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Abstract

Curriculum learning has improved the qual-
ity of neural machine translation, where only
source-side features are considered in the met-
rics to determine the difficulty of translation.
In this study, we apply curriculum learning to
paraphrase generation for the first time. Dif-
ferent from machine translation, paraphrase
generation allows a certain level of discrep-
ancy in semantics between source and target,
which results in diverse transformations from
lexical substitution to reordering of clauses.
Hence, the difficulty of transformations re-
quires considering both source and target con-
texts. We propose an edit distance between a
paraphrased sentence pair as a difficulty met-
ric in curriculum learning. Experiments on
formality transfer using GYAFC showed that
our curriculum learning with edit distance im-
proves the quality of paraphrase generation.
Additionally, the proposed method improves
the quality of difficult samples, which was not
possible for previous methods.

1 Introduction

Paraphrase generation is a task that transforms
expressions of an input sentence while retaining
its meaning. While there are various subtasks in
paraphrase generation, formality transfer (Rao and
Tetreault, 2018; Niu et al., 2018; Kajiwara, 2019;
Wang et al., 2019; Kajiwara et al., 2020; Zhang
et al., 2020; Wang et al., 2020; Chawla and Yang,
2020) has been extensively studied. As paraphrase
generation can be regarded as a machine translation
task (Finch et al., 2004; Specia, 2010) within the
same language, the same models (Bahdanau et al.,
2015; Vaswani et al., 2017) have been applied to a
monolingual parallel corpus.

Recent studies (Platanios et al., 2019; Liu et al.,
2020) have shown that curriculum learning (Ben-
gio et al., 2009) achieves faster convergence and
improved translation quality on neural machine

translation. Curriculum learning designs a training
process starting from easy training samples and
gradually proceeds to difficult training samples. In
these previous studies, curriculum learning that
uses source-side features, i.e., sentence length and
word rarity, as a metric to determine the difficulty
has improved the quality of translation.

In this study, we adopt curriculum learning to
the paraphrase generation task. Paraphrasing al-
lows a certain level of semantic divergence between
source and target sentences. For example, some
paraphrases only require just a small number of
transformations as shown in Table 1, while some
others require drastic transformations as Table 2
shows. For the former, transformation is easy be-
cause the target sentence can be generated by copy-
ing almost all the input sentence’s words. For the
latter, transformation is difficult because the input
sentence requires replacement and reordering of
clauses besides lexical and phrasal paraphrasing.
Because of this feature in paraphrase generation,
difficulty in transformations requires to consider
both source and target contexts.

To address this problem, we propose to use
an edit distance between a paraphrased sentence
pair as a difficulty metric that approximates nec-
essary amounts of transformations. We evalu-
ate our method on a formality transfer task using
Grammarly’s Yahoo Answers Formality Corpus
(GYAFC) (Rao and Tetreault, 2018). The result
of paraphrase generation from informal English to
formal English confirmed the effectiveness of cur-
riculum learning based on the edit distance. The
detailed analysis revealed that the proposed method
contributes to performance improvement in diffi-
cult samples regardless of the difficulty metrics,
while sentence length and word rarity based meth-
ods degraded the performance.
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Source Sentence Target Sentence

Yeah I think it would
be funny.

I think it would be
funny.

I have one brother and
three sisters.

I have one brother and
three sisters.

Do you mean which is
least horrible?

Do you mean which is
the least horrible?

Their first two albums
were pretty good.

Their first two albums
were very good.

Table 1: Examples with simple transformations (bold
fonts indicate words that should be rewritten)

2 Preliminary: Curriculum Learning for
Neural Machine Translation

Initial curriculum learning methods for neural ma-
chine translation considered only the difficulty of
the training sample (Kocmi and Bojar, 2017; Zhang
et al., 2018). These methods achieved faster conver-
gence; however, they could not improve machine
translation quality after convergence. Following
these studies, Platanios et al. (2019) and Liu et al.
(2020) proposed a method that considers both the
difficulty of the training samples and the model
competence, which achieved both of faster conver-
gence and improvement in the translation quality.

This study bases on the model proposed by Pla-
tanios et al. (2019), who introduced the model
competence in machine translation. Their method
defines d̄i ∈ [0, 1] that is the difficulty score of
the i-th training sample, and c(t) ∈ [0, 1] that is
the model competence at the training step t. The
method trains the model using only easier training
samples than the model competency at each train-
ing step. In other words, the number of training
samples increases as the training proceeds. Their
method improved the translation quality while re-
duced the training time.

Platanios et al. (2019) defined the difficulty d(si)
based on sentence length and word rarity. Here,
an input sentence si consists of a word string
{w1, ..., wNi}. Considering translation of a long
sentence is more difficult than a shorter one, the
sentence length is adopted as one of the metrics:

dlength(si) , Ni. (1)

Besides, they considered words that infrequently
appear in a training corpus are also difficult to trans-
late because these words have fewer learning op-
portunities. Therefore, Platanios et al. (2019) also

Source Sentence Target Sentence

whats the name of
the song

What is the title of
this song.

not sure thank you
for the two points

Unsure, appreciate
the pair of points.

no where there is no
such thing

That does not exist.

they just got a little
agressive ;)

Suddenly they be-
came angrier.

Table 2: Examples with drastic transformations (bold
fonts indicate words that should be rewritten)

adopted word rarity:

drarity(si) , −
Ni∑
j=1

log p̂(wj), (2)

where p̂(wj) is the unigram probability of word wj

in the training corpus. The final difficulty score
d̄i is computed using the cumulative distribution
functions of d(si) values.

Platanios et al. (2019) defined the model compe-
tence c(t) at the training step t:

c(t) , min(1,

√
t
1− c20
T

+ c20), (3)

where c0 is the initial competence and T is the
number of training steps estimated as necessary
for convergence. They assumed that the compe-
tence is small at the beginning of training and
increases monotonically as the training proceeds,
which reaches the maximum value 1 when t = T .

3 Proposed Method

We approximate the difficulty of transformation in
paraphrase generation as edit distance between a
paraphrased sentence pair:

ddistance(si, ti) , LevenshteinDistance(si, ti), (4)

where LevenshteinDistance(·, ·) computes the Lev-
enshtein distance between the source sentence and
the target sentence ti. The edit distance between
sentences with simple transformations like Table 1
is small, and the edit distance between sentences
with drastic rewriting like Table 2 is large. Hence,
our curriculum learning starts training with para-
phrases with a small number of transformations and
gradually learns more dynamic transformations.
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Algorithm 1 Edit-distance based curriculum learn-
ing

Input: Dataset D = {(si, ti)}Mi=1, consisting of
M samples, neural machine translation model
θ.

Output: Trained neural machine translation
model θ.

1: List of difficulty values L← ∅
2: for i = 1, ...,M do:
3: L← L ∪ {ddistance(si, ti)}.
4: end for
5: Compute a cumulative distribution function

from difficulty values in L
6: for i = 1, ...,M do:
7: Compute the difficulty score d̄i
8: end for
9: for t = 1, ..., T do: . Curriculum learning

10: Compute the model competence c(t).
11: Sample a data batch Bt uniformly from all

si ∈ D, such that d̄i ≤ c(t).
12: Train neural machine translation model θ

using Bt as input.
13: end for

We apply the edit-distance based difficulty met-
ric to the competence-based curriculum learn-
ing (Platanios et al., 2019) framework. The entire
algorithm is shown in Algorithm 1.

4 Experiment

We evaluate the performance of edit-distance based
curriculum learning on a style transfer task: para-
phrase generation from informal English to formal
English using GYAFC1 (Rao and Tetreault, 2018).

4.1 Corpus and Evaluation Metric
GYAFC provides parallel sentences from two do-
mains, Entertainment & Music (E&M) and Fam-
ily & Relationships (F&R). Following Niu et al.
(2018), we expand the training set by combin-
ing sentences of each domain and add the label
2formal or 2informal at the beginning of an
input sentence. Statistics of GYAFC corpus are
shown in Table 3.

As preprocessing, we used Moses
toolkit2 (Koehn et al., 2007) for tokeniza-
tion and normalize-punctuation. We also used

1https://github.com/raosudha89/
GYAFC-corpus

2https://github.com/moses-smt/
mosesdecoder

Train Train* Dev Test

E&M 52, 595 209, 124 2, 877 1, 416
F&R 51, 967 209, 124 2, 788 1, 332

Table 3: Statistics of GYAFC (Train* indicates the
training set after expansion.)

byte-pair encoding3 (Sennrich et al., 2016) to limit
the number of token types to 16, 000.

On GYAFC, Rao and Tetreault (2018) reported
that a correlation exists between manual annotation
and BLEU (Papineni et al., 2002) scores for the
task of informal to formal English transfer. Hence,
we used BLEU as an evaluation metric.

4.2 Setup

As a paraphrase generation model, we implemented
transformer (Vaswani et al., 2017) model using
Joey NMT4 (Kreutzer et al., 2019). Our trans-
former model has four-layers with a hidden size of
512 and a four attention heads for both the encoder
and decoder. We used word embeddings of 512
dimensions tying the source, target, and the output
layer’s weight matrix. We also added dropout to the
embeddings and hidden layers with a probability of
0.2. We trained using the Adam optimizer (Kingma
and Ba, 2015) with the learning rate of 0.0002. The
batch size was 4, 096 tokens. We saved the model
every 800 updates applying early stopping with
patience of five.

To evaluate the effectiveness of the edit distance5

on curriculum learning (denoted as CL-ED), we
compared to curriculum learning with sentence
length (denoted as CL-SL) and word rarity (de-
noted as CL-WR). To compute the model compe-
tency with Equation (3), we need to set two hyper-
parameters of c0 and T . We set c0 to 0.01 and T
to the number of training steps necessary for the
transformer model with ordinary training reaches
the 95% of the maximum BLEU score on the de-
velopment set.

4.3 Results

The experimental results are shown in Table 4,
where ‘Baseline’ is the transformer model trained
without curriculum learning. In the E&M domain,

3https://github.com/rsennrich/
subword-nmt

4https://github.com/joeynmt/joeynmt
5https://github.com/roy-ht/

editdistance

https://github.com/raosudha89/GYAFC-corpus
https://github.com/raosudha89/GYAFC-corpus
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/joeynmt/joeynmt
https://github.com/roy-ht/editdistance
https://github.com/roy-ht/editdistance
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E&M F&R

Source 49.19 50.94
Baseline 69.81 75.02

CL-SL 69.83 74.90
CL-WR 70.05 74.62

CL-ED 70.34 75.41

Table 4: BLEU scores on the GYAFC test set

Source dead on arrival... there relationship
is dead on arrival

Reference Their relationship is dead on arrival.
Baseline Dead on arrival, there relationship

is dead on arrival.
CL-SL Dead on arrival is dead on arrival.
CL-WR Dead on arrival is dead on arrival.
CL-ED The relationship is dead on arrival.

Table 5: Examples of generated sentences by each model
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Figure 1: Changes in BLEU scores compared to Baseline for each difficulty metric

CL-ED and CL-WR improved BLEU score of
Baseline. In the F&R domain, only CL-ED outper-
formed Baseline. These results indicate that exist-
ing curriculum learning based on sentence length
and word rarity is not effective in paraphrase gen-
eration. In contrast, curriculum learning with the
edit distance was effective on both domains.

4.4 Discussion

We investigated which type of sentences that the
curriculum learning improved their paraphrase
quality. We divided all the test sets into three
classes: Easy, Medium, and Difficult, of the same
size (916 sentences each) using difficulty metrics
of sentence length, word rarity, and edit distance,
respectively. We then computed a BLEU score
of each class and calculated improvements over
Baseline.

Figure 1 shows the BLEU score differences of
CL-SL, CL-WR, and CL-ED, compared to Base-
line, respectively. Overall, the performance im-
provement on the Easy class is significant across
the methods, which is intuitive as such sentences
are easy to learn and used for training throughout
curriculum learning. CL-SL and CL-WR degraded
the BLEU scores on Medium class, and even de-
teriorated the baseline transformer on the Difficult

class. In contrast, CL-ED improved the BLEU
scores of Baseline even on the Difficult class, re-
gardless of the metric of difficulty.

Table 5 shows output examples. The Baseline
output almost the same sentence as the input with-
out necessary transformations. While CL-SL and
CL-WR output a sentence that does not make sense,
CL-ED, which is our method, successfully para-
phrases the source sentence.

5 Summary and Future Work

In this study, we applied the edit distance to cur-
riculum learning for paraphrase generation. Experi-
ment results on an informal to formal style transfer
task confirmed the effectiveness of our method,
particularly for paraphrasing difficult sentences.

Curriculum learning can be applied to any task
when reasonable metrics for task difficulty are
available. Transfer learning using a pre-trained
model (Devlin et al., 2019; Lewis et al., 2020) has
significantly improved the performance of various
natural language processing tasks. In transfer learn-
ing, fine-tuning samples similar to the ones in the
pre-training corpus should be easier to learn. We
plan to apply our edit-distance based curriculum
learning to transfer learning.
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