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Abstract

We present a locality preserving loss (LPL)
that improves the alignment between vector
space embeddings while separating uncorre-
lated representations. Given two pretrained
embedding manifolds, LPL optimizes a model
to project an embedding and maintain its lo-
cal neighborhood while aligning one manifold
to another. This reduces the overall size of
the dataset required to align the two in tasks
such as crosslingual word alignment. We show
that the LPL-based alignment between input
vector spaces acts as a regularizer, leading to
better and consistent accuracy than the base-
line, especially when the size of the training
set is small. We demonstrate the effective-
ness of LPL-optimized alignment on semantic
text similarity (STS), natural language infer-
ence (SNLI), multi-genre language inference
(MNLI) and cross-lingual word alignment
(CLA) showing consistent improvements, find-
ing up to 16% improvement over our baseline
in lower resource settings.'

1 Introduction

Over the last few years, vector space representa-
tions of words and sentences, extracted from en-
coders trained on a large text corpus, are primary
components to model any natural language pro-
cessing (NLP) task, especially while using neural
or deep learning methods. Neural NLP models
can be initialized with pretrained word embeddings
learned using word2vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014) and fine-tuned sen-
tence encoders like BERT (Devlin et al., 2018) or
RoBERTa (Liu et al., 2019). They show state-of-
the-art performance in a number of tasks from part-
of-speech tagging, named entity recognition, and
machine translation to measuring textual similarity

'Code Source: https://github.com/codehacken/locality-
preservation
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(Wang et al., 2018). BERT’s success has spawned
research dedicated to understanding (Rogers et al.,
2020) and reducing parameters in transformer ar-
chitectures (Lan et al., 2019). Despite these suc-
cesses, supervised transfer learning is not a panacea.
Models based on pretrained word embeddings (for
bilingual induction) or BERT-based models require
a large parallel corpus to train on. Can we reduce
the number of training samples even further?

We approach this problem by proposing a frame-
work that exploits the inherent relationship between
word or sentence representations in their pretrained
manifolds. These relationships help train the model
with fewer samples, since each training sample rep-
resents a group of instances.

We consider three types of tasks: (1) a regres-
sion task such as semantic text similarity; (2) a
classification task (e.g., natural language inference
(NLD)); and (3) vector space alignment, where the
purpose is to learn a mapping between two inde-
pendently trained embeddings (e.g., crosslingual
word alignment) Learning bilingual word embed-
ding models alleviates low resource problems by
aligning embeddings from a source language that
is rich in available text to a target language with
a small corpus with limited vocabulary.” Largely,
recent work focuses on learning a linear mapping
to align two embedding spaces by minimizing the
mean squared error (MSE) between embeddings
of words projected from the source domain and
their counterparts in the target domain (Mikolov
et al., 2013; Ruder et al., 2017). Minimizing MSE
is useful when a large set of translated words (be-
tween source and target languages) is provided, but
the mapping overfits when the parallel corpus is
small or may require non-linear transformations

2Low resource has two interpretations i.e. one where cor-
pus size to generate unsupervised pretrained embeddings is
small and the other where the parallel corpus for alignment is
minimal. We experiment with the later here.
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Figure 1: Quality of alignment with different types of losses. A, B are two words in two word embedding manifolds M
and M. f is the manifold alignment function while N (A) and N} (B) are their respective neighbors in manifold M;. N7 (A)
and N7 (B) are their neighbors in manifold Ms. Figure (a) shows the alignment when trained with a MSE loss. The neighbors
are distributed across the manifold due to overfitting. (b) shows alignment with a locality preserving loss (LPL) that reconstructs
the original manifold in the target domain M> maintaining its local structure.

(Sggaard et al., 2018). In order to reduce overfit-
ting and improve word alignment, we propose an
auxiliary loss function called locality preserving
loss (LPL) that trains the model to align two sets
of word embeddings while maintaining the local
neighborhood structure around words in the source
domain.

With classification and regression tasks where
there are two inputs (e.g., NLI and STS-B), we
show how the alignment between the two input sub-
space acts as regularizer, improving the model’s ac-
curacy on the task with MSE alone and when MSE
and LPL are combined together. LPL achieves this
by augmenting existing text <+ label pairs with
pseudo-pairs constructed from their neighbors.

Specifically, our main contributions are:

e We propose a loss function called locality pre-
serving loss (LPL) to improve vector space
alignment and show how the alignment acts
as a regularizer while performing language
inference and semantic text similarity. LPL
improves correlation or accuracy of linear and
non-linear mapping (deep networks) while ex-
ploiting the inherent geometries of existing
pretrained embedding manifolds to optimize
an alignment model (Table 1a, Figure 3).

We show LPL is flexible and can be optimized
with SGD. Hence, it can be applied to both
deep neural networks and linear transforma-
tions. In contrast, previous cross-lingual word
alignment models that are a linear map be-
tween source and target language, are learned
using singular value decomposition.

We show an increase in correlation on seman-
tic text similarity (STS-B) and accuracy on
SNLI in comparison with the baseline when
the models are trained with small datasets.
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Training with LPL shows up to 16.38%
(90.1% relative), on SNLI up to 8.9% (19.3%
relative) improvement when trained with just
1000 samples (0.002% of the dataset). We
train a crosslingual word alignment model giv-
ing up to 4.1% (13.8% relative) improvement
in comparison to a MSE optimized mapping
while reducing the size of the parallel corpus
required to train the mapping by 40% (3K out
of 5K pairs).

2 Background & Related Work

2.1 Dimensionality Reduction

Manifold learning methods represent these high
dimensional datapoints in a lower dimensional
space by extracting important features from the
data, making it easier to cluster and search for sim-
ilar data points. The methods are broadly cate-
gorized into linear, such as Principal Component
Analysis (PCA), and non-linear algorithms. Non-
linear methods include multi-dimensional scal-
ing (Cox and Cox, 2000, MDS), locally linear em-
bedding (Roweis and Saul, 2000, LLE) and Lapla-
cian eigenmaps (Belkin and Niyogi, 2002, LE). He
and Niyogi (2004) compute the Euclidean distance
between points to construct an adjacency graph and
create a linear map that preserves the neighborhood
structure of each point in the manifold. Another
popular tool to learn manifolds is an autoencoder
where a self-reconstruction loss is used to train a
neural network (Rumelhart et al., 1985). Vincent
et al. (2008) design an autoencoder that is robust
to noise by training it with a noisy input and then
reconstructing the original noise-free input.

In locally linear embedding (LLE) (Roweis and
Saul, 2000), the datapoints are assumed to have
a linear relation with their neighbors. To project
each point, first a reconstruction loss is utilized to



learn the linear relation between a point and their &
neighbors. Then, the linear relation is used to learn
the embeddings in the reduced dimension.>

Wang et al. (2014) extend autoencoders by mod-
ifying the reconstruction loss to use nearest neigh-
bors of data points, leveraging neighborhood rela-
tionships between datapoints from non-linear di-
mension reduction methods like LLE and Lapla-
cian Eigenmaps.

2.2 Manifold Alignment

Benaim and Wolf (2017) utilize a GAN to learn
a unidirectional mapping. The total loss applied
to train the generator is a combination of different
losses, namely, an adversarial loss, a cyclic con-
straint (inspired by Zhu et al. (2017)), MSE and an
additional distance constraint where the distance
between the point and its neighbors in the source
domain are maintained in the target domain. Simi-
larly, Conneau et al. (2017) learn to translate words
without any parallel data with a GAN that opti-
mizes a cross domain similarity scale to resolve the
hubness problem (Dinu et al., 2014).

These methods are the foundation to learn a map-
ping between two lower dimensional spaces (mani-
fold alignment, Figure 1). Wang et al. (2011) pro-
pose a manifold alignment method that preserves
the local similarity between points in the manifold
being transformed and the correspondence between
points that are common to both manifolds. Boucher
et al. (2015) replace the manifold alignment algo-
rithm that uses the nearest neighbor graph with
a low rank alignment. Cui et al. (2014) align two
manifolds without any pairwise data (unsupervised)
by assuming the structure of the lower dimension
manifolds are similar.

Our work is similar to Bollegala et al. (2017)
where the meta-embedding (a common embedding
space) for different vector representations is gener-
ated using a locally linear embedding (LLE) which
preserves the locality. One drawback, though, is
that LLE does not learn a singular functional map-
ping between the source and target vector spaces.
A linear mapping between a word and its neighbor
is learned for each new word. Hence, the meta-
embedding must be retrained every time new words
are added to the vocabulary. Nakashole (2018) pro-
pose NORMA that uses neighborhood sensitive
maps where the neighbors are learned rather than
extracted from the existing embedding space. Simi-

3See Appendix C for an in-depth explanation of LLE.
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lar to NORMA, LPL uses a modified locally linear
representation of each embedding but, unlike it,
LPL uses actual nearest neighbors in order to learn
an embedding. This is important as NNs may not
be present in annotated parallel corpus. Hence, us-
ing NNs of annotated pairs in the corpus in LPL
expands the size of the training dataset. LPL is
optimized with gradient descent and can be easily
added to a deep neural network (as seen in §3.5).

3 Incorporating Locality Preservation
into Task-based Learning

In this section, we describe locality preserving loss,
the assumption underlying the loss function and
objective functions (eq. (2), eq. (3)) that are opti-
mized. The cumulative loss function while training
the model is defined in eq. (4).

3.1 Locality Preservation Criteria

The locality preserving loss (LPL, eq. (2)) is based
on an important assumption about the source mani-
fold: for a pre-defined neighborhood of % points (k
is chosen manually) in the source embedding space
we assume points are “close” to a given point such
that it can be reconstructed using a linear map of
its neighbors. This assumption is similar to that
made in locally linear embedding (Roweis and Saul,
2000).

3.2 Preliminaries

As individual embeddings can represent words
or sentences, we call each individual embedding
a unit. Consider two manifolds—AM® € R™*¢
(source domain) and M* € R™*? (target domain)—
that are vector space representations of units within
each domain. We do not make assumptions on the
methods used to learn each manifold; they may be
different. We also do not assume they share a com-
mon lexical vocabulary. For example, M?® can be
created using a standard distributed representation
method like word2vec (Mikolov et al., 2013) and
consists of English word embeddings while M*
is created using GloVe (Pennington et al., 2014)
and contains Italian embeddings. Let V¢ and V?
be the respective vocabularies (collection of units)
of the two manifolds. Hence V* = {wj ... w}}
and V! = {w! .. w!,} are sets of units in each
vocabulary of size n and m. The distributed
representations of the units in each manifold are
M ={m§..ms}and M' = {m} ... ml }.
While we do not assume that V! and V' must



have common items, we do assume that there is
some set of unit pairs that are connected by some
consistent relationship. Let VP = {w! ... wf}
be the set of the unit pairs; we consider V? a su-
pervised training set (though it could be weakly
supervised, e.g., derived from a parallel corpus).
For example, in crosslingual word alignment this
consistent relationship is whether one word can be
translated as another; in natural language inference,
the relationship is whether one sentence entails the
other (the second must logically follow from the
first). We assume this common set VP is much
smaller than the individual vocabularies (¢ << m
and ¢ << n). The mapping (manifold alignment)
function is f.

In this paper, we experiment with three types
of tasks: cross-lingual word alignment (mapping),
natural language inference (classification), and se-
mantic text similarity (regression). In cross-lingual
word alignment, V* and V' represent the source
and target vocabularies, V? is a bilingual dictio-
nary, and M? and M* are the target and source
manifolds. f with 6y parameters is a linear projec-
tion with a single weight matrix . For NLI, V*
and V¢ are target and source sentences with M*
and M* being their manifolds. f is a 2-layer FFN.

3.3 Locality Preserving Loss (LPL)

We use a mapping function f : M* — M! to
align manifold M*® to M. The exact structure of
f is task-specific: for example, in our experiments
f is a linear function for crosslingual word align-
ment and it is a 2-layer neural network (non-linear
mapping) for NLI. The mapping is optimized using
three loss functions: an orthogonal transform (Xing
etal., 2015) Lorno (constrain W1 = WT); mean
squared error Ly (eq. 1); and locality preserving
loss (LPL) Ly (eq. 2).

The standard loss function to align two mani-
folds is mean squared error (MSE) (Ruder et al.,
2017; Artetxe et al., 2016),

['rznse
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which minimizes the distance between the unit’s
representation in M; (the target manifold) and pro-
jected vector from M. The function f(mf) has
learnable parameters 6 ;. MSE can lead to an opti-
mal alignment when there is a large number of units
in the parallel corpus to train the mapping between
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the two manifolds (Ruder et al., 2017). However,
when the parallel corpus V? is small, the mapping
is prone to overfitting (Glavas et al., 2019).
Locality preserving loss (LPL: eq. 2) optimizes
the mapping f to project a unit together with its
neighbors. For a small neighborhood of & units, the
source representation of unit w; is assumed to be
a linear combination of its source neighbors. We
represent this small neighborhood (of the source
embedding m{ of word wy) with Ny(m$), and
we compute the local linear reconstruction using
Wi;, a learned weight associated with each word
in the neighborhood of the current word, Ny (m).
LPL requires that the projected source embedding
f(m$) be a weighted average of all the projected
vectors of its neighbors f (mj) Formally, for a
particular common item ¢, LPL at ¢ minimizes

2

Wij f(m3) 2

i |t
ﬁ]pl— my; — E

m3EN(m7)

with Ly = me,mﬁevs £fpl. Intuitively, W repre-
sents the relation between a word and its neighbors
in the source domain. We learn it by minimizing
the LLE-inspired loss. For a common ¢ this is

2

WigmS (3)
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with Lyje = > scyp [,fle. The weights W are sub-
ject to the constraint >~ Wi = 1, making the pro-
jected embeddings invariant to scaling (Roweis and
Saul, 2000). We can formalize this with an objec-
tive Lotho = WWT — I. LPL reduces overfitting
because the mapping function f does not simply
learn the mapping between unit embeddings in the
parallel corpus: it also optimizes for a projection
of the unit’s neighbors that are not part of the par-
allel corpus—effectively expanding the size of the
training set by the factor k.

3.4 Model Training with LPL

The total supervised loss becomes:

Esup = Emse(ef) + 5 * ‘Clpl(efu W) + Elle(W)
+ £0rtho(9f> (4)

We introduce a constant 3 to allow control over the
contribution of LPL to the total loss. Although we
minimize total loss (4), shown explicitly with vari-
able dependence, the optimization can be unstable
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Figure 2: Use of alignment loss for the NLI and STS-B
task. The pipeline consists of a 2-layer FFN used to classify
sentence pairs. The output layer is of size 3 to classify the
input into entailment, contradiction and neutral. It has a size
of 1 to generate a continuous value between 0 and 1 for STS-B.
The premise / sentence 1 and hypothesis / sentence 2 subspaces
are aligned using a MSE and LPL loss that are then added
as a concatenated input to train the classifier / regressor. A 0
hyperparameter configured for each label provides the ability
to perform alignment for entailment and contradiction while
performing divergence for neutral input pairs.

as there are two sets of independent parameters W
and 0y representing different relationships between
datapoints. To reduce the instability, we split the
training into two phases. In the first phase, W is
learned by minimizing Ly alone and the weights
are frozen. Then, Ly and Lj, are minimized
while keeping W fixed.

One key difference between our work and
Artetxe et al. (2016) is that they optimize the map-
ping function by taking the singular vector decom-
position (SVD) of the squared loss while we use
gradient descent to find optimal values of 0. As
our experimental results show, while both can be
empirically advantageous, our work allows LPL
to be easily added as just another term in the loss
function. With the exception of the alternating opti-
mization of W, our approach does not need special
optimization updates to be derived. Euclidean dis-
tance between embeddings is used to find NNs.

3.5 Alignment as Regularization

MSE and LPL can be used to align two vector
spaces: in particular, we show that the objectives
can align two subspaces in the same manifold.
When combined with cross entropy loss in a clas-
sification task, this subspace alignment effectively
acts as a regularizer. Figure 2 shows an example
architecture where alignment is used as a regular-
izer for the NLI task. The architecture contains
a two layer FFN used to perform language infer-
ence, i.e., to predict if the given sentence pairs
are entailed, contradictory or neutral. The in-
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put to the network is a pair of sentence vectors.
The initial representations are generated from any
sentence/language encoder, e.g., from BERT. The
source/sentencel/premise embeddings are first pro-
jected to the hypothesis space. The projected vector
is then concatenated with the original pair of em-
beddings and given as input to the network. The
alignment losses (MSE and LLPL) are computed
between the projected premise and original hypoth-
esis embeddings. If the baseline network is opti-
mized with cross entropy (CE) loss to predict label
i, the total loss becomes:

Etotal =7 Z o z‘(‘cfnse + Efpl + ﬁiLle(W)) + CEyi

&)
where v is a hyperparameter that controls the im-
pact of the loss (learning rate). Thus, the loss
(eq. (5)) is an extension of eq. (4) for a classifi-
cation task but without £, Which is not applied
as f is a 2-layer FFN (non-linear mapping) and
the WWT = I constraint for each layer’s weights
cannot be guaranteed. The alignment loss becomes
a vehicle to bias the model based upon our knowl-
edge of the task, forcing a specific behavior on
the network. The behavior can be controlled with
0, which can be a positive or negative value spe-
cific to each label. A positive § optimizes the net-
work to align the embeddings while a negative §
is a divergence loss. In NLI we assign a constant
scalar to all samples with a specific label (i.e., 100
for entailment, 1.0 for contradiction and —5.0 for
neutral). The scalars were set when optimizing
network hyper-parameters. As the optimizer mini-
mizes the loss, a divergence loss tends to —oo; in
practice, we clip the negative loss value at —1.

4 Experiment Results & Analysis

We demonstrate the effectiveness of the locality pre-
serving alignment on three types of tasks: semantic
text similarity (regression), natural language in-
ference (text classification) and crosslingual word
alignment (mapping / regression). In order to com-
pute local neighborhoods, as needed for, e.g., (2),
we build a standard KD-Tree and find the nearest
neighbors using Euclidean distance.

4.1 Semantic Text Similarity (STS)

In semantic text similarity (STS), we use the STS-
B dataset (Cer et al., 2017) that is widely utilized as
a part of the GLUE benchmark (Wang et al., 2018).
The baseline model is the same as Siamese-BERT
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Figure 3: Pearson correlation on semantic text similarity
with STS-B dataset. Locality Preserving Loss (LPL) improves
sentence pair similarity in all data sizes from small (100 sam-
ples or 2% of total data) to 50% of the dataset.

(Reimers and Gurevych, 2019) where sentence em-
beddings are extracted individually using a BERT
model (Devlin et al., 2018). An attached connected
feedforward network (FFN) is trained to predict
a sentence similarity score between 0 and 1 (opti-
mized with squared error loss).*

To analyze the impact of various loss functions,
the BERT model parameters are frozen so that sen-
tence embeddings remain the same and only the
parameters of the FFN are optimized. As described
in §3.4, the baseline model is additionally trained
with a MSE loss that aligns one sentence manifold
to another (m; — ms) and the third model also
trains with LPL. J is set to mimic the normalized
label thus generating the largest loss while aligning
two sentences that are same. The contrastive loss
separates the two sentence embeddings when they
are dissimilar. The maximum margin is set to 0.1.

In order to study the impact on model perfor-
mance when the training data is small, we limit
the sampled training data size to upto 50% of the
original (total dataset size is 5k).> Figure 3 shows
the Pearson correlation between the baseline model
and the same regularizer with MSE and LPL (eq. 4).
As observed, the correlation of models trained with
LPL is higher for every training dataset size. The
relative increase in correlation is in the range of
10.83 to 90.1%. We note here that the correlation
cannot be compared with the original BERT model
as we do not fine-tune the entire network but only
the FFN in order to measure the improvements with
the addition of LPL.

Model Performance on SNLI (different losses)

Loss Combinations
— Baseline
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Figure 4: Accuracy of alignment regularization on SNLI.
The graph shows the accuracy, averaged across 3 runs, for
differing size of training samples up to 5% of the training
dataset only (total: 500K).

Model Performance on MNLI Matched (different losses)
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Figure 5: Accuracy of alignment regularization on MNLI
dataset with a varying number of matched in-genre samples,
up to 5% of the training dataset only (total: 300K samples).

4.2 Natural Language Inference

To test the effectiveness of alignment as a regular-
izer, a 2-layer FFN is used as shown in Figure 2;
we measure the change in accuracy with respect to
this baseline. An additional single layer network is
utilized to perform the alignment with premise and
hypothesis spaces. We experiment with the impact
of the loss function on two datasets: the Stanford
natural language inference (SNLI) (Bowman et al.,
2015a) and the multigenre natural language infer-
ence dataset (MNLI) (Williams et al., 2018). SNLI
consists of 500K sentence pairs while MNLI con-
tains about 433k pairs. The MNLI dataset contains
two test datasets. The matched dataset contains
sentences that are sampled from the same genres
as the training samples while mismatched samples
test the models accuracy for out of genre text.
Figures 4, 5, and 6 show the accuracy of the mod-
els when optimized with a standard cross-entropy
loss (baseline) and with MSE and LPL combined.
The accuracy is measured when the size of the

4 Appendix A.1 provides details about the dataset and FFN.
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MSEM;:;IE(EF — Trans. Optim. | EN-IT | EN-DE | EN-FI | EN-ES Trans. Desc. Backprop?
(Shigeto et al., S1,S2 | Linear | 41.53 | 43.07 | 31.04 | 33.73 Embedding
2015) SO normalization Yes
MSE (Artetxe et al., . (unit / center)
2016) S0,S2 | Linear | 3927 | 41.87 | 30.62 | 31.40 9l Whitening No
MSE: IS (Smith . Orthogonal )
etal. 2017) S0,S2,85 | Linear | 41.53 | 43.07 | 31.04 | 33.73 ) Mapping Yes
MSE: ENZ(O‘?Q)”“" SO0-S5 | Linear | 44.00 | 4427 | 3294 | 36.53 S3 | Re-weighting No
5 De-
: 4 e
Mol | so-ss | Linear | 4527 | 4413 | 3294 | 3660 5 Whitening o
d Dimensionality
MSE S0, S2 SGD | 39.67 | 4547 | 2942 | 353 S5 Roduetion No
LPL+MSE: CSLS | S0, S2 SGD | 4333 | 4607 | 3350 | 35.13

(a) We compare our method (bottom row: LPL) on cross-lingual word alignment.
In comparison to Artetxe et al. (2018), we use cross-domain similarity local scaling
(CSLS) (Conneau et al., 2017) to retrieve the translated word. The method column
lists different losses/methods used to learn the projection: NN is nearest neigh-
bor search while IS is inverted softmax. Many mapping methods use additional

transformation steps.

(b) A map of various transformations that
can be performed as described in Artetxe
et al. (2018). We indicate which steps
can easily be combined with backpropa-
gation.

Table 1: The accuracy of the locality preserving method. Table 1a lists 6 high-performing supervised/semi-supervised baselines;
table 1b lists the transformations used in these methods and how easily those transformations can be used with back-propagation.
Notice that our method uses transformations amenable with back-propagation. In Table 1a, the first five baselines rely on
algebraic updates while our method works nicely with SGD: we include the sixth row (MSE via SGD) to illustrate the comparative

performance gain we obtain.

Model Performance on MNLI Mismatched (different losses)

Loss Combinations

— Baseline
58|+ Baseline + MSE + LPL

55.3¢

53.14
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48 48.57
46 46.72

441 44.73

1 2 3 4 5
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Figure 6: Accuracy of alignment regularization on MNLI
dataset with a varying number of mismatched out-of-genre
samples, up to 5% of the training dataset only (total: 300K
samples).

training set is reduced.’ The reduced datasets are
created by randomly sampling the required number
from the entire dataset. The graphs show that an
alignment loss consistently boosts accuracy of the
model with respect to the baseline. The difference
in accuracy (in Figure 4) is larger initially, it re-
duces as the training set becomes larger. This is be-
cause we calculate the neighbors for each premise
from the training dataset only rather than any ex-
ternal text like Wikipedia (i.e., generate embed-
dings for Wikipedia sentences and then use them
as neighbors). As the training size increases LPL
has diminishing returns, as the neighbors tend to

> Model accuracy using MSE and MSE + LPL with 100%
of the training data for STS-B is provided in Appendix A.1
and A.2 for SNLI/ MNLI.
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be part of the training pairs themselves.

4.3 Crosslingual Word Alignment

The cross lingual word alignment dataset is from
Dinu et al. (2014). The dataset is extracted from
the Europarl corpus and consists of word pairs split
into training (5k pairs) and test (1.5k pairs) respec-
tively.® From the SK word pairs available for train-
ing only 3K pairs are used to train the model with
LPL and an additional 150 pairs are used as the
validation set (in case of Finnish 2.5K pairs are
used). This is a reduced set in comparison to the
models in Table 1a that are trained with all pairs.*

Compared to previous methods that look at ex-
plicit mapping of points between the two spaces,
LPL tries to maintain the relations between words
and their neighbors in the source domain while pro-
jecting them into the target domain. Along with
the mapping methods in Table 1a, previous meth-
ods also apply additional pre/post processing tran-
forms on the word embeddings as documented in
Artetxe et al. (2018) (described in Table 1b). Cross-
domain similarity local scaling (CSLS) (Conneau
et al., 2017) is used to retrieve the translated word.
Table 1a shows the accuracy of our approach in
comparison to other methods.

The accuracy of our proposed approach is bet-
ter or comparable to previous methods that use
similar numbers of transforms. It is similar to
Artetxe et al. (2018) while having fewer preprocess-

Shttp://opus.lingfil.uu.se/



Model Performance on STS-B (different losses)

Loss Combinations

—e— Baseline + MSE
Baseline + MSE + LPL

30 28,75

Pearson Correlation

% Sampled from Training Data

Figure 7: Pearson correlation of alignment regularization
on STS-B up to 50% of the training dataset only (total: 4700
samples). The models are trained with MSE and MSE + LPL.

ing steps. This is because we choose to optimize
using gradient descent as compared to a matrix fac-
torization approach. Thus, our implementation of
Artetxe et al. (2016) (MSE Loss only) under per-
forms in comparison to the original baseline while
giving improvements with LPL. Gradient descent
has been adopted in this case because the loss func-
tion can be easily adopted by any neural network
architecture in the future as compared to matrix
factorization methods that will force architectures
to use a two-step training process.

4.4 Ablation Study

Although we introduce LPL in this paper, models in
84.1 and §4.2 are both trained with a combination
of MSE and LPL. This raises the question: how
much does LPL contribute to the overall perfor-
mance of the model? We analyze this question by
training a model separately on the STS-B dataset
with MSE only and then comparing it with the prior
model trained with the combined losses. In Figure
7, we see that the model trained with MSE + LPL
performs better with a maximum of 20.2% relative
improvement (sampled dataset size is 30%) over
one trained with MSE alone. Additionally when the
dataset size is small (less than 10% of the training
data), it is observed that variation in accuracy is
smaller for the model with the combined loss.

Additionally, we show the results of ablation
studies on SNLI, MNLI (matched) and MNLI (mis-
matched). As seen in figures 8, 9, 10, LPL’s con-
tribution to the model’s accuracy in these tasks is
lower in comparison to its contribution STS-B, but
the variation in accuracy is smaller with it. Thus,
we can conclude that LPL makes the model’s per-
formance consistent across experiments.

Model Performance on SNLI (different losses)

Loss Combinations
— Baseline + MSE
Baseline + MSE + LPL

64 64.9¢

62 62.29
60 60.6

58

Accuracy

56

55.24
54 /

52

50

0.5 1 15 2 2.5 3 3.5

% Sampled from Training Data

Figure 8: Accuracy of alignment regularization on SNLI up
to 5% of the training dataset only. The models are trained
with MSE and MSE + LPL.

Model Performance on MNLI Matched (different losses)

Loss Combinations

58| —*Baseline + MSE
Baseline + MSE + LPL

56

54

52

50

Accuracy

8,

46

44

42

40

1 2 3 4 5

% Sampled from Training Data

Figure 9: Accuracy of alignment regularization on STS-B
up to 5% of the training dataset only. The models are trained
with MSE and MSE + LPL.

4.5 Discussion

Table 2 shows the 2 nearest neighbors for a premise-
hypothesis pair (P, H) taken from each classifier,
i.e., baseline (B), baseline + MSE (BM), and base-
line + MSE + LPL (BML) after they are trained
(the dataset size is small at just 2000 samples).
Since NLI is a reasoning task, the sentence pair
representations ideally will cluster around a pat-
tern that represents Entailment or Contradiction or
Neutral. Instead what is observed is that when the
samples are limited, sentence pair representations
have NN that are syntactically similar (NNs 1 and
2) for the baseline model. The predicted labels for
the NN pairs are not clustered into entailment but
are a combination of all 3. This problem is reduced
for models trained with BM and BML (NNs 3 and
4 for BM, NNs 5 and 6 for BML). The predicted
labels of the NN are clustered into entailment only.
The sentence pair representations cluster contain-
ing a single label suggest the models are better at
extracting a pattern for entailment (and improv-
ing the model’s ability to reason). This semantic
clustering of representations can be attributed to
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Model Performance on MNLI Mismatched (different losses)
Loss Combinations

Z+ Baseline + MSE

Baseline + MSE + LPL 56:95

55.08

50.81

Accuracy

2 3

% Sampled from Training Data

Figure 10: Accuracy of alignment regularization on STS-B
up to 5% of the training dataset only. The models are trained
with MSE and MSE + LPL.

Model Type | ID Sentence
P Family members standing outside a home.
H A family is standing outside.
1P People standing outside of a building.
B 1H | One person is sitting inside.

2P Airline workers standing under a plane.
2H | People are standing under the plane.
3P A group of four children dancing in a backyard.

BM 3H A group of children are outside.
4P People standing outside of a building.
4H | One person is sitting inside.
5P A family doing a picnic in the park.

BML SH | A family is eating outside.
6P Airline workers standing under a plane.
6H | People are standing under the plane.

Table 2: Nearest neighbors extracted from SNLI classi-
fier for a sentence pair representation. P and H are the
sample premise and hypothesis pair. The original label is En-
tailment. (nP, nH) are the nearest neighbors of this sentence
pair’s representation from the penultimate layer of each clas-
sifier, i.e., baseline (B), baseline + MSE (BM), and baseline
+MSE + LPL (BML). 1 & 2 are nearest neighbors from the
baseline, 3 & 4 are when trained with MSE only and 5 & 6 are
when trained with MSE and LPL.

the initial alignment (or divergence) between the
premise and hypothesis. Also, we observe that a
model regularized with MSE and LPL are more
likely to reach optimal parameters consistently.”

5 Conclusion

In this paper, we introduce a new locality preserv-
ing loss (LPL) function that learns a linear relation
between the given word and its neighbors and then
utilizes it to learn a mapping for the neighborhood
words that are not a part of the word pairs (paral-
lel corpus). Also, we show how the results of the
method are comparable to current supervised mod-
els while requiring a reduced set of word pairs to
train on. The models are trained with SGD as com-
pared to others that learn with SVD. Additionally,
the same alignment loss is applied as a regularizer
in a classification task (NLI) and a regression task

"Check appendix section B for more details.
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(STS-B) to demonstrate how it can improve the
accuracy of the model over the baseline.

Broader Impact

In this section, we discuss the potential benefits
and risks of using a locality preserving loss in the
NLP tasks described in this paper.

Benefits of LPL. The main motivation of our
work is to train models with limited data and show-
case the effectiveness of locality preserving loss.
When the dataset is small, models overfit the train-
ing data unable to generalize and exacerbate lan-
guage biases. The main benefit of using LPL is
that it maintains relationships between a datapoint
and its neighbor in the target embedding space,
restricting the model from overfitting.

Risks of Utilizing LPL. LPL’s ability to main-
tain relationships between points that are present
in the source manifold after projection, can also be
arisk. The weights W in equation 3 are learned by
constructing a linear map between a datapoint and
its neighbors using embeddings extracted from a
pretrained model. Thus, any biased relationships
prevalent in the pretrained model will become of
a component of LPL and ultimately a part of the
downstream fine-tuned model too. Hence it is nec-
essary to evaluate the pretrained model thoroughly
prior its use with LP L.
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Appendix
A Experimentation Details

This section discusses in detail the various exper-
iments conducted in this paper. For each set of
experiments, we provide an overview of the dataset
used, a description of the dataset (with samples),
information about the training set and list of any
hyper-parameters that are optimized. The com-
puting infrastructure used is a single Tesla P100-
SXM2 GPU to train a single model. The GPU con-
sumption is driven by the base text / word encoding
model. GPU usage while training the feedforward
network (FFN) is limited. In practice, once the em-
beddings are extracted from an language encoder
(like BERT), multiple FFs can be simultaneously
trained on a single GPU. Additional GPUs are used
to scale experiments while training models with
different loss function combinations and dataset
sizes.

A.1 Semantic Text Similarity (STS)

In order to understand the impact of Locality Pre-
serving Loss (LPL) while finetuning a model to
measure how similar two sentences are, we use
the STS-B dataset (Cer et al., 2017) that is widely
utilized as a part of the GLUE benchmark (Wang
etal., 2018). STS-B consists of a total of 8628 pairs
of sentences of which 5749 are for training, 1500
pairs are part of the dev set (for hyper-parameter
tuning) and 1379 are test pairs. The labels are a
continuous value between 0 — 5 where 0 represents
sentences that are not similar while 5 represents
sentences are that have the same syntax and mean-
ing. While training various models, the labels are
normalized between 0 and 1. Table 3 shows a few
examples of sentence pairs in the dataset.

Sentence 1 Sentence 2 Label

A plane is taking off. | Anair planeistaking | 5.0
off.

A man is spreading | A man is spreading | 3.8

shreded cheese on a | shredded cheese on

pizza. an uncooked pizza.

Three men are play- | Two men are playing | 2.6

ing chess. chess.

Table 3: Sample sentence pairs from STS-B (Cer et al., 2017)
dataset with their corresponding labels. The labels represent
subjective human judgements of how similar the sentences are.
It is a continuous variable.

A BERT model (Devlin et al., 2018) with an ad-
ditional 2-layer feedforward network (FFN) (F,,)
predicts the similarity score between sentences and
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is optimized with MSE (between predicted score
and label). The FFN consists of 2 hidden layers,
each of size 1024. The baseline model (trained only
with MSE) has a concatenated input (as shown in
Figure 2 - baseline). While using an additional
alignment loss (MSE or LPL), an additional single
hidden layer FFN (A,,) is attached that aligns the
two sentence manifolds. The aligned projection
of sentence 1 is then concatenated as input to P,
(as shown in Figure 2 - baseline with alignment).
Although this increases the number of parameters
in the P, (by 768 x 1024) for models trained with
alignment, we experimented with increasing the
baseline model with the same number of hidden
layer parameters and found the baseline’s perfor-
mance to decrease or remain constant. Hence, the
size of the layers is maintained at 1024.

A.1.1 Crossvalidation

Figure 3 shows the pearson correlation between the
predicted and actual similarity score. For each sam-
ple size on the X-axis, 3-fold cross validation is per-
formed. Each time cross-validation is performed,
different training pairs are randomly sampled (with-
out replacement) from the complete dataset and the
seed for initializing weights of each layer in the
FFN is changed. To maintain consistency across
experiments, the seed is maintained constant across
trained models.

A.1.2 Hyperparameters

As described in §3.5, the hyperparameters include
~ and J. -y is a learning rate that defines how much
of the alignment loss functions contribute to the
overall loss. In practice, v is set to 1.0.

Equation 5 uses LPL as a regularizer. We imple-
ment this as a contrastive divergence loss.

%
* 'Crnse

Lld =7 Z max(—1.0, 0,

7
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The above equations change Ly and Lyp, to
a contrastive divergence (max margin) loss. We
set the maximum margin to 0.1. The margin is
manually tuned after optimizing it on validation
pairs. The overall learning rate to train the model
is 0.0001. The optimizer is RMSProp.



Model Performance on STS-B (different losses)

Loss Combinations
—— Baseline
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Figure 11: Pearson correlation on semantic text similarity
with STS-B dataset for training sample size greater than 50%
of the original dataset.

4 is the label specific hyper-parameter that de-
fines how much loss can be contributed by a spe-
cific label. As the STS label is a continuous vari-
able, 0 is equal to the label value. This forces
sentence pairs with scores that are 5.0 to have max-
imum loss while pairs with scores that tend towards
0 create a negative squared loss (this moves the em-
beddings apart) limited up-to the maximum margin.

A.1.3 Performance on Larger Dataset

In Figure 11, we see that the LPL + MSE loss
model performs better than the baseline when
dataset size is increased. The lowest bound in
performance is higher than the upper bound of
the baseline. LPLs improvement over the base-
line when the entire dataset is used shows that as
a whole STS-B may benefit from LPL irrespective
of the dataset size. This is because LPL explicitly
models a relationship between sentences present in
a given sample text’s neighborhood, ensuring that
those relationships are maintained while computing
the similarity between a given sentence pair.

A.2 Natural Language Inference (NLI)

§4.2 discusses in detail the experiments with nat-
ural language inference. Experiments are con-
ducted on SNLI (Bowman et al., 2015b) and MNLI
(Williams et al., 2017) datasets. Stanford’s natural
language inference dataset contains sentence pairs
consisting of a premise and hypothesis. The model
predicts if the hypothesis entails or contradicts the
premise or if they have a neutral relationship (i.e.,
the two sentences are not related). The dataset con-
tains 500K training pairs, 10K pairs in the dev set
and 10K pairs of sentences for testing. Table 4
shows a few sentence pairs from the dataset.
MNLI (Williams et al., 2017) is an extension of
the SNLI dataset where the sentences are from mul-
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Premise

Hypothesis

Label

A person on a
horse jumps over
a broken down air-
plane.

A person is at a
diner, ordering an
omelette.

Contradiction

A person on a | A person is out- | Entailment
horse jumps over | doors, on a horse.

a broken down air-

plane.

Children smiling | They are smiling at | Neutral
and waving at | their parents

camera

Table 4: Samples from the SNLI (Bowman et al., 2015b)
dataset. Each pair consists of two sentences and a label with
one of three values entailment, neutral, contradiction.

tiple genres such as letters promoting non-profit
organizations, government reports and documents
as well as fictional books. This expands the vari-
ation in language used in sentences, reducing the
model’s ability to memorize sentence pairs and
their labels. Table 5 contains example pairs from
the MNLI training data.

Premise Hypothesis Label
Conceptually cream | Product and | Neutral
skimming has two ba- | geography are

sic dimensions - prod- | what make cream

uct and geography. skimming work.

How do you know? | This information | Entailment
All this is their infor- | belongs to them.

mation again.

Table 5: Samples from the SNLI (Bowman et al., 2015b)
dataset. Each pair consists of two sentences and label with
one of three values entailment, neutral, contradiction

The model’s architecture is described in Figure 2.
The sentence embeddings are extracted from BERT
(Devlin et al., 2018) and the NLI classification lay-
ers are trained separately. For experiments in §4.2,
the trained model is a 2-layer FNN, each hidden
layer with a size of 4096. The activation function
is a Leaky RELU. Similar to the experiments in
appendix A.1.1, we perform 3-fold crossvalidation
where the training dataset is resampled and the re-
sults presented in §4.2 are an average over these 3
runs.

A.2.1 Hyperparameters

The models are trained with a learning rate of
0.0001 and the optimizer is RMSProp. In order
to train the model with LPL and MSE, § is con-
figured. In comparison to a continuous ¢§ variable
used in the STS task, in NLI, the § is constant for
each label. For each dataset, the § parameter is
set after manual testing on the dev set. Sentence
pairs that have a neutral label tend to be sentences



Model Performance on SNLI (different losses)

Loss Combinations
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Figure 12: Accuracy of alignment regularization on SNLI.
The graph shows the accuracy, averaged across 3 runs, for
differing size of training samples from 5% to 100% of the
training dataset only (total: 500K).

Model Performance on MNLI Matched (different losses)

Loss Combinations

—— Bassline
Baseline + MSE + LPL

Accuracy

100
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Figure 13: Accuracy of alignment regularization on MNLI
dataset with a varying number of matched in-genre samples,
from 5% to 100% of the training dataset only (total: 300K
samples).

that are dissimilar. The semantic difference can be
based on differing subjects, predicates or objects
in the sentence, the content / topic or even genre
of the sentence. Hence while training the model,
these projections are separated with the alignment
loss (and have a negative §) rather than converged.

From our initial experiments, we found that
lower 0 on entailment and contradiction yielded no
change in accuracy from baseline. The accuracy
increases when a higher positive § scalar multiple
is attached to entailment & contradiction, and a
negative scalar is multiplied to the loss generated
for neutral label samples.

Dataset Entailment | Neutral Contradiction
SNLI 100.0 -5.0 0.0
MNLI 250.0 1.0 —10.0

Table 6: Samples from the SNLI (Bowman et al., 2015b)
dataset. Each pair consists of two sentences and label with
one of three values entailment, neutral, contradiction
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Model Performance on MNLI Mismatched (different losses)

Loss Combinations

—=5; Baseline
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Figure 14: Accuracy of alignment regularization on MNLI
dataset with a varying number of mismatched out-of-genre
samples, from 5% to 100% of the training dataset only (total:
300K samples).

A.2.2 Performance on Larger Dataset

Apart from better accuracy when the training
dataset is small, in Figures 12,13, and 14, we ob-
serve the accuracy of models trained with the align-
ment loss using MSE alone and another in combi-
nation with LPL converge as the number of train-
ing samples increases. This happens because of
the way k-nearest neighbor (k-NN) is computed
for each embedding in the source domain. We
use BERT to generate the embedding of each sen-
tence in the SNLI and MNLI dataset. Because
BERT itself is trained on millions of sentences from
Wikipedia and Book Corpus, searching for k-NN
embeddings for each sentence from this dataset (for
each sentence in the training sample) is computa-
tionally difficult. In order to make the k-NN search
tractable, neighbors are extracted from the dataset
itself (500K sentences in SNLI and 300K sentences
in MNLI). This impacts the overall improvement in
accuracy using LPL as it is not a perfect reconstruc-
tion of the datapoint (using its neighbors). Initially
when the dataset is small the neighbors are unique.
As the dataset size increases, the unique neighbors
reduce and are subsumed by the overall supervised
dataset (hence MSE begins to perform better). The
impact of LPL reduces as the number of unique
neighbors decreases and the entire dataset is used
to train the model. This is unlikely to happen when
NNs from a larger unrelated text corpus reconstruct
local manifolds.

A.3 Crosslingual Word Alignment

For experiments with cross lingual word alignment,
we use the parallel corpus from Dinu et al. (2014).
Table 7 compares our method with other methods
such as Xing et al. (2015) and Faruqui and Dyer
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Figure 15: Standard deviation in performance. The graphs show the standard deviation in performance over 3 runs when
the SNLI training dataset size varies In each case, the model trained with LPL + MSE + task loss has the least variation in
performance, while the model trained with task loss + MSE or the task loss alone having a higher variance in performance.
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Figure 16: Standard deviation in pearson correlation. The graphs show the standard deviation in correlation over 3 runs
when the STS-B training dataset size varies. In each case, the model trained with LPL + MSE + task loss has the least variation
in performance, while the model trained with task loss + MSE or the task loss alone having a higher variance in performance.
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(2014) and extends results in Table 1a. The dataset
contains word pairs collected from the Europarl cor-
pus. The bilingual dictionary has 5000 word pairs
for training and 1500 word pairs for testing and
evaluation. The language pairs in the dictionary
include English <+ Italian, English <+ German, En-
glish <+ Finnish and English <+ Spanish. Figure 18
shows the pipeline to perform cross-lingual word
alignment.

Method EN-IT
Mikolov et al. (2013) 34.93
Xing et al. (2015) 36.87
Faruqui and Dyer (2014) 37.80
Artetxe et al. (2016) 39.27
Locality Preserving Loss (Our Work) 43.33

Table 7: Accuracy of various models predicting word trans-
lated from English to Italian.

Once the initial pretrained word vectors are se-
lected, preprocessing can be applied. Preprocess-
ing functions include unit normalization, whiten-
ing and z-normalization ( Table 1b). Ruder et al.
(2019) observe that deep neural networks are per-
form word alignment poorly in comparison to a
linear tranformation (Y = W X). The linear trans-
formation matrix W is learned by minimizing the
sum of squared loss between Y and W .X. Opti-
mal parameters for W are learned by minimizing
the loss with singular value decomposition (SVD)
(Artetxe et al., 2016).

Locality Preserving Alignment combines prepro-
cessing functions and training W. Also, parame-
ters of W are learned using SGD, showcasing that
LPL can be added to both linear and non-linear
transformations. To find the translated word in the
target embedding space, multiple inference mecha-
nism are available such as nearest neighbor (NN),
inverted softmax (Smith et al., 2017), and cross-
domain similarity scaling (CSLS) (Conneau et al.,
2017). We use CSLS to find the translated word in
the target language.

In our experiments, we use original pretrained
word embeddings obtained from the dataset (Dinu
etal., 2014). The models are trained with a learning
rate of 0.001. The /3 parameter is the learning rate
specific to LPL (from equation 4) and is set to
0.7 and is manually tuned against the validation
dataset.

Table 8 shows the neighbors for the word “win-
dows” from the source embedding (English) and
the target embedding (Italian). Compared to previ-
ous methods that look at explicit mapping of points
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Manifold Nearest Neighbors of “Windows”

Source (M;) nt4, 95/98/nt, nt/2000, nt/2000/xp,
windows98

Target (M->) winzozz, mac, nt, 0sx, msdos

Aligned (f(M.)) | winzozz, nt4, ntfs, mac, 95/98/nt, nt,
0sx, msdos

Table 8: Neighbors of the word “windows” in source domain
(English), target domain (Italian) and the combined vector
space with both English & Italian vocabulary. The Aligned
neighborhood contains a mix of the English and Italian words,
not just the translation.

between the two spaces, LPL tries to maintain the
relations between words and their neighbors in the
source domain while projecting them into the target
domain.

In this example, the word “nt/2000” is not a part
of the supervised pairs available and will not have
an explicit projection in the target domain to be
optimized without a locality preserving loss.

B Measuring Performance Consistency

Figure 16 and 17 chart the variation in evaluated
performance on each model on tasks STS-B and
MNLI when the size of the training dataset varies.
In each case, a model optimized with the task spe-
cific loss has higher variation in performance than
models that are optimized with additional losses
MSE and LPL. The variation for baseline models
are higher when the size of the dataset is small. Fig-
ure 15 shows the variation in test accuracy across
runs on the SNLI dataset. The variation in accuracy
is highest for the baseline model when the size of
the dataset is small. For example, when the base-
line is trained with 1000 samples (0.002% of the
dataset), the variation in accuracy is 8.73%. Simi-
larly, when the baseline is trained with 50 samples
(0.01% of the dataset) in STS-B task, the variation
in accuracy is 6.02% (11.63% when sample size
is 250). The variation in accuracy reduces as the
sample size increases.

This occurs because when the subset of data ran-
domly sampled, the quality of instances sampled
has a large impact on the final performance of the
model. Thus, measuring the consistency of the
model’s performance over multiple runs is a vital
evaluation criteria (as much as the accuracy itself).

Hence, training the model with an alignment
loss, i.e., with locality preservation (L,sc and L),
empirically guarantees that the model reaches near-
optimal performance when the size of the super-
vised set is limited and that it has a narrow bound
as compared to the baseline model trained without
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Figure 17: Standard deviation in accuracy of alignment on MNLI. The graph shows standard deviation in accuracy when
size of the training sample set differs (total: 300K) for the baseline, baseline + MSE and baseline + MSE + LPL models:
LPL yields more consistently optimal systems. (a) Standard deviation in accuracy when tested with in in-genre sentence pairs
(matched MNLI) (b) Standard deviation in accuracy when tested with in out-of-genre sentence pairs (mismatched MNLI)
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Figure 18: Crosslingual Word Alignment Pipeline (CLA). As described in Ruder et al. (2019), the CLA pipeline includes
choosing an existing set of pretrained vectors that can be preprocessed. Table 1b contains a list of preprocessing functions that

can be applied. Artetxe et al. (2018) evaluate each preprocessing method in detail. Alignment involves learning the transform
matrix W and inference involves finding the translated word.
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Original Dimension Reduced Dimension

Figure 19: Locally Linear Embedding (LLE). The red
point is a vector X; that is reconstructed by a plane of its
neighbors in blue. This linear plane is functionally represented
by W € R™** for n points, each having k neighbors.

them. While performing these experiments, not
only are the vocabularies randomly initialized, but
also parameters too, making the model less depen-
dent on how the training pairs are sampled from
the dataset.

C Locally Linear Embedding

Our work is inspired from locally linear embedding
(LLE) (Roweis and Saul, 2000). As discussed in
§2.1, in LLE, the datapoints are assumed to have
a linear relation with their neighbors (Figure 19).
The reduced dimension projection of each vector is
learned through a two step process: (a) Learn the
linear relationship through a reconstruction loss (b)
Use relation to learn low dimension representation.
Assume each point in the manifold has &k neighbors
N;. The reconstruction loss is:

2

ﬁreconstruct = Z X’L - Z Winj )

’ JEN;

®)

7

where X; is the datapoint and the X; represents
each neighbor. An additional constraint is imposed
on the weights (3, j Wi;; = 1) to make the trans-
form scale invariant.

In (8) the weights W are an N x K matrix in
a dataset of N points (i.e., each point has its own
weights). Given a learned W from (8), we learn Y;
(a projection for X;) by minimizing the following:

)

2
Z Yi_ZWinj ,

7 jGNi

Y; is typically with reduced dimensions.
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