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Abstract

It is reported that grammatical information
is useful for machine translation (MT) task.
However, the annotation of grammatical infor-
mation requires the highly human resources.
Furthermore, it is not trivial to adapt grammat-
ical information to MT since grammatical an-
notation usually adapts tokenization standards
which might not be suitable to capture the re-
lation of two languages, and the use of sub-
word tokenization, e.g., Byte-Pair-Encoding,
to alleviate out-of-vocabulary problem might
not be compatible with those annotations. In
this work, we propose two methods to explic-
itly incorporate grammatical information with-
out supervising annotation; first, latent phrase
structure is induced in an unsupervised fashion
from a multi-head attention mechanism; sec-
ond, the induced phrase structures in encoder
and decoder are synchronized so that they are
compatible with each other using constraints
during training. We demonstrate that our ap-
proach produces better performance and ex-
plainability in two tasks, translation and align-
ment tasks without extra resources. Although
we could not obtain the high quality phrase
structure in constituency parsing when evalu-
ated monolingually, we find that the induced
phrase structures enhance the explainability of
translation through the synchronization con-
straint.

1 Introduction

Although machine translation (MT) has achieved
improved performance using neural machine trans-
lation (NMT), the translation qualities for distant
languages are still poor (Johnson et al., 2017). As a
way to tackle the problem, statistical MT (SMT) in-
corporates synchronous grammar to achieve more
linguistically accurate translations, in which com-
plex structural relations between source and tar-
get languages are expressed using phrase structure

(Wong et al., 2005). The synchronous grammar ex-
presses the complex relationships between source
and target languages and incorporates phrase struc-
ture to enable more linguistically accurate transla-
tion. A similar idea could be employed for NMT
to achieve improved performance on those distant
language pairs. However, grammatical informa-
tion annotation demands high human resources. In
addition, such grammatical annotation is done on
word-level granularities, which might not be the
best tokenization for MT tasks due by language
mismatch or out-of-vocabulary problem, and often
sub-word tokenization, e.g., Byte-Pair-Encoding
(BPE) (Sennrich et al., 2016), is employed to alle-
viate the problem. As a result, it is difficult to in-
corporate grammatical information into NMT that
handle multiple languages simultaneously.

Recently, there have been researches on unsu-
pervised learning of phrase structure without rely-
ing on human annotations. Although these phrase
structures learned in an unsupervised fashion are
very close to the human annotation (Shen et al.,
2018a,c), there exists no model which incorporates
phrase structures as latent information to improve
the performance and explainability of translation.

In this work, we introduce an approach to incor-
porate the phrase structure explicitly into Trans-
former (Vaswani et al., 2017). The approach can
split into two steps; first, latent phrase structures
are induced in an unsupervised fashion for the
source and target sides (Shen et al., 2018a); sec-
ond, the two induced latent phrase structures are
synchronously agreed with each other through an
attention mechanism (Deguchi et al., 2021). Exper-
iments on German-English and Japanese-English
show that our synchronous latent structures have
achieved better performance on translation and
alignment tasks. We also show that the induced
phrase structures and synchronous structures can
enhance the explainability of translation through
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our detailed analysis in word alignment task.

2 Related Work

2.1 NMT with Supervised Tree Structure

In the previous work, it is reported that supervised
phrase structures (Eriguchi et al., 2017; Nguyen
et al., 2020) and dependency structures (Ma et al.,
2019; Deguchi et al., 2019) can help the perfor-
mance of MT. However, these approaches require
an annotated corpus of syntactic structures. In ad-
dition, such syntactic annotation is done on word-
level granularities, which might not be the best
tokenization for MT tasks due by language mis-
match or out-of-vocabulary problem, and often
BPE (Sennrich et al., 2016), is employed to al-
leviate the problem. However, the application of
BPE to grammatical information might require a
different approach for each language.

2.2 Latent Grammar Induction with Neural
Machine Translation

Shen et al. (2018a) introduce the concept called
”syntactic distance” which represents the syntac-
tic relation of word pairs. Similarly, Shen et al.
(2018c) introduce ordered neurons which allows
to learn long-term or short-term information by a
novel gating mechanism and activation function.
Kim et al. (2019) apply amortized variational in-
ference for recurrent neural network grammar to
learn the phrase structures in an unsupervised fash-
ion. Wang et al. (2019) add an extra constraint to
the multi-head self-attention mechanism in order
to encourage the attention heads to follow phrase
structures. Shen et al. (2020) introduce the con-
strained multi-head self-attention mechanism that
allows to induct phrase and dependency structure
at the same time.

These works successfully learn to induce phrase
structure from language modeling task without ex-
tra linguistic resources. It is described in (Htut
et al., 2019) that translation task is a conditional lan-
guage modeling task with many supervisory signals
and is suitable for deriving phrase structure. Un-
fortunately, despite grammatical information helps
the understanding model work, previous work has
not explicitly used induced phrase structures.

2.3 Transformer NMT

We employ the Transformer (Vaswani et al., 2017)
as our base model, which is an encoder-decoder
model that relies on an attention mechanism for

computing the contextual representations of source
and target text. Both the encoder and decoder are
composed of multiple layers, each of which in-
cludes a multi-head attention (MHA) and a feed-
forward sub-layer. To compute the MHA output,
three inputs, query Q, key K, and value V are pro-
jected into N different sub-spaces, namely heads,
with each output computed in each subspace, then,
projected back to the original space after aggrega-
tion:

Q̂1:N = QWQ, K̂
1:N = KWK , V̂

1:N = VWV

(1)

Hn = AV̂n = softmax

(
Q̂nK̂n

>

√
dh

)
V̂n (2)

MHA(Q̂, K̂, V̂) = concat
(
H1, ...,HN

)
WO

(3)
where WQ ∈ Rdo×dh , WK ∈ Rdo×dh , WV ∈
Rdo×dh , WO ∈ Rdo×dh are projection parameters.
do is dimension of original space. dh = do/N is
the dimension of subspace. The value A denotes
the attention probability for the jth target token
overall the ith source token, computed by nth head.

In the translation task, Transformer is frequently
used for its translation accuracy and efficiency.
Transformer decoder employs the autoregressive
model which guesses the next token having read all
the previous ones. Also, since attention represents
relationship the between source and target tokens,
it is used in the alignment task (Garg et al., 2019).

2.4 Synchronous syntactic attention
Deguchi et al. (2021) find that NMT performance
can be improved by synchronizing the encoder at-
tention to decoder attention, which is called ”syn-
chronous syntactic attention”. The dependency in-
formation is embedded in these attention by super-
vised learning task. The encoder-decoder attention
can be viewed as a soft word alignment, which is
a weight that can project the source vector into the
target vector space without additional model param-
eters. This work synchronize the source and target
attentions that be embedded dependency informa-
tion by supervision task. To match the attention of
encoder and decoder, they project the encoder atten-
tion to the target one, and incorporate constraints
such that the source and target attention agree with
each other.
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Figure 1: The example of relation between syntactic distances and synchronous constraint on Japanese to English
translation task. Starting from induction of source and target syntactic distances, we project the source distance to
the target one through encoder-decoder attention weight. By measuring the difference between the projected target
syntactic distance and target one with the synchronous constraint. It can embed the syntactic correspondences of
source and target language into the encoder-decoder attention weight.

3 Synchronous Latent Phrase Structure

In this section, we present the Synchronous La-
tent Phrase Structure. This proposed method is
split into two steps. One is Latent Phrase Struc-
ture Induction (LPSI) and the other is Synchronous
Constraint. Figure 1 shows the flow of synchroniz-
ing Japanese source and English target syntactic
distances.

3.1 Latent Phrase Structure Induction

We employ syntactic distance (Shen et al., 2018a)
as a way to induce phrase structure. Each syntactic
distance di is associated with each span (i, i + 1)
which indicates the relative order of hierarchically
splitting a sentence into smaller components. For
example, Figure 1 shows that the target syntactic
distance between ‘woman‘ and ‘with‘ covers the
phrase ‘the woman with the telescope‘. Mathemati-
cally, syntactic distance di is computed through the
convolution-based network:

di = tanh(WD


ki−M
ki−M+1

· · ·
ki

+ bD) (4)

where WD and bD are convolution kernel param-
eter, kernel size M represents a look-back range
to calculate syntactic distance d. ki ∈ K̂n is same
as key used in MHA. The attention gate values are
computed as follows:

gi,t = P (bt ≤ i) =
t−1∏

j=i+1

αj,t (5)

αj,t =
hardtanh((dt − dj) · τ) + 1

2

where t is the current time step. αj,t is a proba-
bility value that represents the syntactic relation-
ship of distance dj and dt, and hardtanh(x) =
max(−1,max(1, x)). τ is the temperature hyper
parameter that controls the sensitivity of αj,t to
the differences between syntactic distances. bt is a
variable that indicates the position of break in the
phrase structure. This α is sharper than softmax
function, which allows to separate the constituents
more easily. The phrase structured MHA is defined
based on the gates:

ãi,t =
gi,t · ai,t∑
i gi,t · ai,t

(6)

where a is an element of attention A. The gate
gi,t is a weight that constrains attention to only the
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same hierarchy in the phrase structure. Here, ã is
used in place of the elements of A in Equation 2.

3.2 Synchronous Constraint
In the MT model, encoder and decoder learn sep-
arate phrase structures, which are not necessarily
synchronized in that two structures may not be
compatible with each other in terms of vector rep-
resentations. Therefore, synchronizing each phrase
structure learned in encoder and decoder, inspired
by synchronous grammar in SMT, may improve
the performance of translation by the synchronous
structure. Inspired by synchronous syntactic atten-
tion (Deguchi et al., 2021), we project the struc-
ture expressed by the encoder syntactic distance
to the target one, and incorporate constraints such
that the source and target syntactic distances agree
with each other. In Figure 1, the source syntac-
tic distance is projected to the target syntactic dis-
tance through the attention weight, and the syntac-
tic correspondence between Japanese and English
is learned from the target and projected syntactic
distances of the phrase ‘saw the woman with the
telescope‘.

The synchronous constraint can be represented
by using the Mean Squared Error (MSE) of the
syntactic distance between the source and target
languages:

Lsync =
L∑
l

∑
i

(
d
(l)
i − d̃

(l)
i

)2
(7)

d(l) is projected syntactic distance in lth decoder
layer and computed as:

d̃
(l)

= C(l)e(l) (8)

where e(l) is syntactic distance in lth encoder layer.
C(l) ∈ RJ×I is the lth encoder-decoder attention
weight, which represents the relationships of en-
coder and decoder representations, works just like
MHA. Here, I and J are length of source and target
sentence. The lth encoder-decoder attention weight
is computed as:

C(l) = softmax(
Q̂

(l)
decK̂

(l)>
enc√

δh
) (9)

where Q
(l)
dec and K

(l)
enc are lth decoder and encoder

hidden weights.
The important element in phrase structure is the

hierarchical positional relationship derived from

syntactic distance. However, MSE over-penalizes
the models, because it results in the exact distance
prediction task. Therefore, we use the rank loss
(Burges et al., 2005) as proposed by Shen et al.
(2018b), which takes hierarchical positioning into
account. Applying the rank loss to the synchronous
constrict, we obtain the following:

Lsync =
L∑
l

∑
i,j>i

hinge
(
d
(l)
i − d

(l)
j , d̃

(l)
i − d̃

(l)
j

)
(10)

where hinge(x1, x2) = max (0, 1− sign(x1) · x2)
and sign(x) is sign function. Therefore, the overall
objective L is represented by:

L = Ltrans + λLsync (11)

where Ltrans = −
∑J

i log p(yi|x,y<i) where
Ltrans is the objective of machine translation task
and λ ≥ 0 is hyper parameter to control the degree
of the synchronous constraint Lsync. x and y are
source and target sentences, respectively.

4 Experiments

We train our proposed models using the training
objective in Equation 11 and evaluate them on
three tasks: translation, constituency parsing, and
word alignment. We implement models within
the Fairseq sequence modeling toolkit (Ott et al.,
2019).

4.1 Training Details

We employ the transformer iwslt de en align

fairseq configuration for German-English dataset
and the transformer align fairseq configuration
for Japanese-English dataset. We use two MHA
layers from the bottom to induct the phrase struc-
tures, and two encoder-decoder MHA layers from
the top to synchronize the encoder and decoder syn-
tactic distances 1. The hyper parameters are set as
look back range M = 5 and temperature τ = 1.0
1. The synchronous constrain hyper parameter is
set by λ = 0.01 for MSE and Rank loss.

4.2 Tasks

4.2.1 Translation Task
We evaluated the effectiveness of the synchronous
latent phrase structures for MT tasks on IWSLT’14
German-English and ASPEC Japanese-English

1We tried various settings in our preliminary experiments,
and this setting achieved the best performance.
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Train Valid Test
IWSLT’14 160,239 7,283 6,750
ASPEC 1,255,372 1,790 1,812
Europarl v7 1,905,695 997 508

Table 1: Number of sentences in each dataset.

datasets. We train the translation models on the
IWSLT’14 German-English and ASPEC Japanese-
English (Nakazawa et al., 2016) datasets. We use
the prepare iwslt14.sh for IWSLT’14 German-
English and follow the instruction of constructing
the baseline system of WAT 2, but KyTea (Neubig
et al., 2011) is used as the tokenizer for Japanese
sentences. These datasets are applied BPE. Table 1
shows the detailed data statistics. To compare the
effectiveness of synchronous latent phrase struc-
ture, we run additional baselines without latent
phrase induction but with synchronous constraints
applied to the attention weights. We run inference
with a beam size of 5 and report the quality of trans-
lation of our models with BLEU (Papineni et al.,
2002).

4.2.2 Constituency Parsing Task
In this experiment, we did not apply BPE and En-
glish data was parsed using Stanford CoreNLP

version 4.1.0 3, and thus the number of tokens
in each sentence is preserved.

The latent phrase structure is obtained by force
decoding; we feed the gold target sentences from
the test set into the word-wise trained MT models.
We report unlabeled F-measure (UF) as the quality
of English latent phrase structures, inducted from
the bottom syntactic distances, with scoring script
Evalb 4. Here, UF is an F-measure that ignores
constituency tags and evaluates only by bracketing.

4.2.3 Alignment Task
We also measure the impact of the alignment qual-
ities represented by our synchronous grammar
against other models including a statistical model
FAST-ALIGN (Dyer et al., 2013) 5. We use the
same experimental setup as described in (Chen
et al., 2020) and use the scripts 6 for pre-processing
and evaluation. The scripts provide three different

2http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2019/baseline/dataPreparationJE.html

3https://stanfordnlp.github.io/CoreNLP/
4https://nlp.cs.nyu.edu/evalb/
5https://github.com/clab/fast_align
6https://github.com/lilt/alignment-

scripts

BLEU[%]
De→En Ja→En

Transformer 34.42 29.48
w/. Synchronous Attn 34.54 29.56
Transformer + LPSI 34.83 29.44
w/. SynchMSE 34.79† 29.79†
w/. SynchRank 35.05† 29.62†

Table 2: Results on translation task in IWSLT’14
German to English (De→En) and ASPEC Japanese to
English (Ja→En). Translation quality is reported in
BLEU and its values in bold indicate the best perfor-
mance. The numbers with † are significantly different
from the Transformer baseline measured by approxi-
mate randomization test (α = 1%).

datasets, but we only use German-English Europarl
v7 training data and the gold alignments 7 provided
by (Vilar et al., 2006). Table 1 shows the detailed
data statistics. We report the alignment quality in
the penultimate layer following (Garg et al., 2019)
with Alignment Error Rate (AER) introduced in
(Vilar et al., 2006). In this task, the trained model
is BPE-wise, but the reported AER is word-wise.
Furthermore, we report the quality of symmetrized
alignments that combined both unidirectional align-
ments. The combination method is employed the
grow-diagonal heuristic (Koehn et al., 2005), in
which alignments are greedily enlarged from the
intersected alignments.

4.3 Results

4.3.1 Translation Task
Table 2 compares the performance of our meth-
ods against baselines. The NMT models with
synchronous latent phrase structures have better
translation performance. In IWSLT’14 German-
English dataset, the NMT model with synchronous
latent phrase structure by rank loss improves 0.63
BLEU point. In ASPEC Japanese-English dataset,
the NMT model with synchronous latent phrase
structure by MSE loss improves 0.31 BLEU point.
These results show that the use of explicit latent
phrase structures can be useful in MT tasks involv-
ing syntactically distant languages like Japanese-
English.

However, the Rank synchronous constraint
model performed worse than the MSE synchronous
constraint model in the ASPEC Japanese-English
dataset. This probably is because that the phrase

7https://www-i6.informatik.rwth-
aachen.de/goldAlignment/

http://lotus.kuee. kyoto- u.ac.jp/WAT/WAT2019/baseline/dataPreparationJE. html
http://lotus.kuee. kyoto- u.ac.jp/WAT/WAT2019/baseline/dataPreparationJE. html
https://stanfordnlp.github.io/CoreNLP/
https://nlp.cs.nyu.edu/evalb/
https://github.com/clab/fast_align
https://github.com/lilt/alignment-scripts
https://github.com/lilt/alignment-scripts
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
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Stanford

Transformer
+ LPSI

.spirithumantheofflashaislanguagea ?treeneutralclimateaseeneveryouhave

.spirithumantheofflashaislanguagea ?treeneutralclimateaseeneveryouhave

Figure 2: The top parse trees are obtained from the Stanford parser. The bottom parse trees are inducted from our
transformer with LPSI (first layer) trained on IWSLT’14 German to English.

UF[%] BLEU[%]
De→En

(Hent et. al., 2019) 56.1 30.2
Transformer + LPSI 37.40 30.69
w/. SynchMSE 14.33 30.41
w/. SynchRank 33.75 30.80

Table 3: Results on constituency parsing task in
IWSLT’14 German to English (De→En). Latent
phrase structure quality is reported in UF and its val-
ues in bold indicate the best performance.

structure is not well inducted from the Japanese-
English dataset and the advantage of Rank syn-
chronous constraint is not utilized. The difficulty of
induction phrase structure in the Japanese-English
dataset can also be read from the results of Trans-
former with LPSI.

The synchronous syntactic attention model
(Deguchi et al., 2021) also have good translation
performance, but we can improve it further by in-
corporating the syntactic distance into the attention.

Although not shown in previous work (Htut
et al., 2019), Table 2 shows that the use of ex-
plicit latent phrase structure is useful for the MT
task. Interestingly, we found that the effective syn-
chronous constrain differed between syntactically
close, i.e., German-English, and distant languages,
i.e., Japanese-English.

4.3.2 Constituency Parsing Task
Table 3 compares the performance of our meth-
ods against baselines. The results show that the
synchronous constraint hurt the quality of latent
phrase structures. Especially, in MSE synchronous
constraint, UF is drooped 17.01 points from the

result of Transformer with latent phrase structure
induction. This is because the MSE synchronous
constraints induct a synchronous grammar that is
different from the phrase structure being evaluated.
In other words, synchronous constrain hinders the
derivation of the latent phrase structures. However,
the decrease in UF by synchronous constrain by
rank loss is small, whereas synchronous constrain
by MSE greatly reduced UF. It suggests that syn-
chronous constrain by MSE derives an exact syn-
chronization grammar and synchronous constrain
by rank loss derives a minimal synchronization
grammar.

As with prior study (Htut et al., 2019), we did
not find any correlation between the phrase struc-
ture qualities and translation qualities especially
when two structures are synchronized in encoder
and decoder. This indicates that our induced gram-
matical structures using synchronous constraints
might capture bilingual correspondence better than
non-constrained models.

Figure 2 shows examples of parse tree from Stan-
ford Parser and our Transformer with LSPI. In the
first example ”a flash of the human spirit”, our
model almost correctly inducts phrase structure in
comparison with Stanford Parser. The only mis-
take is grouping ”the” and ”human” first in the
noun phrase “the human spirit“. This mistake can
be unique to concepts of syntactic distance, as it is
the same as in the prior study (Htut et al., 2019). In
the second example “have you ever seen a climate
neutral tree ?“, our model correctly inducts the verb
phrase “ever seen a climate neutral tree“, but fails
to induct the phrase ”have you ever” correctly.
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AER[%] (precision[%], recall[%]) BLEU[%]
De→En En→De Symmetrized De→En En→De

FAST-ALIGN 30.8 (68.2, 70.3) 32.4 (66.8, 68.4) 27.7 (81.4, 65.0) - -
Transformer 46.2 (51.0, 57.1) 47.5 (49.5, 56.1) 35.8 (84.9, 51.3) 33.62 26.59
Transformer + LPSI 43.4 (53.5, 60.1) 45.9 (51.1, 57.6) 34.3 (84.6, 53.4) 33.25 26.98
w/. SynchMSE 42.4 (54.5, 61.2) 46.3 (50.8, 57.2) 34.1 (84.5, 53.8) 33.96 26.61
w/. SynchRank 44.4 (52.7, 58.9) 50.1 (47.3, 52.9) 36.1 (86.5, 50.5) 34.13 27.03

Table 4: Results on the alignment and translation task in Europarl v7 German to English (De→En) and English
to German (En→De). ‘Symmetrized‘ indicates the alignments combined both unidirectional alignments De→En
and En→De. Alignment quality is reported in AER, translation quality in BLEU and its values in bold indicate
best performance.

AER[%] (Precision[%], Recall[%])
Layer Transformer w/. SynchMSE w/. SynchRank

1 92.2 (62.7, 4.1) 95.0 (25.6, 2.7) 93.2 (26.0, 3.9)
2 92.1 (28.3, 4.5) 91.1 (34.9, 5.0) 90.8 (28.9, 5.4)
3 84.0 (42.7, 9.8) 88.6 (34.1, 6.8) 81.5 (37.2, 12.2)
4 49.3 (79.7, 37.0) 53.2 (75.2, 33.8) 40.7 (81.4, 46.4)
5 35.8 (84.9, 51.3) 34.1 (84.5, 53.8) 36.1 (86.5, 50.5)
6 47.2 (86.9, 37.7) 52.1 (87.7, 32.8) 56.9 (87.5, 28.4)

Table 5: Results of AER on each layer. The value in bold indicates the best performance.

De→En Ja→En
Transformer 34.42 29.48
w/o. Positional Embedding 17.01 15.40
Transformer + LPSI 34.83 29.44
w/o. Positional Embedding 33.94 28.89
Transformer + Local Attn 34.77 30.19
w/o. Positional Embedding 33.84 29.58

Table 6: Results on IWSLT’14 German to English
(De→En) and ASPEC Japanese to English (Ja→En)
for effectiveness of learning word order. ’w/o. Posi-
tional Embedding’ indicates removing positional em-
bedding from the models. The local attention mask is
applied only to the encoder following a prior study (Cui
et al., 2019).

4.3.3 Alignment Task

Table 4 compares the performance of our meth-
ods against statistic and neural baseline approaches.
Compared with Transformer, the model with la-
tent phrase structure show better translation per-
formance and quality of alignments. Furthermore,
synchronizing source and target latent phrase struc-
ture decreases the AER, which indicates that syn-
chronous constrain improves the interpretability of
translation. However, synchronous constrain by
Rank loss resulted in a deterioration in AER, de-
spite improving the translation performance BLEU.

Therefore, the relationship between BLEU and
AER does not seem to be significantly correlated.

Table 5 shows that the effectiveness of syn-
chronous latent phrase structure for two layers from
the top in terms of AER. In the penultimate layer,
while synchronous constrain by MSE contributed
to the improvement of AER, but synchronous con-
strain by rank loss conversely worsened AER. How-
ever, rank loss resulted in a significant improve-
ment AER in the third and fourth layers. In the
final layer, both synchronous constraints by MSE
and rank loss result in the worse AER. It suggests
that the quality of the latent phrase structure derived
from the second layer from the bottom is poor and
this may have affected the results adversely.

5 Analysis

5.1 Effectiveness of Attention Gate

We realize that our gated multi-head attention
(GMHA), without synchronous constraint, is very
similar to local attention within mixed multi-head
attention (MMHA) (Cui et al., 2019). MMHA en-
courages each head to acquire different features
by masking them differently and allows the model
to be aware of the order of the sequence. Table 6
show that Transformer without position embed-
ding decrease of 17.41 BLEU point in IWSLT’14
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(a) Reference (b) FastAlign (c) SyncMSE (d) SyncRank

Figure 3: The symmetrized examples from the German-English alignment test set. Gold Alignment is shown in
(a). Alignment in (b) show the output from FastAlign (BPE-wise trained), (c) from synchronized MSE model, and
(d) from synchronized Rank model. Black squares and gray squares in the reference represent sure and possible
alignments, respectively.

German-English and 14.08 BLEU point in ASPEC
Japanese-English. In the Transformer with latent
phrase structure induction (LPSI), the performance
is only reduced by 0.89 BLEU point in IWSLT’14
German-English and 0.55 BLEU point in ASPEC
Japanese-English without position embedding. For
a fair comparison, we employ local attention with 2
window in the two bottom layers of encoder. Sim-
ilarly, in the Transformer with local attention, the
performance is only reduced by 0.93 BLEU point in
IWSLT’14 German-English and 0.61 BLEU point
in ASPEC Japanese-English without position em-
bedding. It indicates that local constraints on at-
tention mechanisms help learning the order of the
sequence rather than latent phrase structure induc-
tion.

5.2 Effectiveness of Synchronous Latent
Phase Structure

Figure 3 shows examples from the German-English
alignment test set. In the first example, we find that
there are no false alignments in our models with
synchronous constraints. However, in rank loss,
the alignment between ’Therefore’ and ’Daher’,
which was captured by MSE, is lost. In the sec-

ond example, duplicated our model correctly aligns
them with ’um’ compared with FastAlign. There-
fore, The synchronous constraints by MSE and
rank loss indicate that only alignments with high
confidence are provided. Furthermore, as can be
seen from the precision values in this Table 4, there
are no false alignments in synchronous constrain by
rank loss, and definite explainability of translation
is achieved. In other words, the synchronization
constraint favors precision over recall, which may
make the AER worse, but it can provide a reliable
explanation for human. The prior study (Jain and
Wallace, 2019; Serrano and Smith, 2019) conclude
that the attentions have not explainability. How-
ever, our attention is constrained by the syntactic
distance, it can explain the relation between source
and target sentence following the constituency tree.
We will work it as the future works.

6 Conclusion

This paper introduces the approach to improve the
performance and explainability of MT. In the MT
task, our model improves the quality of transla-
tion even through distant language pairs. In the
alignment task, we demonstrate that synchronous
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constraint for syntactic distance can produce high
precisional alignments to interpret MT hypothe-
sis. Currently, our approach induces the poor la-
tent phrase structure constructed with the previous
work. To achieve the more high performance and
explainability of MT, we would like to investigate
other syntactic structures and a translation model
which can induce better latent phrase structure.
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