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Abstract

Although BERT based relation classification
(RC) models have achieved significant im-
provements over the traditional deep learn-
ing models, it seems that no consensus can
be reached on what is the optimal architec-
ture, since there are many design choices avail-
able. In this work, we design a comprehen-
sive search space for BERT based RC model-
s and employ a modified version of efficien-
t neural architecture search (ENAS) method
to automatically discover the design choices
mentioned above. Experiments on eight bench-
mark RC tasks show that our method is effi-
cient and effective in finding better architec-
tures than the baseline BERT based RC mod-
els. Ablation study demonstrates the necessity
of our search space design and the effective-
ness of our search method. We also show that
our framework can also apply to other entity
related tasks like coreference resolution and s-
pan based named entity recognition (NER).

1 Introduction

The task of relation classification (RC) is to pre-
dict semantic relations between pairs of entities
inside a context. It is an important NLP task s-
ince it serves as an intermediate step in variety of
NLP applications. There are many works that apply
deep neural networks (DNN) to relation classifica-
tion (Socher et al., 2012; Zeng et al., 2014; Shen
and Huang, 2016). With the rise of pre-trained
language models (PLMs) (Devlin et al., 2018), a
series of literature have incorporated PLMs such
as BERT in RC tasks (Baldini Soares et al., 2019;
Wu and He, 2019; Eberts and Ulges, 2019; Peng
et al., 2019), and shows significant improvements
over the traditional DNN models.

Despite great success, there is yet no consensus
reached on how to represent the entity pair and their
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contextual sentence for a BERT based RC model.
First, Baldini Soares et al. (2019) and Peng et al.
(2019) use different entity identification methods.
Second, Baldini Soares et al. (2019) and Wu and
He (2019) use different aggregation methods of en-
tity representations and contexts. Third, choosing
which features should be considered for the classfi-
cation layer should also be determined (Eberts and
Ulges, 2019). In addition, previous literature does
not consider the interactions between the feature
vectors.

In this work, we experiment on making the de-
sign choices in the BERT based RC model automat-
ically, so that one can obtain an architecture that
better suits the task at hand (Figure 1). Through-
out this work, we will refer to our framework as
AutoRC, which includes our search space and
search method. Firstly, a comprehensive search
space for the design choices that should be con-
sidered in a BERT based RC model is established.
Second, to navigate on our search space, we em-
ploy reinforcement learning (RL) strategy follow-
ing ENAS (Pham et al., 2018). That is, a controller
generates new RC architectures, receives rewards,
and updates its policy via policy gradient method.
To stabilize and improve the search results, three
non-trivial modifications to ENAS are proposed: a)
heterogeneous parameter sharing, which is to share
parameters more deeply than ENAS if the mod-
ules play similar role, and not to share if not; b)
maintain multiple copies of the shared parameters
which will be drawn randomly to the child models;
c) search warm-ups, which is to generate and up-
date child models without updating the controller
at the beginning of the search stage.

Experiments on eight benchmark RC tasks show
that our method can outperform the standard BERT
based RC models. Transfer of the learned archi-
tecture across different tasks is investigated, which
shows the transferred architectures can outperform
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the baseline models but cannot outperform the ar-
chitecture learned on this task. Ablation study of
the search space demonstrates the validity of the
search space design. In addition, ablation studies
on the search space show the validity of our search
space design, and experiments show that our pro-
posed modifications to ENAS are effective. We
also show our framework can work effectively on
other entity related tasks like coreference resolution
and span based NER.

The contributions of the paper can be summa-
rized as:

• We develop a comprehensive search space and
improve the BERT based RC models, in which
alternatives of the input formats and the ag-
gregation layers are applicable to other tasks.

• As far as we know, we are the first to introduce
NAS for BERT based models. Our proposed
methods for improving search results are ef-
fective and universally applicable.

2 Related Work

Our work is closely related to the literature on neu-
ral architecture search (NAS). The field of NAS
has attracted a lot of attentions in the recent years.
The goal is to find automatic mechanisms for gen-
erating new neural architectures to replace conven-
tional handcrafted ones, or automatically deciding
optimal design choices instead of manually tuning
(Bergstra et al., 2011). Recently, it has been widely
applied to computer vision tasks, such as image
classification (Cai et al., 2018), semantic segmen-
tation (Liu et al., 2019), object detection (Ghiasi
et al., 2019), super-resolution (Ahn et al., 2018),
etc. However, NAS is less well studied in the field
of natural language processing (NLP), especially
in information extraction (IE). Recent works (Zoph
and Le, 2017; Pham et al., 2018; Liu et al., 2018)
search new recurrent cells for the language model-
ing (LM) tasks. The evolved transformer (So et al.,
2019) employs an evolution-based search algorith-
m to generate better transformer architectures for
machine translation tasks. Zhu et al. (2021) de-
velops a novel search space which incorporates
cross-sentence attention mechanism and are able
to find novel architectures for natural language un-
derstanding (NLU) tasks. In this work, we design
a method that incorporate NAS to improve BERT
based relation extraction models.

Figure 1: General architecture for a RC model.

Our work is closely related to literatures on re-
lation extraction, especially the recent ones that
take advantages of the pre-trained language models
(PLMs). In terms of entity span identification, Bal-
dini Soares et al. (2019) argues that adding entity
markers to the input tokens works best, while Peng
et al. (2019) shows that some RC tasks are in fa-
vor of replace entity mentions with special tokens.
For feature selection, Baldini Soares et al. (2019)
shows that aggregating the entity representations
via start pooling works best across a panel of R-
C tasks. Meanwhile, Wu and He (2019) chooses
average pooling for entity features. In addition,
it argues that incorporating the representation of
the [CLS] token is beneficial. Eberts and Ulges
(2019) shows that the context between two entities
serves as a strong signal on some RC task. Zhu
(2020) shows that pre-training with entity spans
can benefit the downstream tasks. In this work,
we provide a more comprehensive overview of the
design choices in BERT based RC models, and
provide a solution for efficient and task-specific
architecture discovery, thus alleviating NLP practi-
tioner in the field of RE from manually or simple
heuristic model tuning.

3 Search space for RC model

An overall architecture design for a RC model is
shown in Figure 1. Following its bottom-up work-
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(a) standard input

(b) entity markers

(c) entity tokens

Figure 2: How to make changes to the input sequence
for entity span identification.

Figure 3: An example of the entity positional encod-
ing.

flow, we will define the search space for AutoRC.

3.1 Formal definition of task
In this paper, we focus on learning mappings from
relation statements to relation representations. For-
mally, let x = [x0, ..., xn] be a sequence of tokens,
and entity 1 (e1) and entity 2 (e2) to be the entity
mentions, which is depicted at the bottom of Fig-
ure 1. The position of ei in x is denoted by the
start and end position, si = (esi , e

e
i ). A relation

statement is a triple r = (x, e1, e2). Our goal is to
learn a function fθ that maps the relation statemen-
t to a fixed-length vector hr = fθ(r) ∈ Rd that
represents the relation expressed in r.

Note that the two entities divide the sentence
into five parts, e1 and e2 as entity mentions, and
three contextual pieces, denoted as c0, c1 and c2.

3.2 Entity span identification
In this work, we employ BERT (Devlin et al., 2018)
as the encoder for the input sentences. The BERT
encoder may need to distinguish the entity men-
tions from the context sentence to properly model
the semantic representations of a relation statement.
We present three different options for getting infor-
mation about the entity spans s1 and s2 into our
BERT encoder, which are depicted in Figure 2.

standard, that is, not to make any change to the
input sentence (Figure 2(a)).

entity markers. We add special tokens at the
start and end of the entities to inform BERT where
the two entities are in the sentence, as depict-
ed by Figure 2(b). Formally, the sentence x
becomes [[CLS], x0...[E1]...[/E1]...[E2]...[/E2]
...xn, [SEP ]].

entity tokens. This approach (Figure 2(c))
replaces the entity mentions in the sentence
with special tokens. Formally, x becomes
[[CLS]...[ENTITY − 1]...[ENTITY −
2]...[SEP ]].

3.3 Entity positional encoding

To make up for the standard input’s lack of entity
identification, or to further address the position of
entities, one can add special entity positional en-
coding accompany input sequence x. As is shown
in Figure 3, for entity 1, the entity positional encod-
ing will be the distance to entity 1’s starting token.
1

Now there are two design choices. First is
whether to use entity positional encoding at all.
Second, as is shown in Figure 1 if using entity po-
sitional encoding, do we add this extra embedding
to the embedding layer of the BERT (denoted as
add to embedding), or do we concatenate this em-
bedding to the output of BERT encoder (denoted
as concat to output)?

3.4 Pooling layer

How to aggregate the entities’ and contexts’ hidden
representations into fixed length feature vectors,
i.e., what kind of poolers are used becomes the core
part of the RC model architecture. In this work,
we investigate 5 different poolers: average pooling
(avg pool), max pooling (denoted as max pool),
self-attention pooling (denoted as self attn pool),
dynamic routing pooling (dr pool) (Gong et al.,
2018), and start pooling (start pool), which is to
use the reprsentation of the starting token as in
Baldini Soares et al. (2019).

3.5 Output features

To select appropriate features for classifying rela-
tion types, there are many design choices. First,
whether the two entity vectors should be used as
features. Second, whether each contextual piece

1Entity positional encoding corresponds to two (one for
either entity) entity positional embedding modules in the RC
model, and they are randomly initialized and fine-tuned during
BERT fine-tuning.
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(c0, c1, c2) should be added as features (Eberts and
Ulges, 2019; Wu and He, 2019).

We notice that the literature does not consider
the interactions of the features from different parts
of the sentence, which proves to be useful in oth-
er tasks such as natural language inference (NLI)
(Chen et al., 2016). Here, we consider the interac-
tion between the two entities, and their interactions
with contextual pieces. The interaction can be dot
product (denoted as dot) or absolute difference (de-
noted as minus) between two feature vectors.

3.6 Search space
Now we are ready to define the search space for-
mally. The search space is as follows:

• entity span identification = entity markers, en-
tity tokens, standard;

• how to use entity positional embedding = null,
add to embedding, concat to output;

• poolers for entity or contextual piece =
avg pool, max pool, self attn pool, dr pool,
start pool;

• whether to use the representation of entity ei
= True, False, where i = 1, 2;

• whether to use the representation of context
ci = True, False, where i = 0, 1, 2;

• Interaction between the two entities = dot, mi-
nus, null, where null means no interaction;

• Interaction between entity and contextual
piece ci = dot, minus, null, where null means
no interaction, and i = 0, 1, 2.

Our search space contains 1.64e+8 combination-
s of design choices, which makes manually fine-
tuning or random search impractical.

4 Search method

In this section, we first formally formulate the prob-
lem of architecture search with reinforcement learn-
ing. Then, , we discuss the search algorithm based
on policy gradient. At the last part, we discuss our
modifications to stabilize the search outputs.

4.1 Problem formulation
Given a search space M of neural architectures,
and a dataset split into train set Dtrain and Dvalid,
we aim to find the best architecture m∗ ∈M that

Figure 4: An illustration of the RL mechanism for ar-
chitecture search.

maximizes the expected reward E[RDvalid
(m)] on

the validation set Dvalid, i.e.,

m∗ = arg max
m∈M

E[RDvalid
(m)]. (1)

Figure 4 shows the reinforcement learning frame-
work used to solve Eq 1 by continuously sampling
architectures m ∈ M and evaluating the reward
(performance score)R on the validation set Dvalid.
First, the recurrent network generates a network de-
scription m ∈M that corresponds to a RC model.
Then, the generated model m is trained on Dtrain
and tested on the validation set Dvalid. The test
result is taken as a reward signal R to update the
controller.

4.2 Search and evaluation
The whole procedure for model search can be di-
vided into the search phase and evaluation phase.
The search phase updates the shared parameters
and the parameters for the controller in an inter-
leaving manner, while the evaluation phase obtains
multiple top-ranked models from the controller and
train them till convergence on the task dataset for
proper evaluations of the learned architectures.

Parameter sharing. In order to avoid training
from scratch to obtain reward signals, parameter
sharing is applied. The same operator is re-used
for a child model if it is chosen. Specific to our
architecture, the BERT encoder and the final classi-
fier are shared for all child models. We denote the
collection of all the parameters shared as Φ.

Search phase. Now we describe the interleav-
ing optimization procedure. First, an architecture is
sampled by the controller, and its network parame-
ters are initialized with Φ. It is trained for nc steps
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(which is usually a small integer), during which
Φ is updated. Then, the reward of this model is
obtained on Dvalid. With n reward signals receive,
Θ is updated using policy gradients following RE-
INFORCE (Williams, 1992):

∇ΘĴ(Θ) =
1

n

n∑
i=1

∇Θ log π(ai,Θ)(R(Θ)− b),

(2)
where b denotes a moving average of the past re-
wards and it is used to reduce the variance of gra-
dient approximation. In this work, we find n = 1
already works quite well. Repeating this interleav-
ing optimization procedure for N times till the con-
troller is well trained, then we generate k candidate
architectures, evaluate them using the shared pa-
rameters, and then select the top-ranked ke models
for architecture evaluation.

Evaluation phase. In this phase, the top-ranked
models are trained with the whole train set, and
validated on the dev set to select the best check-
point for prediction on the test set. Note that the
shared parameters Φ are discarded in this phase,
and the learned architecture is trained from scratch.
To fully evaluate each architecture, we run a grid
search for the optimal hyper-parameters including
learning rate, batch size and warm-up steps. After
the optimal combination of hyper-parameters is s-
elected, the model is run several times to ensure
replication.

4.3 Improving search
Now we propose a few methods to stabilize the
search results and improve the search performance.

Heterogeneous parameter sharing. First, the
reward signals directly relies on the parameter shar-
ing mechanism, thus we should think deeper into
how to design proper parameter sharing strategies
for RC model search. Parameter sharing in ENAS
is unconditional. Note that to much or too little
parameter sharing can generate un-reliable reward
signals, guiding the controller to wrong directions.
Thus based on our extensive experiments, we now
present our parameter sharing strategies, which we
will call heterogeneous parameter sharing, since
our idea is to share parameters among modules
that plays similar roles in the model architectures.
The details are as follows: (a) first, note that the
entity span identification method entity tokens sig-
nificantly alter the original sentence, thus, it is nat-
ural for it to use a different BERT encoder in the
child models. (b) since entities and contexts play

quite different roles in the RC tasks, the aggregators
for entities and contexts will not share parameters.
Note that start pooler and dr pooler have a com-
mon component, which is a linear layer followed
by a non-linear module, thus the linear layer will
be shared in these two aggregators for entities or
for contexts. However, we will use the linear layer
of the BERT pooler to initialize all the linear layers
of start pooler and dr pooler.

Multiple copies of shared parameters. Note
that all child models have a BERT encoder and a
classifier layer, thus parameters in these modules
may over-fit quickly. Thus, during search training,
we maintain multiple copies of these modules, and
each time we initialize a child model, a copy of
BERT encoder and classifier layer will be randomly
selected from shared parameters Φ. After updating,
these copies will be stored back to Φ.

Search warm-ups At the beginning of training,
the shared parameters are not trained, thus reward
signals generated are unreliable. Thus, at the first
few epochs, the controller will generate child mod-
els to train on the dataset, but it will not be updated.

5 Experiments

Due to resource limitations, we assign up to 2 N-
VIDIA V100 GPU cards to each tasks.

5.1 Datasets

We run experiments on 8 different benchmark
datasets, semeval10 (Hendrickx et al., 2009),2 ta-
cred (Zhang et al., 2017), kbp37 (Zhang and Wang,
2015), wiki80 (Han et al., 2019), deft2020 (Spala
et al., 2019), i2b2 (zlem et al., 2011), ddi (Herrero-
Zazo et al., 2013), chemprot (Krallinger et al.,
2017). These tasks are from various domains and
are different in the respects of dataset sizes, sen-
tence length, entity mention length, etc, to demon-
strate that our method is robust for various RC tasks.
Detailed descriptions and statistics are provided in
the Appendix.

5.2 Search protocol

During search phase, the interleaving optimization
process is run 100 epochs. Throughout this work,
we use the base uncased version of BERT (De-
vlin et al., 2018) as the sentence encoder, and its

2This dataset does not establish a default split for devel-
opment, so for this work we adopt the same train/dev split
with that provided by OpenNRE (Han et al., 2019). Thus, we
cannot adopt the reported results for semeval10 on Table 1 of
Baldini Soares et al. (2019).
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parameters are fine-tuned to better adjust to down-
stream tasks. During search, 4 copies of BERT
model checkpoints are maintained, 2 for method
entity tokens and 2 for the other two entity span
identifiers, so each time we initialize a child model,
a BERT checkpoint is randomly selected and its
parameters can be updated. If the entity position
embedding is concatenated after the BERT output,
its size is set to be 12.

During search, each child model is trained with
4 batches of training data and evaluated on a single
batch of valid data, and the evaluation batch size is
4 times the training batch size. The learning rate
for the controller is set at 1e-4, and the learning
rate and batch size for the sampled architectures
are manually tuned to obtain better search results.
During search, the number of warm-up steps for
the BERT encoders is set to be equal to 0.8 of a
epoch, and the warm-up steps for search is set to
be 1.5 epochs.

5.3 Architecture evaluation protocol

In this work, we differentiate between a NAS
method’s performance and that of a learned mod-
el. We obtain the former by running architecture
search 5 times. The best learned model’s perfor-
mance will be regarded as the NAS method’s per-
formance in each run. The best learned model in
each search is also run for 10 times.

To make our results more reproducible, each
learned model or each baseline model is trained
for 10 times, and the mean and variance of the
performance will be reported. And for evaluating
the search method, after the search phase, 30 mod-
el architectures are sampled from the trained con-
troller, and they are ranked via their performance
on the valid data when they are initialized using the
shared parameters. Then the top-ranked 5 models
are trained from scratch till convergence on the w-
hole training data of the task to formally evaluate
their performances. The best learned model’s per-
formance of a search run is regarded as the search
method’s performance. In this work, we will re-
port the mean and standard deviation of the search
method performances in 5 independent runs.

To compare our methods with random search,
for each task, we randomly samples 10 different
models with a randomly initialized controller, since
the GPU time for training 10 models is guaranteed
to be larger than an entire search and evaluation
process described above.

To thoroughly evaluate a learned model or a base-
line model, we run a random search of 10 times on
the following space for the optimal combination of
the following key hyper-parameters:

• learning rate = 1e-4, 5e-5, 2e-5, 1e-5;

• training batch size = 128, 64, 32;

• warm-up steps = 0.8, 1.0 of the number of
steps in an epoch.

The hyper-params for the baseline models are re-
ported in the Appendix.

5.4 Baseline models

In this work, we select two strong baselines for
comparison. The first one is BERT-entity, the best
model from Baldini Soares et al. (2019). The sec-
ond is R-BERT by Wu and He (2019). BERT-
entity and R-BERT are implemented by Open-
NRE (Han et al., 2019). The two models are special
cases in our search space. The baseline models also
have to go through the above reproducibility pro-
tocols. We will not compare with traditional deep-
learning based model in the pre-BERT era, since
BERT-entity significantly outperforms them.3

5.5 Results on Benchmark datasets

The results on the 8 benchmarks RC datasets are re-
ported in Table 1. We report both the performance
of the search methods and the performance of the
best model learned on each task using AutoRC.
For all eight tasks, AutoRC successfully obtains
higher average scores than the baseline models. In
addition, we find that AutoRC outperforms naive
ENAS and random search and its results are more
stable. In addition, we can see that the best learned
model outperforms the baseline models significant-
ly. One observation can be made is that the test
results of the search architectures are consistently
stable than the baseline, which also validates that
our method are efficient in finding a task-specific
model for the task at hand.

Figure 5, 6 and 7 report the best searched ar-
chitectures for the deft2020, i2b2 and kbp37 tasks.
We can see that learned architectures can be quite

3This work only considers the effects of architecture de-
sign, thus some of the SOTAs may not provide fair comparison.
KnowBert (Peters et al., 2019) explicitly incorporates external
KGs. Tao et al. (2019) take advantage of syntactic priors. Be-
fore submission, we run the REDN (Li and Tian, 2020) model
(by using their code and re-implement by our self), but the
results are not comparable to the results in their paper.
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Model semeval10 tacred kbp37 wiki80 deft2020 i2b2 ddi chemprot
R-BERT 88.19±0.234 69.63±0.178 64.15±0.285 85.38±0.158 60.12±0.875 81.88±0.547 75.73±0.786 66.77±0.336

BERT-entity 88.35±0.159 69.97 ± 0.198 64.20±0.273 85.35±0.141 60.19±0.723 81.94±0.691 75.66±0.712 66.86±0.393
random search 87.61±0.316 69.15±0.376 63.90±0.516 83.46±0.378 58.19±1.968 81.33±1.364 74.23±0.653 66.04±0.873
naive ENAS 88.23±0.256 69.98±0.267 64.25±0.412 85.38±0.286 61.57±0.727 82.18±0.632 75.57±0.598 66.94±0.453

AutoRC 88.53±0.212 70.06±0.242 64.32±0.414 85.46±0.143 62.87±0.632 82.76±0.587 75.72±0.532 67.15±0.367
ARsemeval10 88.89±0.165 - - - - - - -
ARtacred - 70.87±0.167 - - - - - -
ARkbp37 - - 64.96±0.185 85.63±0.175 - 81.87±0.778 75.58±0.704 -
ARwiki80 - - 64.58±0.169 85.98±0.134 - 82.32±0.604 75.89±0.633 -
ARdeft2020 - - - - 63.82±0.593 - - -
ARi2b2 - - 64.43±0.166 85.46±0.164 - 83.59±0.478 76.05±0.658 -
ARddi - - 64.37±0.172 85.39±0.159 - 82.92±0.454 76.73±0.475 -

ARchemprot - - - - - 67.95±0.283

Table 1: Test results for eight relation classification tasks. The performance metric is micro F1 for all tasks except
for deft2020 which uses macro F1. Results from the baseline model are obtained with the help of OpenNRE (Han
et al., 2019).

Figure 5: ARdeft2020, the best learned architecture on
deft2020.

Figure 6: ARi2b2, the best learned architecture on
i2b2.

different, thus validating the necessity of task speci-
ficity. The learned models are different in the fol-
lowing three aspects. First, ARdeft2020 choose to
replace entity mentions with entity tokens. We hy-
pothesis that in deft-2020, the entities are often
quite long, thus replacing entity mentions with en-
tity tokens is beneficial for the model to understand

Figure 7: ARkbp37, the best learned architecture on
kbp37.

the contexts’ structural patterns. Second, note that
ARdeft2020 uses start pool to aggregate context
piece c0, which is the representation of [CLS] to-
ken. In addition, it includes the representation of
context c1, which is also used in ARkbp37. Third,
ARdeft2020 incorporates the interaction between
context c0 and the two entities, while ARi2b2 and
ARkbp37 include the interaction between the two
entities. Differences in the learned architectures
for different tasks indicate the necessity of task spe-
cific architectures, which is challenging without
the help of NAS. We believe there are two aspects
that can affect the learned models. First, different
domains have different contexts, which may lead
to different models. Second, the formulation of
data. For example, in deft-2020, some extended
definitions of scientific concepts are annotated as
entities. Thus, the avg entity mention length (18.5)
is quite different from other tasks (2.3 in ”ddi”).

In Table 1, we also study how does an archi-
tecture learned on one task performs on another.
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Search space deft2020 i2b2
M 63.82 ± 0.593 83.59 ± 0.478
M1 63.45 ± 0.698 83.22 ± 0.514
M2 62.31 ± 0.423 82.68 ± 0.483
M3 61.78 ± 0.893 82.35 ± 0.558

BERT-entity 60.19 ± 0.723 81.94 ± 0.691

Table 2: Results of ablation study on the search space.

Note that when evaluated on a different task, an ar-
chitecture’s hyper-parameters are tuned again, fol-
lowing the procedure described in subsection 5.3.
The architecture learned on kbp37, which is an
open-domain dataset, ARkbp37, transfer well on
wiki80. But it does not perform well on the two
tasks of medical domain, i2b2 and ddi. However,
the learned architectures learned on i2b2 and ddi
transfer well on each other and perform compara-
bly well. The above results demonstrate that the
learned models have certain ability for task trans-
fer, but its suitability is significantly affected by the
domains of the tasks.

5.6 Ablation study on the search space
We further investigate the specific contributions
by the different components of the search space.
For this purpose, we create three smaller search
space. The first one, denoted asM1, which does
not allow any interactions among entity features
and context features. The second one,M2 further
reduceM1 by limiting that the pooling operation
available is the start pooling operation. The third
one, M3, further forbid contextual features. If
further limit the entity span identification method
to be entity markers, the search space is reduced to
the baseline BERT-entity model. The search and
evaluation protocols on the reduced search space
strictly follow the previous subsections.

Ablation study for the search space is done on
deft2020 and i2b2. Results are reported in Table 2.
For deft2020, alternating the method for span iden-
tification provides significant performance gain on
deft2020, and interaction among features is also im-
portant. For i2b2, the most significant performance
drop occurs when the pooling operations are limit-
ed, indicating that even for powerful bi-directional
context encoder like BERT, considering different
pooling operations are beneficial.

5.7 Ablations on the modifications for search
method

In this subsection, we will show that our modi-
fications to the search method, i.e., the naive E-

Search Method deft2020 i2b2
naive ENAS 61.57 ± 0.727 82.18 ± 0.632
AutoRC 62.87 ± 0.632 82.76 ± 0.587
AutoRC1 62.38 ± 0.689 82.42 ± 0.616
AutoRC2 62.53 ± 0.672 82.56 ± 0.595
AutoRC3 62.49 ± 0.708 82.61 ± 0.614

Table 3: Ablation study on the search methods.

Method OntoNotes CoNLL04
SpanBERT 85.3 -

SpERT - 88.94
AutoRC 86.1 89.87

Table 4: Experiments on the coreference resolution
and span based NER.

NAS, are indeed effective and necessary. Here we
use AutoRC to denote our method, which is the
combination of ENAS and our proposed modifi-
cations. We now experiment on three variations
to AutoRC. First, AutoRC1 drops heterogeneous
parameter sharing, that is, all input formats share
the same BERT encoder, and all context and all
entity representations share the same aggregators.
The second variant, AutoRC2, is to maintain sin-
gle copies of shared weights. The third variant,
AutoRC3, is the one that drops search warm-ups.

The average search performance, which is the
average score of the best learned model at each
search run, and their standard deviations are report-
ed on Table 3. From the results, dropping any of
three strategies we propose results in performance
drop and increased variance in results. And chang-
ing the parameter sharing strategies cause the most
significant performance drops on both tasks. The
above results demonstrate that our proposed modifi-
cations make the reward signal during search more
reliable, thus resulting in better searched architec-
tures.

5.8 Applications to other entity related tasks
In Table 4, we apply ourAutoRC framework to the
other two entity related tasks, i.e., coreference reso-
lution and span based NER. AutoRC can directly
apply to coreference resolution since it essentially
asks the model to determine whether an expression
refers to an entity. It can also be applied to span
based NER since it asks the model to determine
whether a span in the sentence is an entity.

We experiment on the OntoNotes coreference
resolution benchmark (Pradhan et al., 2012). The
metric is MUC F1 and we choose the state-of-the-
art (SOTA) SpanBERT (Joshi et al., 2019) as base-
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line. The results show that our AutoRC frame-
work can effectively improve the performances of
the SpanBERT checkpoint.

We experiment on the NER task of CoNLL04
(Roth and tau Yih, 2004), which uses entity level
F1 as metric. Eberts and Ulges (2020) provides a
SOTA baseline. The results show that performance
improves via AutoRC.

6 Conclusion

In this work, we first construct a comprehensive
search space to include many import design choic-
es for a BERT based RC model. Then we design
an efficient search method with the help of RL
to navigate on this search space. To improve the
search results, parameter sharing strategies differ-
ent from ENAS are designed. To avoid over-fitting,
we maintain multiple copies of shared weights dur-
ing search. To stabilize the reward signal, search
warm-ups are applied. Experiments on eight bench-
mark RC tasks show that our method can outperfor-
m the standard BERT based RC model significantly.
Ablation study shows our search space design and
proposed modifications are effective.
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Dataset # labels Train Dev Test sent length Metrics
semeval2010 19 6508 1494 2718 19.09 micro F1

tacred 42 75,050 25,764 18,660 36.2 micro F1
kbp37 37 15917 1724 3405 31.09 micro F1
wiki80 80 40320 10080 5600 24.93 micro F1

deft2020 6 16727 963 1139 72.11 macro F1
i2b2 8 2496 624 6293 24.33 micro F1
ddi 5 18779 7244 5761 45.03 micro F1

chemprot 6 19460 11820 16943 49.69 micro F1

Table 5: Overview of datasets in experiments.

Wiki80 (denoted as wiki80) This dataset (Han
et al., 2019) is derived from FewRel (Han et al.,
2018), a large scale few-shot dataset. Since Wiki80
only has a train/val split, we randomly split the
train set into a train set and val set (with 8:2 ratio),
and treat the original validation set as the test set.

KBP-37 (Zhang and Wang, 2015) (denoted as
kbp37). This dataset is a revision of MIML-RE
annotation dataset, provided by Gabor Angeli et al.
(2014). They use both the 2010 and 2013 KBP of-
ficial document collections, as well as a July 2013
dump of Wikipedia as the text corpus for annota-
tion.

DEFT-2020 Subtask 3 (denoted as deft2020)
This dataset also serves as the task 6 of SemEval
2020 shared tasks. This RC task have to overcome
longer contexts, longer entity mentions, and more
imbalanced relation types. (Spala et al., 2019)

i2b2 2010 (denoted as i2b2) shared task collec-
tion consists of 170 medical documents for training
and 256 documents for testing, which is the subset
of the original dataset (zlem et al., 2011).

ChemProt (denoted as chemprot) consists of
1,820 PubMed abstracts with chemical-protein in-
teractions annotated by domain experts and was
used in the BioCreative VI text mining chemical-
protein interactions shared task (Krallinger et al.,
2017) 4.

DDI extraction 2013 corpus (denoted as ddi) is a
collection of 792 texts selected from the DrugBank
database and other 233 Medline abstracts (Herrero-
Zazo et al., 2013).5

B Hyper-params for models on different
tasks

Now we report the hyper-parameters for the base-
line models and the learned models (for architec-
ture evaluation phase). The main hyper-parameters

4https://biocreative.bioinformatics.udel.edu/news/corpora/
5http://labda.inf.uc3m.es/ddicorpus

Dataset model lr bsz warm-up
semeval10 R-BERT 2e-5 64 0.8

BERT-entity 5e-5 64 1.0
ARsemeval10 1e-5 64 0.8

tacred R-BERT 1e-4 128 0.8
BERT-entity 5e-5 128 0.8
ARtacred 5e-5 128 0.8

kbp37 R-BERT 1e-5 64 0.8
BERT-entity 2e-5 64 0.8
ARkbp37 5e-5 64 1.0

wiki80 R-BERT 5e-5 128 0.8
BERT-entity 2e-5 64 1.0
ARwiki80 2e-5 64 1.0

deft2020 R-BERT 1e-4 64 0.8
BERT-entity 5e-5 64 1.0
ARdeft2020 1e-4 64 0.8

i2b2 R-BERT 2e-5 32 0.8
BERT-entity 5e-5 32 0.8
ARi2b2 1e-5 32 0.8

ddi R-BERT 5e-5 64 0.8
BERT-entity 2e-5 32 0.8
ARddi 5e-5 64 1.0

chemprot R-BERT 5e-5 64 0.8
BERT-entity 1e-5 128 0.8
ARchemprot 5e-5 64 1.0

Table 6

are learning rate (lr), batch size (bsz) and warm-
up steps (warm-up) for finetuning. Warm-up is
reported as the proportion of steps in one epoch.
One common hyper-parameter is the max sequence
length, which is set as 256.


