 sample batch B of tasks T ∼ p(T );
5 forall T do
6 θ0

T ← θ;
7 ψ0

T ← θ;
8 forall i ∈ {0, ...,K − 1} do
9 θi+1

T ← θiT − α∇θiT LT (θiT );

10 ψi+1
T ← ψiT − α∇ψiT LT (ψiT );

11 ∇F̄ ← ∇F̄ +
(LT (θiT )−LT (ψi+1

T ))∇
θiT
LT (θiT )+(θiT −ψ

i+1
T )

‖γ̄i+1
T −γiT ‖2

;

12 end
13 end
14 θ ← θ − β

|B|∇F̄ ;
15 end

Computing ∇θ
∑
T ∈B LT (θKT ) requires back-

propagation through the learning process for each
task T ∈ B. Gradients are computed by back-
propagation through K + 1 different instances of
the model’s parameters, which can cause both ex-
ploding and diminishing gradient problems, and be-
comes unstable for large K (Antoniou et al., 2019).
However, truncating the learning process with a
small K results in a short-horizon bias (Wu et al.,
2018), where the learned parameters adapt poorly
to tasks over a number of gradient steps larger than
K. To extend to more steps, a first order approxima-
tion of MAML has been shown to achieve similar
performance (Nichol et al., 2018; Finn et al., 2017).
However, this still considers only the initial and
the final parameters and loss, and for larger K the
intermediate steps become more significant.

2.2 Leap

In Leap the learning process is viewed as a path
along a loss surface L, traversed by K gradient
steps from initial to final parameters. The intu-
ition behind Leap is that geometrical similarities
between learning processes associated with differ-
ent tasks can be exploited for transfer learning. In
particular, Leap seeks to find an initialization that
reduces the expected length of learning processes.

Following Flennerhag et al. (2019), we consider
the learning process to be a sequence of discrete

points {γi}Ki=0 with γi = (θi,L(θi)) correspond-
ing to K gradient updates, and as such we consider
the learning process to be the shortest path passing
through these points. The length of a learning pro-
cess is then approximated as the cumulative chordal
distance of the path from initial parameters θ = θ0

to final parameters θK .The cumulative chordal dis-
tance approximates the length of the arc passing
through the points {γi}Ki=0, and is key to minimiz-
ing the length of the learning process rather than
simply moving the initial parameters towards the
final parameters:

d(θ;L) =

K−1∑
i=0

‖γi+1 − γi‖2 (2)

Considering again a distribution of tasks p(T ), an
initialization θ is associated with an expected learn-
ing process length ET ∼p(T )[d(θ;LT )]. When deal-
ing with complex non-convex loss surfaces, mini-
mizing only the expected learning process length
makes no guarantees about the final loss L(θK)
and thus may inadvertently find final parameters
θK with lower performance. Note that MAML
takes this into account directly in its objective by
optimizing for the final loss on a separate held-
out set. Leap instead enforces this as part of its
meta-objective by requiring that the optimized ini-
tialization θ must not converge to a higher loss
than a baseline initialization ψ = ψ0 for all tasks
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T . That is, LT (θK) ≤ LT (ψK) assuming con-
vergence after K gradient steps. For this purpose,
Leap defines an objective which optimizes the ini-
tialization for expected learning process length only
along the task-specific learning processes originat-
ing from a baseline initialization. This ensures that
the learning processes originating from the opti-
mized initialization will have no greater final loss
than their counterpart originating from the baseline
initialization, given that both consist of K gradient
steps. The objective is given in equation 3, where
points {γiT }Ki=0 lie along the learning process for
task T originating from the optimized initialization
θ, while points {γ̄iT }Ki=0 lie along the respective
learning process originating from the fixed base-
line initialization ψ.

d̄(θ;LT , ψ) =
K−1∑
i=0

‖γ̄i+1
T − γiT ‖2

min
θ
F̄ (θ;ψ) = ET ∼p(T )[d̄(θ;LT , ψ)]

(3)

Gradient descent on the objective F̄ with respect to
θ pulls the parameters θi towards ψi+1. Parameters
θ are initialized to be equal to ψ such that each
gradient descent update pulls θ forward along the
learning processes originating from it.

Algorithm 2 describes the training with Leap.
Tasks T ∼ p(T ) are sampled from the distribu-
tion p(T ) and the model’s parameters are updated
to θKT through K gradient steps for each task T
as in MAML (lines 1-10; the learning trajectory
is expanded in lines 8, 9 and 10, as it is needed
in Leap). The gradient ∇F̄ is incrementally com-
puted at each point (θiT ,LT (θiT )) during the task
training (line 11). ∇F̄ is always evaluated at
θ = ψ, with the update term on line 11 pulling
θi towards ψi+1 = θi+1. This is performed in or-
der to take into account each point in the learning
trajectory, as opposed to the start and end points in
MAML. The initialization θ is then updated accord-
ing to the accumulated gradient ∇F̄ (line 14), and
the algorithm continues with ψ set to the updated θ.
This is done implicitly when θ is updated, which
ensures that any future θ improves the task loss
over the one already obtained, instead of just over
the initial random initialization.

3 Leap for OOV Embedding Learning

In this section we describe our application of Leap
to learning embeddings for OOV words. This tech-
nique is generally applicable to any word embed-

ding regression function Hθ trainable by gradient
descent, though in our experiments we use the
HiCE architecture (Hu et al., 2019).

The regression function Hθ is trained to predict
a word’s embedding given K contexts, and possibly
morphological information, with words and their
contexts sampled from some large training corpus
DT . Each word (either a training target or in a con-
text) is represented as a pre-trained embedding in
the input to Hθ. We note that Hθ can be trained
only on words with sufficient occurrences in DT
such that their pre-trained embeddings can be ac-
curately learned. The trained Hθ can then be used
to infer the embeddings for OOV words, for which
we do not have a pre-trained embedding. However,
OOV words often form part of domain-specific vo-
cabularies, the semantics of which are not captured
by word embeddings trained on generic large cor-
pora (Kameswara Sarma et al., 2018). To counter-
act this, we adapt the trained parameters θT of the
word embedding regression function to the domain
in which we infer the OOV embeddings.

When adapting θT we consider both DT , and
the corpus on which we wish to infer OOV em-
beddings, DN . We wish to transfer the knowledge
encoded in θT to the task of predicting OOV em-
beddings for words in DN . One approach would
be to simply fine-tune θT on DN ; that is, sample
words and their contexts fromDN which have their
pre-trained embeddings from DT known and train
Hθ as before on these words. This ignores that
DN is much smaller than a corpus usually used for
word embedding training, and direct training on it
is likely to lead to overfitting to the corpus rather
than adapting to its domain, which in turn hurts the
quality of inferred OOV embeddings, an instance
of catastrophic forgetting (French, 1999). Instead
of fine-tuning, meta-learning algorithms can be ap-
plied. Hu et al. (2019) use MAML, and we extend
this work with the use of Leap.

We adapt θT by applying Leap across two tasks;
inferring OOV words in DT and DN . Optimiz-
ing the objective in equation 4 moves the adapted
parameters θ to minimize the lengths of the two
corresponding learning processes. The loss func-
tion L(·|D) used throughout is the cosine distance
between predicted and pre-trained embeddings.

min
θ

∑
C∈{T,N}

d̄(θ;L(·|DC), θT ) (4)

This pulls the model parameters θ along the learn-
ing processes for DT and DN originating from the
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pre-trained parameters θT . The learning process for
DT should already be short, as θT is trained to con-
vergence on DT . Optimization of the pull-forward
objective must naturally pull the parameters away
from this point of convergence to minimize the
length of the learning process for DN . However,
as each task is weighted equally, the model param-
eters cannot move towards the convergence point
for DN if this results in a larger divergence from
the convergence point for DT . It is thus necessary
for the parameters to move into areas which encode
knowledge sharing between DT and DN . This re-
duces overfitting on DN by ensuring θ does not
move too far from the convergence point for DT .

While each word’s embedding is inferred from
only a few contexts, the total number of words avail-
able for training in DN is large enough so θ can
be adapted over a larger number of gradient steps.
We posit that this, in conjunction with knowledge
sharing that considers the entire learning trajectory
rather than just the beginning and end points, re-
sults in higher quality OOV embeddings than those
that can be obtained with MAML.

4 Experiments

4.1 Intrinsic Evaluation

To obtain an intrinsic evaluation of the methods
proposed, we require a dataset that simulates the
natural occurrences of OOV words in a real-world
setting, and defines a notion for evaluating how
close an embedding is to representing an OOV
word’s meaning. Following Hu et al. (2019), we
use the ’Chimera’ dataset for evaluation, a popular
benchmark dataset for OOV words.

The Chimera dataset (Lazaridou et al., 2017) is
constructed specifically to simulate unseen words
occurring naturally in text. Each unseen word is
a chimera, which is a novel concept created by
combining two related but distinct concepts; for
example a gorilla and a bear. In total there are 33
chimeras, generated by first taking a base concept,
called a pivot, and matching this with a compatible
concept by traversing a list of terms ranked by sim-
ilarity to the pivot. In the case of the ’gorilla/bear’
chimera, the pivot is the gorilla and the compatible
term is the bear. Each chimera is then associated
with passages of 2, 4 and 6 sentences, with half
containing the pivot and half containing the com-
patible concept. The occurrences of the pivot and
the compatible term are replaced with a nonce word
that represents the chimera; for example ’mohalk’.

Each passage is then annotated by human sub-
jects with similarity scores between the nonce word
and six different words, called probes, specific to
the chimera. These similarity scores are then aver-
aged across human subjects, resulting in six scores
for each passage indicating the similarity between
the chimera and each probe word.

For each of the 2-shot, 4-shot and 6-shot cases
the chimera’s embedding is inferred given each
sentence (shot) as a context and the pivot’s char-
acter sequence. Following Lazaridou et al. (2017)
we measure the performance of the embeddings
inferred by looking at their cosine similarity to the
probe embeddings and calculating the Spearman
correlation to the similarity judgements by the hu-
man subjects.

Throughout all experiments HiCE is trained on
WikiText-103 (Merity et al., 2017) with pre-trained
embeddings provided by SkipGram (Mikolov et al.,
2013) on the same corpus. Where MAML and
Leap are used, word embeddings are adapted to
the Chimera dataset. Both approaches were imple-
mented using PyTorch (Paszke et al., 2017) and the
code will become publicly available. To implement
MAML we use higher (Grefenstette et al., 2020),
a PyTorch library for higher order optimization
such as backpropagation through gradient descent
updates, as is required for MAML. This allows us
to compute the second order gradients that are re-
quired for MAML, rather than using a first order
approximation. The learning rates α and β for each
of MAML and Leap were chosen based on each al-
gorithm’s stability during training; for MAML we
used α = 5×10−4, β = 1×10−5 and for Leap we
used α = 5× 10−4, β = 1× 10−4. These learning
rates are in line with the publicly available code
of Hu et al. (2019). The number of gradient steps
used for adaptation with MAML was 4, while with
Leap we increased this to 64, taking advantage of
its ability to train tasks over longer horizons.1

Table 1 gives the average Spearman correlations
for HiCE, its combination with MAML as proposed
by Hu et al. (2019), and its combination with Leap
as proposed in this work, for the 2-shot, 4-shot and
6-shot cases. We also include the results for re-
lated works taken from their corresponding papers.
These include fasttext (Bojanowski et al., 2017);
the additive method (a simple averaging of context
word embeddings) (Lazaridou et al., 2017); a la

1The code used in our experiments is available here:
http://github.com/Gordonbuck/ml-oov-we

http://github.com/Gordonbuck/ml-oov-we
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2-shot 4-shot 6-shot
fasttext 0.1775 0.1738 0.1294
additive 0.3376 0.3624 0.4080
a la carte 0.3634 0.3844 0.3941
nonce2vec 0.3320 0.3668 0.3890
HiCE 0.3611 ± 0.0054 0.3882 ± 0.0049 0.4134 ± 0.0043
+MAML 0.3574 ± 0.0058 0.3901 ± 0.0072 0.4169 ± 0.0057
+Leap 0.3695 ± 0.0022 0.4022 ± 0.0043 0.4262 ± 0.0051
pre-trained 0.4173 0.4367 0.4410

Table 1: Average Spearman’s correlations for each k-shot case and method. Resulting of HiCE are given with 95%
confidence intervals. Bold indicates the best results.

carte (a linear transformation-based modification
of the averaging method) (Khodak et al., 2018); and
nonce2vec (a modification of the Word2Vec algo-
rithm for few-shot learning) (Herbelot and Baroni,
2017). We also give the scores obtained when using
the pivot’s pre-trained embedding as the chimera’s
embedding to indicate a ceiling, following Hu et al.
(2019). However, we would expect the OOV em-
bedding to differ from the pivot’s pre-trained em-
bedding, since the semantics of a chimera are a
combination of the pivot and compatible concept.

HiCE+Leap achieves the best results across all
k-shot settings in our experiments. The results for
HiCE, HiCE+MAML and HiCE+Leap are all ob-
tained by averaging the results over 10 different
random seeds, and we give a 95% confidence inter-
val for each. We take this approach to highlight the
known instability of training MAML across ran-
dom seeds (Antoniou et al., 2019), even with no hy-
perparameter changes. Leap consistently performs
better than MAML and with a lower variance; in
all cases, the average Spearman’s correlation for
MAML lies outside of the confidence interval range
given for Leap. We also see that due to MAML’s
instability it can actually lower the performance
of pre-trained HiCE in the 2-shot case. Outside of
HiCE-based methods, a la carte performs best in
the 2- and 4-shot cases, and additive performs best
in the 6-shot case. These scores similarly lie out-
side of confidence interval ranges for HiCE+Leap,
which overall performs best in each case.

Hu et al. (2019) reported 0.3781, 0.4053 and
0.4307 with HiCE+MAML in the in the 2-, 4- and
6-shot cases respectively, but did not report exper-
iments with multiple random seeds. While were
able to obtain similar results for HiCE+MAML in
some of our experiments, they were outside the
confidence intervals we obtained, illustrating the

relative instability in training with MAML (Anto-
niou et al., 2019). The results of Hu et al. (2019)
are also lower than the highest results we obtained
with HiCE+Leap (0.3896, 0.4116 and 0.4395 for
2-, 4- and 6-shot).

4.2 Extrinsic Evaluation

To gauge the quality of the OOV embeddings for
downstream tasks we evaluate their performance
when applied to NER. For this purpose we use the
JNLPBA 2004 Bio-Entity Recognition Task dataset
(Collier and Kim, 2004). We choose this dataset
as the biomedical domain differs significantly from
the domain of Wikipedia that HiCE is pre-trained
on, and contains many OOV technical terms. Hu
et al. (2019) use this dataset also but did not pro-
vide their datasplits; thus. while we were able to
confirm their results, we cannot compare against
them directly.

The JNLPBA dataset is constructed from 2000
abstracts for training and 404 abstracts for testing,
each extracted from a bibliographic database of
biomedical information and hand annotated with 36
classes corresponding to chemical classifications.
These classifications are simplified into 5 classes
for the purpose of the bio-entity recognition task;
protein, DNA, RNA, cell-line and cell-type. In total
there are 18546 training and 3856 test sentences.

Following Hu et al. (2019), HiCE is trained
on the WikiText-103 corpus, and we adapt word
embeddings to the biomedical domain by using
the JNLPBA dataset as a corpus. Contrary to the
Chimera dataset, we consider contexts at the ab-
stract level rather than only the sentence level. We
train different embeddings for OOV words for each
of the 2-shot, 6-shot and 10-shot cases, considering
only those OOV words with 2, 6 or 10 occurrences
or more respectively. In total we infer embeddings
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2-shot 6-shot 10-shot
random 0.7226 0.7206 0.7209
HiCE 0.7116 0.7213 0.7232
+MAML 0.7135 0.7232 0.7269
+Leap 0.7141 0.7256 0.7282 †

Table 2: Micro-averaged F1 score for each of the 2-
shot, 6-shot and 10-shot settings. Bold indicates the
best results and (†) indicates the result is better than
random embeddings at a 0.05 significance level.

for 4643 OOV distinct words (types) in the 2-shot
case, 1310 in the 6-shot case and 702 in the 10-shot
case.2 The contexts used to infer the embedding of
a word are chosen at random from the contexts that
word appears. The inferred embeddings, alongside
the embeddings for in-vocabulary words, are used
as input to train the LSTM-CRF architecture of
Lample et al. (2016).

For each of the k-shot cases a separate test set
is created by subsampling, such that the respective
test set contains only those sentences with an OOV
word whose embeddings has been inferred. This
ensures that the test sets focus on the quality of
the inferred OOV embeddings. For the 2-shot case
there are 2876 test sentences; 2451 for 6-shot; and
2134 for 10-shot. The results for each k-shot setting
are given in Table 2, reported in micro-averaged
F1 score. The results obtained using random OOV
embeddings as input are given as a baseline.

Results are marginally improved with any of
the proposed methods for the 6-shot and 10-shot
cases, with HiCE+Leap producing the best results.
We perform a paired t-test on each pair of results
within a k-shot case. However, we do not find the
differences between methods to be significant, with
only HiCE+Leap in the 10-shot case performing
significantly better than random embeddings, at a
0.05 significance level.

We find that performance increases across all
methods as we use more contexts. However, for
the 2-shot case we find that results are lower than
if random embeddings are used. With fewer con-
texts the quality of the learned OOV embeddings
is naturally lower, and inaccuracies in the embed-
dings add noise which hurts the performance of
the downstream NER tagger. This highlights the
need for a sufficient number of occurrences to effec-
tively learn word embeddings, even with models

2Hu et al. (2019) do not distinguish between different
number of shots/contexts per word in their results.

specifically designed to handle the lack of data,
and that using inaccurate embeddings can lower
the performance of the entire downstream system.
Our findings corroborate contemporary research
which suggests that random embeddings can per-
form comparably to pre-trained and contextual em-
beddings on benchmark tasks (Arora et al., 2020).

4.3 Informative Contexts

Apart from comparing different meta-learning ap-
proaches for word embedding learning, we seek
to find which contexts are invariably most infor-
mative to a word’s meaning. For this purpose, we
return to the Chimera dataset. Considering the 2-
shot case, we rank passages by the performance of
the chimera embeddings inferred from them. That
is, we infer the chimera embeddings, obtain the co-
sine similarities against the probe embeddings, and
calculate the Spearman correlation against the hu-
man scores. We then calculate the pairwise Spear-
man correlation between these rankings across ran-
dom seeds and methods experimented with in this
paper, i.e. HiCE, HiCE with MAML, and HiCE
with Leap. The average Spearman correlation is
0.89 ± 0.0047 for a 95% confidence interval, in-
dicating that the rankings of passages are largely
similar across methods. Thus we conclude that the
contexts which each method finds most useful to
infer a chimera’s meaning are largely invariable.

Ordering passages by their cumulative rank
across methods, we observe that passages which
consistently perform poorly are composed of sen-
tences with more ambiguity and fewer content
words. The top section in table 3 gives the low-
est and highest performing passages as examples.
The lowest performing passage contains little in the
way of content words indicating the meaning of the
chimera ’refrigerator/closet’ besides the presence
of ’freezers’, and the second sentence is highly am-
biguous. Naturally, human annotators would also
struggle to pinpoint the semantic meaning of this
chimera based on the two sentences given. In con-
trast the highest performing passage very clearly
relates to organic produce and cooking, providing
far more hints as to the semantic meaning of the
chimera ’broccoli/spinach’.

We also look at which passages perform best
for a given chimera. The bottom section in ta-
ble 3 gives the lowest and highest performing pas-
sages for the ’drum/tuba’ chimera. We observe
the same trend within the chimera, with the lowest
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chimera probes shot 1 shot 2 score
refrigerator /
closet

cupboard, base-
ment, mixer,
dishwasher,
ladle, boat

23144 security materials
that may adversely affect
hpc components shall not
be stored in the or
freezers

if there is any difference
from the first there are
fewer of those

-0.68

broccoli /
spinach

celery, radish,
grape, salaman-
der, budgie,
pot

all manner of produce fill
the fields including exotic
vegetables like pumpkins
spring onions and as-
paragus

discard any bruised or yel-
low leaves and soak re-
maining leaves in a basin
of cold water with

0.98

drum / tuba bagpipe, har-
monica, whistle,
shotgun, bear,
bouquet

i could nt yet hear the
that told you where to go
on any particular day

is probably at mirage
poker room income from
week he borrowed was
swimming

-0.63

drum / tuba bagpipe, har-
monica, whistle,
shotgun, bear,
bouquet

is there a better way to
start a record or a song
than with a thumpin in-
tro

they add considerably to
the tone of the how-
ever when used on their
low notes

0.91

Table 3: Each section gives a higher and lower performing 2-shot passage with its average Spearman correlation
across all methods and random seeds. The nonce word is replaced by ’ ’.

performing passage consisting of more ambiguous
sentences, while the highest performing passage
contains many content words which hint at the se-
mantics of the chimera, such as ’song’. These two
passages differ greatly in their performance, with
the lowest passage averaging a Spearman correla-
tion of−0.63 while the highest passage achieves an
average of 0.91. However, if we look across meth-
ods the difference in performance for each of these
passages is no higher than 0.2. This suggests that
one of the most important factors to inferring an
OOV word’s embedding is the choice of contexts,
perhaps more so than the meta-learning employed.
To quantify this further, we calculate the Spear-
man correlation between the proportion of content
words in a passage and its score, which we find to
be 0.12±0.0083 for a 95% confidence interval. We
do this by using a standard part-of-speech tagger
(Honnibal and Montani, 2017) on each passage;
taking all nouns, adjectives, verbs and adverbs to
be content words. While the correlation is weak,
it is significant at a 95% confidence interval and
further suggests that context informativeness is a
suitable future area of work.

5 Conclusion

We investigated the use of meta-learning for few-
shot learning of OOV word embeddings. We built

on the work of Hu et al. (2019), formulating OOV
word embedding learning as a few-shot regression
problem and training their proposed architecture
HiCE to predict OOV embeddings given K con-
texts and morphological features. We proposed
the use of Leap as a meta-learning algorithm to
adapt HiCE to a new semantic domain and com-
pared it to the popular MAML as used by Hu et al.
(2019). Experiments on a benchmark dataset show
that Leap is more stable and achieves comparably
higher performance than MAML in the context of
OOV embedding learning. Further experimenta-
tion shows that there is little variation in which
contexts perform well across both random seeds
and meta-learning approaches, and a qualitative
analysis indicates that performance is lower on am-
biguous sentences with fewer content words. Our
findings suggest a future avenue of work which
focuses on the selection of contexts from which
to learn an OOV embedding, such as prioritising
contexts based on a notion of informativeness.
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