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Abstract

Training datasets for semantic parsing are typi-
cally small due to the higher expertise required
for annotation than most other NLP tasks. As a
result, models for this application usually need
additional prior knowledge to be built into the
architecture or algorithm. The increased de-
pendency on human experts hinders automa-
tion and raises the development and mainte-
nance costs in practice. This work investigates
whether a generic transformer-based seq2seq
model can achieve competitive performance
with minimal code-generation-specific induc-
tive bias design. By exploiting a relatively size-
able monolingual corpus of the target program-
ming language, which is cheap to mine from
the web, we achieved 81.03% exact match ac-
curacy on Django and 32.57 BLEU score on
CoNaLa. Both are SOTA to the best of our
knowledge. This positive evidence highlights
a potentially easier path toward building accu-
rate semantic parsers in practice. '

1 Introduction

For a machine to act upon users’ natural language
inputs, a model needs to convert the natural lan-
guage utterances to machine-understandable mean-
ing representation, i.e. semantic parsing (SP). The
output meaning representation is beyond shallow
identification of topic, intention, entity or relation,
but complex structured objects expressed as logi-
cal forms, query language or general-purpose pro-
grams. Therefore, annotating parallel corpus for
semantic parsing requires more costly expertise.
SP shares some resemblance with machine trans-
lation (MT). However, SP datasets are typically
smaller, with only a few thousand to at most tens of
thousands of examples, even smaller than most low
resource MT problems. Simultaneously, because
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Figure 1: TAE: the monolingual corpus is used both as
source and target. The encoder is frozen in the compu-
tation branch on the monolingual data.

the predicted outputs generally need to be exactly
correct to execute and produce the right answer,
the accuracy requirement is generally higher than
MT. As a result, inductive bias design in architec-
ture and algorithm has been prevalent in the SP
literature (Dong and Lapata, 2016; Yin and Neubig,
2017, 2018; Dong and Lapata, 2018; Guo et al.,
2019; Wang et al., 2019; Yin and Neubig, 2019).

While their progress is remarkable, excessive
task-specific expert design makes the models com-
plicated, hard to transfer to new domains, and chal-
lenging to deploy in real-world applications. In this
work, we look at the opposite end of the spectrum
and try to answer the following question: with lit-
tle inductive bias in the model, and no additional
labelled data, is it still possible to achieve compet-
itive performance? This is an important question,
as the answer could point to a much shorter road to
practical SP without breaking the bank.

This paper shows that the answer is encourag-
ingly affirmative. By exploiting a relatively large
monolingual corpus of the programming language,
a transformer-based Seq2Seq model (Vaswani et al.,
2017) with little SP specific prior could potentially
attain results superior to or competitive with the
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state-of-the-art models specially designed for se-
mantic parsing. Our contributions are three-fold:

* We provide evidence that transformer-based
seq2seq models can reach a competitive or
superior performance with models specifically
designed for semantic parsing. This suggests
an alternative route for future progress other
than inductive bias design;

* We do empirical analysis over previously pro-
posed approaches for incorporating monolin-
gual data and show the effectiveness of our
modified technique on a range of datasets;

* We set the new state-of-the-art on Django
(Oda et al., 2015) reaching 81.03% exact
match accuracy and on CoNalLa (Yin et al.,
2018) with a BLEU score of 32.57.

2 Previous Work on Semantic Parsing

Different sources of prior knowledge about the SP
problem structure could be exploited.
Input structure: Wang et al. (2019) adapts the
transformer relative position encoding (Shaw et al.,
2018) to express relations among the database
schema elements as well as with the input text
spans. Herzig and Berant (2020) proposed a span-
based neural parser with compositional inductive
bias built-in. Herzig and Berant (2020) also lever-
ages a CKY-style (Cocke, 1969; Kasami, 1966;
Younger, 1967) inference to link input features to
output codes.
Output structure: The implicit tree or graph-like
structures in the programs can also be exploited.
Dong and Lapata (2016) proposed parent-feeding
LSTM following the tree structure. Dong and Lap-
ata (2018) proposed a coarse-to-fine decoding ap-
proach. Guo et al. (2019) crafted an intermediate
meaning representation to bridge the large gap be-
tween input utterance and the output SQL queries.
Yin and Neubig (2017, 2018) proposed TranX, a
more general-purpose transition-based system, to
ensure grammaticality of predictions. Using TranX,
the neural model predicts the linear sequence of
AST-tree constructing actions instead of the pro-
gram tokens. However, a human expert needs to
craft the grammar, and the design quality impacts
the learning and generalization for the neural nets.
Sequential models with less SP specific priors
have been investigated (Dong and Lapata, 2016;
Ling et al., 2016b; Zeng et al., 2020), However,

they generally fell short in accuracy comparing to
the best of structure-exploiting ones listed above.

The most closely related to ours is the work by
Xu et al. (2020) for incorporating external knowl-
edge from extra datasets, which used a noisy paral-
lel dataset from Stackoverflow to pre-train the SP
and fine-tuned it on the primary dataset. Their ap-
proach’s main limitation is still the need for (noisy)
parallel data, albeit cheaper than the primary la-
belled set. Nonetheless, as we shall see in the ex-
periment section later, our approach achieves better
results when using the same amount of data mined
from the same source despite ignoring the source
sentence.

3 Background and Methodology

BERT (Devlin et al., 2018) class of pre-trained
models can make up for the lack of inductive bias
on the input side to some degree. On the output
side, we hope to learn the necessary prior knowl-
edge about the target meaning representation from
unlabelled monolingual data.

Using monolingual data to improve seq2seq
models is not new and has been extensively stud-
ied in MT before. Notable methods include fusion
(Gulcehre et al., 2015; Ramachandran et al., 2016;
Sriram et al., 2018; Stahlberg et al., 2018), back-
translation (BT) (Sennrich et al., 2015; Edunov
et al., 2018; Hoang et al., 2018), (Currey et al.,
2017; Burlot and Yvon, 2018, 2019), and BT with
copied monolingual data (Currey et al., 2017; Bur-
lot and Yvon, 2019). However, due to more struc-
tured outputs, less training data, and different eval-
uation metrics of exact match correctness instead
of BLEU, it is unclear if these lessons transfer from
MT to SP. So SP-specific investigation is needed.

3.1 Target Autoencoding with Frozen Encoder

We assume a parallel corpus of natural language
utterances and their corresponding programs, B =
{z;,y;}. The goal is to train a translator model
(TM) to maximize the conditional log probabil-
ity of y, given &;, Ty(y;|z;), over the training set:
Lswp = > 5To(y; | x;) where @ is the vector of
TM model parameters. Let M = {y/} denote the
monolingual dataset in the target language.
Currey et al. (2017); Burlot and Yvon (2019)
demonstrated that in low resource MT, auto-
encoding the monolingual data besides the main
supervised training is helpful. Following the same
path, we add an auto-encoding objective term on
monolingual data: L = Lsup + D 0 To (Y5 | ¥)-
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Figure 2: Model overview during training: we use a standard transformer-based encoder-decoder model where
the positional and word embeddings are shared between encoder and decoder. The modules related to the encoder
are represented in blue and the decoder ones are in yellow. Standard teacher forcing and transformer masking is

applied during training.

The target y;’s are reconstructed using the shared
encoder-decoder model.

We conjecture that monolingual data auto-
encoding mainly helps the decoder, so we propose
to freeze the encoder parameters for monolingual
data. Writing the encoder and decoder parameters
separately with @ = [0.,0,], then 6. is updated
using the gradient of the supervised objective Lgyp,
whereas the decoder gradient comes from L. We
verify this hypothesis in section 4.1.

In terms of model architecture, our TM is a stan-
dard transformer-based seq2seq model with copy
attention (Gu et al., 2016) (illustrated in Fig. 2 of
C). We fine-tune BERT as the encoder and use
a 4-layer transformer decoder. There is little SP-
specific inductive bias in the architecture. The only
special structure is the copy attention, which is not
a strong inductive bias designed for SP as copy
attention is widely used in other tasks as well.

We refer to the method of using copied mono-
lingual data and freezing the encoder over them as
target autoencoding (TAE). Unless otherwise spec-
ified in the ablation studies, the encoder is always
frozen.

4 Experiments

For our primary experiments we considered two
python datasets namely Django and CoNaLa. The
former is based on Django web framework and the
latter is annotated code snippets from stackover-
flow answers. Additionally, we experiment on the
SQL version of GeoQuery and ATIS from Finegan-
Dollak et al. (2018) (with query split), WikiSQL
(Zhong et al., 2017), and Magic (Java) (Ling et al.,

2016b).

Python Monolingual Corpora: CoNala
comes with 600K mined questions from Stack-
overflow. We ignored the noisy source intents/sen-
tences and just use the python snippets. To be
comparable with Xu et al. (2020), we also select
a corresponding 100K subset version for compari-
son. See Appendix A for details on the SQL and
Java monolingual corpora.

Experimental Setup: In all experiments, we
use label smoothing with a parameter of 0.1 and
Polyak averaging (Polyak and Juditsky, 1992) of
parameters with a momentum of 0.999 except for
GeoQuery which we use 0.995. We use Adam
(Kingma and Ba, 2014) and early stopping based
on the dataset specific evaluation metric on dev
set. The learning rate for the encoder is 1 x 107>
over all datasets. We used the learning rate of
7.5 x 107° on all datasets except GeoQuery and
ATIS which we use 1 x 10 — 4. The architecture
overview is shows in Fig. 2. At the inference time
we use beam search with beam size of 10 and a
length normalization based on (Wu et al., 2016).
We run each experiment with 5 different random
seeds and report the average and standard deviation.
WordPiece tokenization is used for both natural
language utterances and programming code.

4.1 Empirical Analysis

First, we considered a scenario where the monolin-
gual corpus comes from the same distribution as
the bitext. We simulate this setup by using 10% of
Django training data as labeled data while using
all the python examples from Django as the mono-
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call the fi lazy with 2 ar ts : _string_concat and
six.text_type , substitute the result for string_concat .

Source:

define the function timesince with d , now defaulting to none,

Source: reversed defaulting to false as ar

string concat = lazy(_string concat, six.
text_type)

Gold & TAE:

def timesince(d, now=none, reversed=false):
pass

Gold & TAE:

string concat = lazy (_concat_concat , six.
text_type )

Baseline:

def timesince (d = none, reversed ( d = false ):
pass

Baseline:

Note: copy mistake: wrong variable resulting from failed copy

Note: unbalanced paranthesis and multiple semantic mistakes.

Table 1: Example mistakes by the baseline that are fixed by TAE. More examples in Appendix E.
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Figure 3: Analysis using only 10% Django train bitext.

lingual dataset of 10 times bigger. Results with
“Authentic Dataset” in Fig. 3 shows the effective-
ness of TAE vs other approaches.

Next, we used the monolingual dataset prepared
for python (StackOverflow Corpus) which is from a
different distribution. Fig. 3 shows even more con-
siderable improvement, thanks to the larger mono-
lingual set. We considered noisy intents provided
in CoNaLa monolingual corpus and dummy source
sentences where each monolingual sample is paired
along with a random length array containing ze-
ros. We also compared against other well-known
approaches like fusion and back-translation, see ex-
periments details in Appendix D. TAE outperforms
all those approaches by a large margin.

Now one important question is, what part of
the model benefits from monolingual data most?
In Sec. 3.1, we conjectured that auto-encoding of
monolingual data should mostly help the decoder,
not the encoder. To verify this, we perform an
ablation by comparing freezing encoder parame-
ters versus not freezing over the monolingual set.
Fig. 3 shows that without freezing the encoder,
performance drops slightly for TAE on authentic
Django while dropping significantly when copying
on Stackoverflow data. This confirms that the per-
formance gain is due to its effect on the decoder,
while the copied monolingual data might even hurts
the encoder.

4.2 Main Results on Full Data

Table 2-3 showcase our SOTA results on Django
and CoNalLa. While our simple base seq2seq
model does not outperform previous works, with
TAE on the monolingual data, our performance
improves and outperforms all the previous works.

The most direct comparison is with Xu et al.
(2020) that also leverage the same extra data mined
from StackOverflow (EK in Table 3). As mentioned
in Sec. 2, they used the noisy parallel corpus for
pre-training, whereas we only leverage the mono-
lingual set. However, we obtain both larger rela-
tive improvements over our baseline (32.29 from
30.98) compared to Xu et al. (2020) (28.14 from
27.20), as well as better absolute results in the best
case. In fact, with only the 100K StackOverflow
monolingual data, our result is on par with the best
one from Xu et al. (2020) that uses the additional
python API bitext data. Finally, note that part of
our superior performance is due to using BERT as
an encoder.

Finally, TAE also yields improvements on other
programming languages, as shown for GeoQuery
(SQL), ATIS (SQL) and Magic (Java) in Table 4.
We observe no improvement on WikiSQL. But it
is not surprising given its large dataset size and the
simplicity of its targets. As observed by previous
works (Finegan-Dollak et al., 2018), more than half
of queries follow simple pattern of “SELECT col
FROM table WHERE col =

The main results in terms of improvement over
previous best methods are statistically significant
in Table 2-3. On Django, our result is better than
Reranker (Yin and Neubig, 2019) (best previous
method in Table 2) with a P-value < 0.05, un-
der one-tailed two-sample t-test for mean equality.
Since the previous state of the art on CoNalLa (EK
+ 100k + API in Table 3) did not provide the stan-
dard deviation, we cannot conduct a two-sample
t-test against it. Instead, we performed a one-tailed
two-sample t-test against the TranX+BERT base-
line and observed that our improvement is statisti-
cally significant with P-value < 0.05. In Table 4,

value”.
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Model Django

YN17 (Yin and Neubig, 2017) 71.6

TRANX (Yin and Neubig, 2018) 73.7
Coarse2Fine (Dong and Lapata, 2018)  74.1

TRANX2 (Yin and Neubig, 2019) 77.3+0.4
TRANX2 + BERT 79.7 £ 0.42
Reranker (Yin and Neubig, 2019)* 80.2+0.4

Our baseline 77.05 4+ 0.6
Our baseline + TAE 81.03 £ 0.14

Table 2: Exact match accuracy for Django test set. Yin
and Neubig (2019)* trained a separate model on top of
SP to rank beam search outputs.

Model CoNaLa
Reranker (Yin and Neubig, 2019)* 30.11
TRANX (Yin and Neubig, 2019) + BERT  30.47 £ 0.7
EK (baseline) (Xu et al., 2020) 27.20

EK + 100Kk (Xu et al., 2020) 28.14

EK + 100k + API (Xu et al., 2020)* 32.26

Our baseline 30.98 £ 0.1
Our baseline + TAE on 100k 32.294+ 0.4
Our baseline + TAE on 600k 32.57 + 0.3

Table 3: CoNaLa test BLEU. Methods with * trained a
separate model on top of SP to rerank beam search out-
puts. Xu et al. (2020)" used an additional bitext corpus
mined from python API documentation.

Dataset Baseline (%) Baseline + TAE (%)
GeoQuery 47.69 £ 0.05 51.87 +0.02
ATIS 38.04 £0.77 40.56 £ 0.57
Magic 41.61 + 2.07 42.34 + 0.52
WikiSQL  85.36 + 0.06 85.30 £ 0.07

Table 4: Additional dataset results: test set exact match
accuracy on all dataset.

improvements on GeoQuery and ATIS are statis-
tically significant with P-value < 0.05, while it is
not the case for Magic and WikiSQL.

4.3 Discussion

Thus far, we have verified that the decoder benefits
from TAE and the encoder does not. For a
better understanding of what TAE improves in
the decoder, we propose two metrics namely
copy accuracy and generation accuracy. Copy
accuracy only considers tokens appearing in
the source sentence. If the model produces all
of the tokens that need to be copied from the
source sentence, and in the right order, then
the score is one otherwise zero for the example.
Generation-accuracy ignores tokens appearing in
the source intent and computes the exact match
accuracy of the prediction. We show how to
compute these metrics for the following example:
Question: define the function timesince with d,
now defaulting to none, reversed defaulting to false
as arguments.

Ground Truth:
“def timesince (d,
versed=false): pass”

We iterate over the ground truth script tokens
one by one and remove those that can be copied
from the source, leading to this code:

Generation Ground Truth:

“def (=none=) :pass”, and the removed to-
kens will be considered for copy ground truth.
Copy Ground Truth: “timesince d ,
, reversed false”.

We would then use the copy and generation
ground truth strings to compute each metric. Note
that the order of tokens are still important and exact
equality is required.

As shown in Table 5 both metrics are improved.
Table 1 illustrates one example from each type and
with more samples in the Appendix E. Copy accu-
racy is important for producing the right variable
names mentioned, and it is improved as expected.
It is also encouraging to see quantitatively and qual-
itatively that grammar mistakes are reduced, mean-
ing that the lack of prior knowledge of target lan-
guage structure is compensated by learning from
monolingual data.

now=none, re-—

now

Model Copy | Generation
10% basline 34.18 55.73
10% baseline + TAE | 58.89 66.31
Full baseline 80.11 81.27
Full baseline + TAE | 84.59 82.65

Table 5: Copy and generation accuracies on Django test set

5 Conclusion

This work has shown the possibility to achieve a
competitive or even SOTA performance on seman-
tic parsing with little or no inductive bias design.
Besides the usual large-scale pre-trained encoders,
the key is to exploit relatively large monolingual
corpora of the meaning representation. The mod-
ified copied monolingual data approach from ma-
chine translation literature works well in this ex-
tremely low-resource setting. Our results point to a
promising alternative direction for future progress.
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A Datasets

We used 6 datasets in total. Django includes programs from Django web framework and CoNaLa contains
diverse set of intents annotated on python snippets gathered from Stackoverflow. WikiSQL, GeoQuery,
and ATIS include natural language questions and their corresponding SQL queries. WikiSQL includes
single table queries while GeogQuery and ATIS requires queries on more than one table. Finally, Magic
has Java class implementation of game cards with different methods used during the game. Table 6
summarises all the parallel datasets. For GoeQuery we used query split provided by (Finegan-Dollak
et al., 2018).

Monolingual Corpus: CoNaLa comes with 600K mined questions from Stackoverflow. We ignored
the noisy source intents/sentences and just use the python snippets. To be comparable with Xu et al.
(2020), we also select a corresponding 100K subset version for comparison. For SQL, Yao et al. (2018)
automatically parsed StackOverflow questions related to SQL and provided a set containing 120K SQL
examples. We automatically parsed the SQL codes and removed samples with grammatical mistakes. We
also filtered samples not starting with SELECT special token. Allamanis and Sutton (2013) downloaded
full repositories of individual projects that were forked at least once; duplicate projects were removed. We
randomly sampled 100K Java examples from more than 14K projects and use that as monolingual set.
Table 7 summarises all the monolingual datasets.

Parallel Corpus Language Train Dev  Test
Django (odaetal, 2015) iink) Python 16000 1000 1805
CoNaLa (in et ai., 2018) (link) Python 2,179 200 500

WikiSQL zhong et al.. 2017) dink) SQL 56,355 8421 15878
ATIS (Finegan-Dollak et al., 2018) (link) SQL 4812 121 347
GeoQuery (Finegan-Dollak et al., 2018) (link) SQL 536 159 182

Magic (wing etal. 2016a) diink) Java 8,457 446 483

Table 6: Parallel dataset sizes. We filtered out Magic data with java code longer than 350 tokens in order to fit in
GPU memory.

Monolingual Corpus Source Size
Python (vineta, 2018) ink) Stackoverflow 100K

S QL (Yao et al., 2018) (link) Stackoverflow 52K
Java (Antamanis and Sutton, 2013) (link) Github 100k

Table 7: Monolingual dataset sizes.

B Dev Set Results

Dataset  Baseline (%) Baseline + TAE (%)
CoNalLa 32.43+0.21 34.81 +£0.36
ATIS 5.79 + 0.29 7.23 +0.45
GeoQuery 53.33 £ 1.47 52.58 £ 0.70
Django 75.52 £0.21 78.56 +0.39
Magic 42.26 +1.42 44.17 + 0.99
WikiSQL  85.92 + 0.09 85.83 +0.07

Table 8: Dev set exact match accuracy on all datasets except CoNaLa which uses BLEU. We followed (Yin and

Neubig, 2018) implementation of BLEU score which can be found here.
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C Architecture and Experiment Details

We selected the decoder learning rate based on linear search over [1 x 1073 — 2.5 x 10~°]. Number
of decoder layers has been decided based on search over {2, 3, 4, 5, 6} layers and 4 layer decoder
shows superior performance (we used a single run for hyperparameter selection). Each model has 150M
parameters optimized using a single GTX 1080 Ti GPU. With batch size of 16 each step takes 1.7s on
GeoQuery dataset (other datasets have very similar runtime). On Django and CoNaLa, we followed (Yin
and Neubig, 2018; Xu et al., 2020) on replacing quoted values with a “str#” where # is a unique id. On
Magic dataset, we replaced all newline “\n” tokens with ‘“#”; following (Ling et al., 2016a), we splitted
Camel-Case words (e.g., class TirionFordring — class Tirion Fordring) and all punctuation characters.
We filtered out Magic data with java code longer than 350 tokens in order to fit in GPU memory.

D Back-Translation and Fusion details

For fusion we follow equation 1 where TM stands for translation model and LM stands for language
model. 7 limits the confidence of the language model and A controls the balance between TM and LM.
figure 4 shows the performance of a base TM trained on 10% of Django training data with test exact match
accuracy of 31.80 over different values of A and 7. The LM is trained over full Django training set.
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Figure 4: Test exact match accuracy of TM leverage fusion with different parameters
For back-translation we first trained the model using the same architecture explained above in the
backward direction. We used BLEU score as a evaluation metric and use early stopping based on that.

Using greedy search we generate the corresponding source intent for each code snippet. In the end, the
synthetic data is merged with the bitext and trained a forward model.
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E Additional Qualitative Examples

Source: call the function lazy with 2 arguments Source: define the function timesince with d , now
—string concat and six.text type [ six defaulting to none , reversed defaulting to false
text_type ] , substitute the result for

as arguments
string_concat Gold: def timesince(d, now=none, reversed=false):
Gold: string _concat = lazy(_string _concat, six.text_type pass
) Baseline: | def timesince ( d = none, reversed ( d = false )
Baseline: string_concat = lazy (_concat_concat , six. pass
text_type ) TAE: def timesince ( d, now = none, reversed = false )
TAE: string concat = lazy ( _string concat , six. a:ss
text_type ) P
Note: unbalanced paranthesis and multiple semantic mistakes.
Note: wrong var p P
Source: defi the £ ti ith 3 t
Source: get translation_function attribute of the object ource etine € tunction exec wi arguments
t , call the result with an argument eol_message , —code_ , _globs_ set to nome and _locs_ set to
substitute the result for result none
. £ 1 = 1 = :
Gold: result = getattr(t, translation_function) ( Gold: de e:::,(,codef, _globs_=none, _locs_=none)
eol_message) P
aseline: £ lobs= 2l B
Baseline:| result = getattr ( t , translation _message ) ( Baseline: | de ex)ec) (fcodeRgyNglcbs Ruonegelocsig=e ol
eol_message )
pass
TAE: resulte:l f::::;e () CRAtzansTscionniunctioni i TAE: def exec ( _code_, _globs_ = none , _locs_ = none
= ) g
Note: wrong var =
Note: wrong variable name and grammar mistake
Source: convert whitespace character to unicode and
substitute the result for space Source: return an instance of escapebytes , created with

Gold: space = unicode(' ') an argument , reuslt of the call to the function

Bascline:| SPace = unicode ( character ) bytes with an argument s

TAE. oD © s ] Gold: return escapebytes (bytes(s))

K K Baseline:| return escapebytes ( bytes ( s ) re (s)

Note: wrongly copied variable name

TAE: return escapebytes ( bytes ( s ) )
Source: assign integer 2 to parts if third element of
Note: extra semantically incorrect predictions and unbalanced paratheses
version equals to zero , otherwise assign it
integer 3 Source: call the function blankout with 2 arguments : p
Gold: parts = 2 if version[2] == 0 else 3 and str0 , write the result to out
Baseline:| Parts [ 2 1 = 2 Gold: out.write (blankout (p, 'str0'))
aseline: .wri lank ' '
TAE: parts = 2 if version [ 2 ] == 0 else 3 Baseline:| ©ut .write ( blankout (p , 'str0')
. i . . TAE: out .write ( blankout ( p , 'str0' ) )
Note: baseline failed to copy a few source tokens, and instead formed a grammati- |
cally correct but semantically incorrect output Note: unbalanced paratheses

Copy mistake examples

Grammar or semantic mistake examples

Table 9: Mistake examples
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