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Abstract

The application of transformer-based contex-
tual representations has became a de facto so-
lution for solving complex NLP tasks. De-
spite their successes, such representations are
arguably opaque as their latent dimensions are
not directly interpretable. To alleviate this lim-
itation of contextual representations, we de-
vise such an algorithm where the output rep-
resentation expresses human-interpretable in-
formation of each dimension. We achieve
this by constructing a transformation matrix
based on the semantic content of the embed-
ding space and predefined semantic categories
using Hellinger distance. We evaluate our
inferred representations on supersense predic-
tion task. Our experiments reveal that the in-
terpretable nature of transformed contextual
representations makes it possible to accurately
predict the supersense category of a word by
simply looking for its transformed coordinate
with the largest coefficient. We quantify the
effects of our proposed transformation when
applied over traditional dense contextual em-
beddings. We additionally investigate and re-
port consistent improvements for the integra-
tion of sparse contextual word representations
into our proposed algorithm.

1 Introduction

In recent years, contextual word representations
– such as BERT (Devlin et al., 2019) or GPT-3
(Brown et al., 2020) – have dominated the NLP
landscape on leaderboards such as SuperGLUE
(Wang et al., 2019) as well as on real word ap-
plications (Lee et al., 2019; Alloatti et al., 2019).
These models gain their semantics-related capabili-
ties during the pre-training process, which can be
then fine-tuned towards downstream tasks, includ-
ing question answering (Raffel et al., 2019; Garg
et al., 2019) or text summarization (Savelieva et al.,
2020; Yan et al., 2020).

Representations obtained by transformer-based
language models carry context-sensitive semantic
information. Although the semantic information
is present in the embedding space, the interpre-
tation and exact information it carries is convo-
luted. Hence understanding and drawing conclu-
sions from them are a cumbersome process for hu-
mans. Here we devise such a transformation where
we explicitly express the semantic information in
the basis of the embedding space. In particular, we
express the captured semantic information as finite
sets of linguistic properties, which are called se-
mantic categories. A semantic category can repre-
sent any arbitrary concept. In this paper, we define
them according to WordNet (Miller, 1995) Lex-
Names (sometimes also referred as supersenses).

Even though we present our work on supersense
prediction task, our proposed methodology can also
be naturally extended to settings that exploit a dif-
ferent inventory of semantic categories. Our results
also provide insights into the inner workings of
the original embedding space, since we infer the
semantic information from embedding spaces in
a transparent manner. Therefore, amplified infor-
mation can be assigned to the basis of the original
embedding space.

Sparse representations convey the encoded se-
mantic information in a more explicit manner,
which facilitates the interpretability of such rep-
resentations (Murphy et al., 2012; Balogh et al.,
2020). Feature norming studies also illustrated the
sparse nature of human feature descriptions, i.e.
humans tend to describe objects and concepts with
only a handful of properties (Garrard et al., 2001;
McRae et al., 2005). Hence, we also conduct ex-
periments utilizing sparse representations obtained
from dense contextualized embeddings.

The transformation that we propose in this paper
was inspired by Şenel et al. (2018), but it has been
extended in various important aspects, as we
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• also utilize sparse representations to amplify
semantic information,

• analyze several contextual embedding spaces

• apply whitening transformation on the embed-
ding space to decorrelate semantic features,
which also servers as the standardization step,

• evaluate the strength of the transformation in
a different manner on supersense prediction
task.

We also publish our source code on Github:
https://github.com/ficstamas/word_

embedding_interpretability.

2 Related Work

Contextual word representations provide a solution
for context-aware word vector generation. These
deep neural language models – such as ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019) or
GPT-3 (Brown et al., 2020) – are pre-trained on un-
supervised language modelling tasks, and later fine-
tuned for downstream NLP tasks. Several variants
were proposed to address one or more issue corre-
sponding to the BERT model. Some of which we
exploited in this paper. Liu et al. (2019) proposed
a better pre-training process, Sanh et al. (2019) re-
duced the number of parameters, Conneau et al.
(2020) presented a multilingual model. These mod-
els form the base of our approach, since we produce
interpretable representations by measuring the se-
mantic content of existing representations.

One way to measure the morphological and se-
mantic contents of contextual word embeddings
is via the application of probing approaches. The
premise of this approach is that, if the probed in-
formation can be identified by a linear classifier,
then the information is encoded in the embedding
space (Adi et al., 2016; Ettinger et al., 2016; Klafka
and Ettinger, 2020). Others explored the capacity
of language models, where they examined the out-
put probabilities of the model in given contexts
(Linzen et al., 2016; Wilcox et al., 2018; Marvin
and Linzen, 2018; Goldberg, 2019). We slightly
reflect the premise of these methodologies by intro-
ducing a logistic regression baseline model.

Another approach is to incorporate external
knowledge into Language Models. Levine et al.
(2020) devised SenseBERT by integrating super-
sense information into the training of BERT. K M
et al. (2018) showed a method where an arbitrary

knowledge graph can be incorporated into their
LSTM based model. External knowledge incor-
poration is getting a popular approach to improve
already existing state-of-the-art solutions in a do-
main or task specific environment (Munkhdalai
et al., 2015; Weber et al., 2019; Baral et al., 2020;
Mondal, 2020; Wise et al., 2020; Murayama et al.,
2020). Since we deemed to investigate the effect
of incorporated knowledge towards the semantic
content of embedding space, SenseBERT serves a
good basis for that.

Ethayarajh (2019) investigated the importance of
anisotropic property of the contextual embeddings,
which is a different kind of investigation than we
aim to do. It still gives a good insight into the inner
workings of the layers. Şenel et al. (2018) showed
a method where they measured the interpretability
of Glove embeddings, and later showed a method
to manipulate and improve the interpretability of a
given static word representation (Şenel et al., 2020).
Our approach resembles Şenel et al. (2018), how-
ever, we apply different pre- and post-processing
steps and more importantly, we replaced the usage
of the Bhattacharyya distance with the Hellinger
distance, which is closely related to it but oper-
ates in a bounded and continuous manner. Our
approach also differs from Şenel et al. (2018) in
that we deal with contextualited language models
instead of static word embeddings and we also rely
on sparse contextualized word vectors.

The intuition behind sparse vectors is related
to the way humans describe concepts, which has
been extensively studied in various feature norming
studies (Garrard et al., 2001; McRae et al., 2005).
Additionally, generating sparse features (Kazama
and Tsujii, 2003; Friedman et al., 2008; Mairal
et al., 2009) has proved to be useful in several ar-
eas, including POS tagging (Ganchev et al., 2010),
text classification (Yogatama and Smith, 2014) and
dependency parsing (Martins et al., 2011). There-
fore, several sparse static representations were pre-
sented, such as Murphy et al. (2012) proposed
Non-Negative Sparse Embeddings to represent in-
terpretable sparse word vectors. Park et al. (2017)
showed a rotation-based method and Subramanian
et al. (2017) suggested an approach using a de-
noising k-sparse auto-encoder to generate sparse
word vectors. Berend (2017) showed that sparse
representations can outperform their dense counter-
parts in certain NLP tasks, such as NER, or POS
tagging. Additionally, Berend (2020) illustrated

https://github.com/ficstamas/word_embedding_interpretability
https://github.com/ficstamas/word_embedding_interpretability
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how applying sparse representations can boost the
performance of contextual embeddings for Word
Sense Disambiguation, which we also desire to
exploit.

3 Our Approach

We first define necessary notations. We denote
the embedding space with E ∈ Rv×d with the su-
perscript indicating whether it is obtained from
the training set t or evaluation set e. We denote
the number of input words and their dimension-
ality by v and d, respectively. Furthermore, we
denote the transformation matrix withW ∈ Rd×s
– where s represents the number of semantic cate-
gories – and the final interpretable representation
with I ∈ Rv×s, which always denotes the inter-
pretable representation of E(e). Additionally, we
denote the semantic categories with S.

3.1 Interpretable Representation

Our goal is to produce such embedding spaces
where we can identify semantic features by their
basis. In order to obtain such an embedding space,
we are constructing a transformation matrixW(t),
which amplifies the semantic information of an
input representation and can be formulated as:
I = E(e)w × W(t). Ew represents the whitened
embedding space, which is the output of a pre-
processing step (Section 3.2), and W being our
transformation matrix (Section 3.3).

3.2 Pre-processing

Pre-processing consists of two steps: first we gen-
erate sparse representations of dense embedding
spaces (this step is omitted when we report about
dense embedding spaces), then we whiten the em-
bedding space.

3.2.1 Sparse Representation
For obtaining sparse contextualized representa-
tions, we follow the methodology proposed in
(Berend, 2020). That is, we solve the following
sparse coding (Mairal et al., 2009) optimization
problem:

min
α(t),D

1

2

∥∥∥E(t) − α(t)D
∥∥∥2
F
+ λ

∥∥∥α(t)
∥∥∥
1
,

where D ∈ Rk×d is the dictionary matrix, and
α ∈ Rv×k contains the sparse contextualized rep-
resentations. The two hyperparameters of the dic-
tionary learning approach are the number of basis

vectors to employ (k) and the strength of the regu-
larization (λ).

We obtained the sparse contextual representa-
tions for the words in the evaluation set by fixing
the dictionary matrixD that we learned on the train
set and optimized solely for the sparse coefficients
α(e). We also report experimental results obtained
for different values of basis vectors k and regular-
ization coefficients λ.

The output of this step is also represented with
E instead of α since this step is optional. Among
our results we mark whether we applied (Sparse)
or skipped (Dense) this step.

3.2.2 Whitening

Since we handle dimensions independently, we
first apply whitening transformation on the embed-
ding space. Several whitening transformations are
known – like Cholesky or PCA (e.g. Friedman
(1987)) – but we decided to rely on ZCA whitening
(or Mahalanobis whitening) (Bell and Sejnowski,
1997). One benefit of employing ZCA whitening
is that it ensures higher correlation between the
original and whitened features (Kessy et al., 2018).
As a consequence, it is a widely utilized approach
for obtaining whitened data in NLP (Heyman et al.,
2019; Glavaš et al., 2019).

We determine the whitening transformation ma-
trix from the training set (E(t)), which is then ap-
plied on the representation of our training (E(t))
and evaluation sets (E(e)). We denote the whitened
representations for the training and evaluation sets
by E(t)w and E(e)w , respectively.

3.3 Transformation

In this section, we discuss the way we measure the
semantic information of the embedding space and
express the linear transformation matrix (W).

3.3.1 Semantic Distribution

The coefficients of the contextual embeddings of
words that belong to the same (super)sense cate-
gory are expected to originate from the same dis-
tribution. Hence, it is reasonable to quantify the
extent to which some semantic category is encoded
along some dimension by investigating the distri-
bution of the coefficients of the word vectors along
that dimension. For every semantic category, we
can partition the words whether they pertain to that
category. When a dimension encodes a semantic
category to a large extent, the distribution of the
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coefficients of those words belonging to that cate-
gory is expected to differ substantially from that of
those words not pertaining to the same category.

We can formulate the distributions of our interest
by function L : x → S, which maps each token
(x) to its context-sensitive semantic category (Lex-
Name) and a function f : x → E , which returns
the context-sensitive representation of x. Thus the
devised distributions can be defined as:

Pij =
{
f(x)(i) | f(x) ∈ E(t)w , L(x) ∈ S(j)

}
and

Qij =
{
f(x)(i) | f(x) ∈ E(t)w , L(x) /∈ S(j)

}
,

where i represents a dimension and j denotes a se-
mantic category. In other words, Pij represents the
distribution along the ith dimension of those words
that belong to the jth semantic category, whereas
Qij represents the distribution of the coefficients
along the same dimension (i) of those words that
do not belong to the jth semantic category.

3.3.2 Semantic Information and
Transformation Matrix

For every dimension (i) and semantic category (j)
pair, we can express the presence of the seman-
tic information by defining a distance between the
distributions Pij and Qij . Following from the con-
struction of the distributions Pij and Qij , the larger
the distance between a pair of distributions (Pij ,
Qij), the more likely that dimension i encodes se-
mantic information j.

Based on that observation, we define a transfor-
mation matrixWD as

WD(i, j) = D(Pij , Qij),

where D is the distance function. We specify the
distance function as the Hellinger distance, which
can be formulated as√√√√1−

√
2σpijσqij
σ2pij + σ2qij

e
− 1

4
·
(µpij−µqij )

2

σ2pij
+σ2qij ,

where we assume that Pij ∼ N (µpij , σpij ) and
Qij ∼ N (, µqij , σqij ), i.e. they are samples from
normal distributions with expected value µ and
standard deviation σ.

We decided to rely on Hellinger distance due
to its continuous, symmetric and bounded nature.
In contrast to out approach, Şenel et al. (2018)

proposed the usage of Bhattacharyya distance –
which is closely related to Hellinger distance – but
it would overestimate the certainty of the semantic
information of a dimension in the case of distant
distributions. Another concern is that the Bhat-
tacharyya distance is discontinuous. We discussed
this topic in a earlier work (Ficsor and Berend,
2020) in relation to static word embeddings.

Bias Reduction. So far, our transformation ma-
trix is biased due to the imbalanced semantic cate-
gories. It can be reduced by `1 normalizingWD in
such a manner that vectors representing semantic
categories sum up to 1, which we denote asWND

(Normalized Distance Matrix).

Directional Encoding. As semantic information
can be encoded in both positive and negative direc-
tions, we modify the entries ofWND as

WNSD(i, j) = sign(µpij − µqij ) · WND(i, j),

where sign(·) is the signum function. This modifi-
cation ensures that each semantic category is repre-
sented with the highest coefficients in their corre-
sponding base of the interpretable representation.

3.4 Post-processing

The representations transformed in the above man-
ner are still skewed in the sense that they do not
reflect the likelihood of each semantic category. In
order to alleviate that problem, we measure and
normalize the frequency (fN = f/‖f‖2, f ∈ Ns)
of each occurrence of a supersense category in
the training set and accumulate that information
into the embedding space in the following man-
ner: If = I + I � 1fᵀN , where � represents the
element-wise multiplication, and 1 represents a
vector consisting of all ones. Finally, If represents
our final interpretable representations adjusted with
supersense frequencies.

3.5 Accuracy Calculation

Representations generated by our approach let us
determine the presumed semantic category by the
highest coefficient in the word vector. In other
words, a word vector should have its highest co-
efficient in the base, which represents the same
semantic category as the annotation represents in
the evaluation set. Our overall accuracy is the frac-
tion of the correct predictions and the total number
of annotated data in the evaluation set.
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4 Evaluation

4.1 Experimental setting.

During our experiments, we relied on the SemCor
dataset for training and the unified word sense dis-
ambiguation framework introduced in (Raganato
et al., 2017a) for evaluation, which consists of 5
sense annotated corpora: SensEval2 (Edmonds and
Cotton, 2001), SensEval3 (Mihalcea et al., 2004),
SemEval 2007 Task 17 (Pradhan et al., 2007), Se-
mEval 2013 Task 12 (Navigli et al., 2013), SemEval
2015 Task 13 (Moro and Navigli, 2015) and their
concatenation. We refer to the combined dataset as
ALL througout the paper. The individual datasets
contain 2282, 1850, 455, 1644 and 1022 sense
annotations, respectively. These datasets contain
fine-grained sense annotation for a subset of the
words from which the supersense information can
be conveniently inferred. We reduced the scope of
fine-grained sense annotations to lexname level, in
order to maintain well-defined semantic categories
with high sample sizes. We used the SemEval 2007
data as our development set in accordance with
prior work (Raganato et al., 2017b; Kumar et al.,
2019; Blevins and Zettlemoyer, 2020; Pasini et al.,
2021).

We conducted our experiments on several con-
textual embedding spaces, where each model
represent a different purpose. We can con-
sider BERT (Devlin et al., 2019) as the base-
line of the following contextual models. Sense-
BERT (Levine et al., 2020) incorporated word
sense information into its latent representation.
DistilBERT (Sanh et al., 2019) obtained through
knowledge distillation and operates with less pa-
rameters. RoBERTa (Liu et al., 2019) introduced
a better pre-training procedure. Finally, XLM-
RoBERTa (Conneau et al., 2020) is a multilingual
model with the RoBERTa’s pre-training procedure.
When available, we also conducted experiments
using both cased and uncased vocabularies.

Following (Loureiro and Jorge, 2019), we also
averaged the representations from the last 4 layers
of the transformer models to obtain our final con-
textual embeddings. Furthermore, to determine the
hyperparameters for sparse vector generation, we
used the accuracy of BERT Base model with dif-
ferent regularizations (λ) and number of employed
basis (k) on the SemEval2007 dataset, the results
of which can be seen in Table 1.

λ
0.05 0.1 0.2

k
1500 63.51 64.83 57.80
3000 65.71 66.59 64.61

Table 1: Results of our experiments when relying on
sparse representations created by using various hyper-
parameter combinations. The BERT Base model was
used on the SemEval2007 validation set. k represents
the number of employed basis and λ denotes the regu-
larization parameter.

4.2 Baselines

We next introduce those baselines we compared our
approach with. Most of these approaches rely on
the intact contextual representations E , for which
the dimensions are not intended to directly encode
human interpretable supersense information about
the words they describe.

Logistic Regression Classifier We conducted
the experiments by setting the random state to 0,
maximum iterations to 25,000 and turned off the
utilization of a bias term. In this case the vectors
that were used for making the predictions about the
supersenses of words were of much higher dimen-
sions and not directly interpretable at all, unlike
our representations.

Dimension Reduction (PCA+LogReg) We also
experimented with representations, which inherit
the same number of dimensions as many we utilize
(45). So we applied principal component analysis
(PCA) based dimension reduction on the original
E embedding space. Additionally, we applied Lo-
gistic Regression Classifier on the reduced repre-
sentations with the same parametirazition to the
previously described baseline.

Sparsity Makes Sense (SMS) An approach pro-
posed by Berend (2020) yields human-interpretable
embeddings like ours, since human-interpretable
features are bound to the basis of the output repre-
sentation. Berend (2020) originally presented the
devised algorithm on fine-grained word sense dis-
ambiguation, which we altered to work similarly to
our approach and predict supersense information
instead. We utilized normalized positive pointwise
mutual information to construct the transforma-
tion matrix because it showed the most prominent
scores in the paper.
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Representation Interpretable Latent
Method Our Approach SMS PCA+LogReg LogReg

Input Embedding Type Dense Sparse Sparse Dense Dense
Vocabulary (Cased/Uncased) C U C U C U C U C U

ALL-dev

BERT
Base 65.04 62.44 69.53 68.43 65.24 63.00 57.45 54.70 73.96 72.64
Large 63.68 62.51 68.41 64.82 62.00 57.03 55.60 51.05 73.25 71.69

SenseBERT
Base – 66.13 – 74.59 – 74.21 – 68.57 – 79.47
Large – 64.62 – 74.55 – 73.75 – 71.44 – 78.99

DistilBERT Base 62.94 64.44 70.78 72.68 66.31 68.03 59.34 61.51 74.86 74.46

RoBERTa
Base 59.47 – 65.40 – 61.91 – 52.25 – 69.44 –
Large 64.43 – 70.27 – 65.85 – 52.91 – 75.16 –

XLM-RoBERTa
Base 63.31 – 70.10 – 67.84 – 58.43 – 76.02 –
Large 62.10 – 67.74 – 64.63 – 57.89 – 75.54 –

Table 2: Accuracy of each model on the supersense prediction task using dense and sparse embedding spaces. ALL-
dev denotes the evaluation on the ALL dataset excluding the development set. All of the sparse representations were
generated using λ = 0.1 for the regularization coefficient and k = 3000 basis based on the experiments reported
in Table 1. Our approach and SMS are interpretable representations, PCA+LogReg just represents the information
in the same number of basis but there are no connection, which can be drawn to the previous two, and Logistic
Regression operates on the original embedding spaces. We also include a more detailed table in the Appendix,
which breaks down performances for each sub-corpora.

4.3 Results

We list the results of our experiments using differ-
ent contextual encoders on the task of supersense
prediction in Table 2. We calculated the accuracy
as the fraction of correct predictions and the total
number of annotated samples. We selected λ = 0.1
regularization and k = 3000 basis for sparse vec-
tor generation in accordance with the results that
we obtained over the development set for different
choices of the hyperparameters (see Table 1).

4.3.1 Model Performances
We consider a model’s semantic capacity as the
Logistic Regression model’s performance, and its
interpretability as the best performing interpretable
representation. We do not expect to exceed the
original model, since we limited its capabilities
drastically by reducing the number of utilized di-
mensions to 45.

By looking at the performance, as expected the
original latent representation expresses the most
semantic information measure by Logistic Regres-
sion. Among all of them, SenseBERT dominates
which is due to the additional supersense informa-
tion signal it relies on during its pretraining. The
incorporated supersense information helps Sense-
BERT to represent that information more explicitly,
which becomes more obvious when we amplify

it by sparse representations. So including further
objectives during training just further separates the
information in the basis.

4.3.2 Dense and Sparse Representations

We can see from Table 2 that relying on sparse
representations further amplifies the semantic con-
tent of the latent representations. Based on the
results of our approach, we can conclude that the
semantic information can be more easily identified
in the case of sparse representations (as indicated
by the higher scores in the majority of the cases).
SMS follows a similar trend to ours. Also the rela-
tively small decrease in performance suggests that
the majority of the removed signals correspond to
noise.

4.3.3 Impact of Base and Large Models

In several cases, the Large models under-
performed their Base counterparts (except
RoBERTa). It can indicate that the Large version
might be under-trained, which was also hypothe-
sised in (Liu et al., 2019). Overall, choosing the
Base pre-trained models seems to be a sufficient
and often better option for performing supersense
prediction.
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Mean (Std)
Cased Uncased

BERT
Base 0.35 (±0.21) 0.32 (±0.21)
Large 0.29 (±0.22) 0.28 (±0.22)

SenseBERT
Base – 0.59 (±0.25)
Large – 0.55 (±0.29)

DistilBERT Base 0.34 (±0.21) 0.33 (±0.20)

RoBERTa
Base 0.34 (±0.22) –
Large 0.31 (±0.21) –

XLM-RoBERTa
Base 0.34 (±0.22) –
Large 0.32 (±0.22) –

Table 3: Average Spearman Rank Correlation between
the basis of our interpretable embedding space and the
one obtain by the SMS approach.

4.3.4 Case-sensitivity of the Vocabulary

As the choice whether using a cased or an uncased
model is more beneficial can vary from task to
task, we made experiments in that respect. To this
end, we compared the performance of BERT and
DistilBERT, which are available in both case sen-
sitive and case insensitive versions. Usually, the
choice highly depends on the task (cased versions
being recommended for POS, NER, WSD) and the
language (cased can be beneficial for certain lan-
guages such as German). Overall, we can observe
some advantage of using the cased vocabularies. In-
terestingly, the behavior of DistilBERT and BERT
differs radically in that respect for all but the Lo-
gReg approach.

4.3.5 Considering Dimensionality

Other than the Logistic Regression model, every
approach relies on some kind of condensed repre-
sentation for supersense prediction. Even though
all of the representations were condensed – into 45
dimensions from 768, 1024 dimensions for dense
and 3000 dimensions for sparse representations –
the performance did not decreased by a large mar-
gin. PCA-based dimension reduction approach
performed the worst among the 3 approaches,
whereas ours performed the best. Note that these
interpretable approaches (ours and SMS) not only
perform better over a standard dimension reduc-
tion, but they also associate human-understandable
knowledge to the basis of the embedding space. So
it can be utilized as an explicit semantic compres-
sion technique.
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Figure 1: Rank-biased Overlap scores between the ba-
sis of our approach and SMS on sparse representations
of SenseBERT Base models. Here the p value indicates
the steep of decline in weights (smaller the p the more
top-weighted the metric is).

4.3.6 Comparing Interpretable
Representations

Both our and SMS approach are similar in the sense
that we can assign human-interpretable features to
the basis of output embeddings. We hence analysed
the similarity of the semantic information of the
two embedding spaces. We measured the Spear-
man rank correlation of the coefficients in each pair
of basis generated by our approach and the SMS
approach. We included these values in Table 3,
which showcases the mean of absolute (ignoring
the direction of correlation) correlation coefficients.
Except for SenseBERT, we can see weak correla-
tion scores. Higher correlation between the coeffi-
cients of these interpretable models, along the same
dimension would suggest that they can represent
the same semantic information to a different level
and/or manner. According to the Spearman corre-
lation between our and the SMS approach captures
a different aspect of the encoded semantic content,
but we futher experimented with SenseBERT.

Since the two embeddings expressed from Sense-
BERT – with our and SMS approach – seem to
share the most semantic content, we investigated
them further. During our evaluation, we rely on the
maximum value of each word token, so each dimen-
sion represents the semantic information among its
highest coefficients. Hence, higher value ranks a
word more likely to carry the corresponding seman-
tic information. Therefore, we calculated Rank-
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Figure 2: Representation of the coefficients of several semantic categories where the color represents the assigned
label according to the corpus, whether the prediction according to the maximum is correct (True) or not (False), and
both axis represent its value in their corresponding basis in our representation (SenseBERT, k = 3000, λ = 0.1).

biased Overlap (RBO) scores (Webber et al., 2010)
between the sorted basis, which can be seen in Fig-
ure 1. RBO quantifies a weighted, non-conjoint
similarity measure, which does not rely on corre-
lation. RBO utilizes a p parameter, which controls
the emphasis we have on top ranked items (lower p
indicates more emphasis on the top ranked items).
The p = 1 case differs from the p < 1 case, in that
it returns the un-bounded set-intersection overlap
calculated according to the proposition from Fagin
et al. (2003). On the other hand, p < 1 priori-
tizes the head of the lists. Higher score indicates
higher similarity between two ranked lists, which
in our case means that the two models behave more
similarly.

Both models perform comparable in general with
slightly better scores on sparse models for our ap-
proach. We measured the statistical significance
of the improvements by Berg-Kirkpatrick et al.
(2012), which states the following H0 hypothesis:
if p(δ(X) > δ(x)|H0) < 0.05 then we accept the
improvement of the first model and unlikely to be
cause of random factors, where δ(·) represents the
improvement of the first model. Furthermore, we
used b = 106 bootstraps, which was sufficient ac-
cording to the original paper. Between sparse mod-
els we obtained p = 0.0016 value, which suggests
that the significance of improvement is unlikely to
be caused by random factors.

4.3.7 Qualitative Assessments

Clustering We demonstrate the semantic decom-
position of 3 pairs of semantic categories in Fig-
ure 2. Each marker corresponds to a concrete word
occurrence with their color reflecting their expected

supersense. The markers also indicate whether
the prediction made according to the highest co-
ordinate is correct (True) or not (False). Further-
more, both axis represents its actual value in its
corresponding base. We can notice in these figures
how well data points are separated with respect to
their semantic properties.

Shared Space of Multilingual Domain The
availability of multilingual encoders allows us to
use our supersense classifier on languages other
than English as well. In order to test the appli-
caility of XLM-RoBERTa in such a scenario, we
tested it on some sentences in multiple languages,
the outcome of which is included in Table 4.

To this experiment, we constructedWD in the
usual manner from Sparse XLM-RoBERTa trans-
former on the SemCor dataset (which is in English).
After that, we generated the context aware word
vectors for the sentences. We then obtained the
sparse representations from them by employing
the already optimized dictionary matrix from Sem-
Cor. We finally utilized the previously constructed
distance matrix to obtain the interpretable represen-
tation. In Table 4, we marked the expected label
above the text with blue, and the top 3 predictions
with red below the text.

We included 3 typologically diverse languages
German (DE), Hungarian (HU) and Japanese (JP).
Overall, the expected label was within the top 3
predictions irrespective of the language, which sug-
gests that the overlap in semantic distribution is
high between languages, but further quantitative
experiments are also needed to support that state-
ment.
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Dein bester
adj.all

adj.all
noun.event

verb.competition

Lehrer
noun.cognition

noun.person
noun.act

noun.cognition

ist
verb.stative

verb.stative
verb.social
verb.change

dein letzter
adj.all

adj.all
noun.shape

verb.competition

Fehler.
noun.act

noun.act
noun.attribute
noun.feeling

DE) Translation: Your best teacher is your last mistake. – Ralph Nader

Együtt
adv.all

adv.all
adj.all

verb.social

erő
noun.attribute

noun.attribute
noun.feeling

noun.phenomenon

vagyunk,
verb.stative

verb.stative
verb.weather

verb.consumption

szerteszét
adj.all

verb.body
adj.all

verb.competition

gyöngeség.
noun.attribute

noun.feeling
noun.state

noun.attribute

HU) Translation: We are strong together, and weak as scattered. – Albert Wass

千代田町

noun.location

noun.Tops
noun.location
noun.object

に 着いた

verb.motion

verb.motion
verb.change
verb.contact

時

noun.time

noun.event
noun.time
noun.shape

には、 禎子

noun.person

noun.Tops
noun.person
noun.animal

は すでに

adv.all

adv.all
noun.object
noun.food

生まれていた

verb.body

verb.change
verb.body

adj.all

のです。

JP) Translation: Upon arriving to Chiyoda, Sadako was already born. – Eleanor Coerr

Table 4: A few example of shared knowledge between languages in XLM-RoBERTa. We used the transformation
matrix learned on the English SemCor dataset with Sparse XLM-RoBERTa Base model. Above the text with blue
we mark the expected label, and below the text with red the top 3 predictions.

5 Conclusion

In this paper, we demonstrated our approach to
obtain interpretable representations from contex-
tual representations, which represents semantic in-
formation in the basis with high coefficients. We
demonstrated its capabilities by applying it on su-
persense prediction task. However, it can be uti-
lized on other problems as well such as term expan-
sion and knowledge base completion.

We additionally explored the application of
sparse representations, which successfully ampli-
fied the examined semantic information. We also
considered the effect of incorporated prior knowl-
edge in the form of applying SenseBERT embed-
dings, which showed that its additional objective
during pre-training can amplify those features. Fur-
thermore, explored the space of condensed (Distil-
BERT) and multilingual (XLM-RoBERTa) spaces.
We examined the improvements come by RoBERTa
from a semantic standpoint. Note that our classifi-
cation decision is currently made by simply finding
the coordinate with the largest magnitude.

In conclusion, our experiments showed that it is
possible to extract and succinctly represent human-
interpretable information about words in trans-
formed spaces with much lower dimensions than
their original representations. Additionally, it al-
lows us to make decisions about word vectors in

a more transparent manner, where some kind of
explanation is already assigned to the basis of a
representation, which can lead us to more transpar-
ent machine learning models.
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Vanda Balogh, Gábor Berend, Dimitrios I. Diochnos,
and György Turán. 2020. Understanding the seman-
tic content of sparse word embeddings using a com-
monsense knowledge base. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):7399–
7406.

Chitta Baral, Pratyay Banerjee, Kuntal Kumar Pal, and
Arindam Mitra. 2020. Natural language QA ap-
proaches using reasoning with external knowledge.

Anthony J. Bell and Terrence J. Sejnowski. 1997. The
“independent components” of natural scenes are
edge filters. Vision Research, 37(23):3327–3338.
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Reasoning with weak unification for question an-
swering in natural language. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6151–6161, Florence,
Italy. Association for Computational Linguistics.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN language
models learn about filler–gap dependencies? In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 211–221, Brussels, Belgium.
Association for Computational Linguistics.

Colby Wise, Vassilis N. Ioannidis, Miguel Romero
Calvo, Xiang Song, George Price, Ninad Kulkarni,
Ryan Brand, Parminder Bhatia, and George Karypis.

http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf7S.html#MunkhdalaiLBPCR15
http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf7S.html#MunkhdalaiLBPCR15
http://dblp.uni-trier.de/db/journals/jcheminf/jcheminf7S.html#MunkhdalaiLBPCR15
https://www.aclweb.org/anthology/2020.knlp-1.2
https://www.aclweb.org/anthology/2020.knlp-1.2
https://www.aclweb.org/anthology/2020.knlp-1.2
https://www.aclweb.org/anthology/C12-1118
https://www.aclweb.org/anthology/C12-1118
https://www.aclweb.org/anthology/S13-2040
https://www.aclweb.org/anthology/S13-2040
https://doi.org/10.18653/v1/D17-1041
https://doi.org/10.18653/v1/D17-1041
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://dl.acm.org/citation.cfm?id=1621474.1621490
http://dl.acm.org/citation.cfm?id=1621474.1621490
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://www.aclweb.org/anthology/E17-1010
https://www.aclweb.org/anthology/E17-1010
https://www.aclweb.org/anthology/E17-1010
https://doi.org/10.18653/v1/D17-1120
https://doi.org/10.18653/v1/D17-1120
http://dblp.uni-trier.de/db/journals/corr/corr1910.html#abs-1910-01108
http://dblp.uni-trier.de/db/journals/corr/corr1910.html#abs-1910-01108
http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_11.pdf
http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_11.pdf
http://arxiv.org/abs/1711.08792
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.18653/v1/P19-1618
https://doi.org/10.18653/v1/P19-1618
https://doi.org/10.18653/v1/P19-1618
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/W18-5423


247

2020. Covid-19 knowledge graph: Accelerating in-
formation retrieval and discovery for scientific liter-
ature. CoRR, abs/2007.12731.

Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. ProphetNet: Predicting future n-gram
for sequence-to-sequence pre-training.

Dani Yogatama and Noah A. Smith. 2014. Linguis-
tic structured sparsity in text categorization. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 786–796, Baltimore, Maryland. As-
sociation for Computational Linguistics.
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T. Çukur. 2018. Semantic structure and inter-
pretability of word embeddings. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
26(10):1769–1779.
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