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Abstract

Chinese word segmentation (CWS) is undoubt-

edly an important basic task in natural lan-

guage processing. Previous works only focus

on the textual modality, but there are often au-

dio and video utterances (such as news broad-

cast and face-to-face dialogues), where textual,

acoustic and visual modalities normally exist.

To this end, we attempt to combine the multi-

modality (mainly the converted text and ac-

tual voice information) to perform CWS. In

this paper, we annotate a new dataset for CWS

containing text and audio. Moreover, we pro-

pose a time-dependent multi-modal interactive

model based on Transformer framework to in-

tegrate multi-modal information for word se-

quence labeling. The experimental results on

three different training sets show the effective-

ness of our approach with fusing text and au-

dio.

1 Introduction

Word segmentation is a fundamental task in Nat-

ural Language Processing (NLP) for those lan-

guages without word delimiters, e.g., Chinese and

many other East Asian languages (Duan and Zhao,

2020). In this paper, we mainly take Chinese lan-

guage as investigating object, namely CWS. As we

know, CWS has been applied as an essential pre-

processing step for many other NLP tasks (Zhou

et al., 2019; Qiu et al., 2020), such as named entity

recognition, sentiment analysis, machine transla-

tion, etc.

In the literature, some popular approaches to

CWS systems report a high performance at the level

of 96%–98%, and these systems typically require

a large scale of pre-segmented textual dataset for

training. However, the collection of a specific sce-

nario on such large scale is very time-consuming

and resource-intensive, such as video monologues
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Figure 1: A multi-modal example for CWS. 必
须(must) 不(not) 忘(forget) 初(original) 心(heart) 牢
记(remember)使命(mission).

and audio broadcast. In these scenarios, there are

multiple modalities: text, audio and vision, thus if

only using the text seems not a good choice. For

example, as shown in Figure 1, if we only read

the text”必须不忘初心牢记使命” with no punc-

tuation, it is not easy to make word segmentation

immediately. However, if there is the acoustic in-

formation, we can observe the obvious stop in spec-

trum and sonic wave at the middle of “心” and

“牢”, which provides the facility for CWS.

Therefore, in this paper, we propose to perform-

ing CWS with multi-modality, namely MCWS, by

a time-dependent multi-modal interactive network.

Specifically, we first collect a new dataset from

an audio and video news broadcast platform and

annotate the word boundaries of audio transcrip-

tion text. Second, we make the text and the audio

align as the time stamp of each character, then

encode both modalities 1 by Transformer-based

framework to capture the intra-modal dynamics.

Third, we design a time-dependent multi-modal

interaction module for each character step to gener-

ate the multi-modal hybrid character representation.

1Since each video in this platform mainly describe the
specific news scene, not the face of the speaker, the visual
modality is not useful for word segmentation. Therefore, for
the sake of simplicity, we only utilize text and audio to perform
CWS.
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Finally, we leverage the CRF to perform sequence

labeling on the basis of the above character repre-

sentation.

We evaluate our approach on the newly anno-

tated small-scale dataset with different size of train-

ing sets. The experimental results demonstrate that

our approach performs significantly better than the

single-modal state-of-the-art and the multi-modal

approaches with early fused features of CWS.

2 Related Work

Xu (2003) first formalize CWS as a sequence label-

ing task, considering CWS as a supervised learning

from annotated corpus with human segmentation.

Peng et al. (2004) further adopt standard sequence

labeling tool CRFs for CWS modeling, achieving

a best performance in their same period. Then, a

large amount of approaches based on above settings

are proposed for CWS (Li and Sun, 2009; Sun and

Xu, 2011; Mansur et al., 2013; Zhang et al., 2013).

Recently, deep neural approaches have been

widely proposed to minimize the efforts in fea-

ture engineering for CWS (Zheng et al., 2013; Pei

et al., 2014; Chen et al., 2015; Cai and Zhao, 2016;

Zhou et al., 2017; Yang et al., 2017; Zhang et al.,

2017; Ma et al., 2018; Li et al., 2019; Wang et al.,

2019a; Fu et al., 2020; Ding et al., 2020; Tian et al.,

2020a; Zhao et al., 2020). Among these studies,

most of them follow the character-based paradigm

to predict segmentation labels for each character in

an input sentence. To enhance CWS with neural

models, there were studies leverage external infor-

mation, such as vocabularies from auto-segmented

external corpus and weakly labeled data (Wang and

Xu, 2017; Higashiyama et al., 2019; Gong et al.,

2020).

To our best knowledge, we are first to perform

CWS with multi-modality, which can deal with

multi-modal scenarios and offers an alternative so-

lution to robustly enhancing neural CWS models.

3 Data Collection and Annotation

We collect the multi-modal data for CWS from a

Chinese news reporting platform “Xuexi”2. We

mainly focus on the audios equipped with machine

transcription text. In total, we crawl 120 short

videos and segment them into about 2000 sentences.

To avoid the contextual influence and augment the

robust of designed computing model, we randomly

2https://www.xuexi.cn/

Items Size
Sentences 250

Avg. Length (Character) 50.56

Avg. Length (Word) 26.95

Avg. Length (Time)(s) 10.63

Max Length (Character) 382

Max Length (Word) 231

Max Length (Time)(s) 95.06

Total Characters 12640

Total Words 6736

Total Time(s) 2658.16

Table 1: The statistics summary for used data.

select 250 sentences to annotate the word bound-

aries, and the remaining data are used to perform

semi-supervised or unsupervised learning in the

future.

We annotate these Chinese audio transcriptions

following the CTB word segmentation guidelines

by Xia (2000). Two annotators are asked to anno-

tate the data. Due to the clear annotation guideline,

the annotation agreement is very high, reaching

98.3%. The disagreement instances are judged by

an expert. The statistics of our annotated data are

summarized in Table 1.

4 Time-dependent Multi-modal
Interactive Network for CWS

In this section, we introduce our proposed multi-

modal approach for CWS, namely Time-dependent

Multi-modal interactive Network (TMIN), which

can capture the interactive semantics between text

and audio for better word segmentation. This ap-

proach mainly consists of three modules: time-

dependent uni-modal interaction, time-dependent

multi-modal interaction and CRF labeling. Figure

2 shows the overall architecture of our TMIN.

4.1 Time-dependent Uni-modal Interaction

To better capture the temporal correspondences

between different modalities (Zhang et al., 2019;

Ju et al., 2020), we first align two modalities by

extracting the exact time stamp of each phoneme

and character using Montreal Forced Aligner

(McAuliffe et al., 2017).

For machines to understand human utterance,

they must be first able to understand the intra-

modal dynamics (Zadeh et al., 2018; Wang et al.,

2019b; Tsai et al., 2019) in each modality, such as

the word order and grammar in text, breathe and
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Figure 2: The overview of our proposed TMIN.

tone in audio.

Textual Modality. We use BERT (Devlin et al.,

2019) as encoder to perform intra-modal interac-

tions and obtain the contextual character representa-

tion. Then, each character of text transcripts can be

represented as: X = (x1, x2, · · · , xn) ∈ R
n×d1 .

Acoustic Modality. We use a famous audio

processing tool, i.e., OpenSMILE (Eyben et al.,

2010), to extract the MFCC, LP-coefficients, pure

FFT spectrum, etc. from dual channels (Jayram

et al., 2002; Sakran et al., 2017), and leverage

multiple Transformer layers (Vaswani et al., 2017)

to perform intra-modal interactions. Then, each

character-level audio feature can be represented as:

A = (a1, a2, · · · , an) ∈ R
n×d2 .

4.2 Time-dependent Multi-modal Interaction
To better capture the cross-modal semantic corre-

spondences (Wu et al., 2020; Zhang et al., 2020),

we design a long- and short-term hybrid memory

gating (LSTHMG) block, which is a extension of

standard LSTM.

We first obtain the current memory of each

character-level representation for both modalities.

ĥxi , c
x
i = LSTMx

i (xi, h
x
i−1, c

x
i−1) (1)

ĥai , c
a
i = LSTMa

i (ai, h
a
i−1, c

a
i−1) (2)

where LSTM denotes the standard LSTM (Graves

et al., 2013).

After current updating, we employ multi-

attention to control the different contributions of

each hidden state.

hi = ĥi +MA(ĥxi , ĥ
a
i ) (3)

= ĥi +
L∑

l=0

(softmax(
Ql(K l)�√

d
)V l) (4)

where MA denotes the multi-attention gating mech-

anism, which is considered to mine multiple poten-

tial dimension-aware importance for each modality

(Zadeh et al., 2018). ĥi ∈ R
(d1+d2)×1 is the un-

squeezed concatenation of ĥxi and ĥai . L denotes

the max times for attentions. The query Ql, key K l

and value V l at the l-th time are defined similarly

to self-attention (Vaswani et al., 2017):

Ql = ĥiW
l
q,K

l = ĥiW
l
k, V

l = ĥiW
l
v (5)

Note that hi denotes the sum of L times atten-

tional state concatenation for multi-modal represen-

tation at character-level step i, which is then used

to perform word segmentation by CRF. Besides,

we split each part for each modality as its own di-

mension: hxi and hai , and input them into the next

LSTHMG step.
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Model 50 100 150
F Roov F Roov F Roov

BC(Text) 93.13 93.15 94.29 95.19 95.29 96.15

BC(Audio) 30.26 36.56 34.63 37.11 33.65 36.75

BC(Text+Audio) 34.43 37.54 32.67 36.68 33.39 37.04

WMSEG(Text) 94.26 94.25 95.24 95.47 95.39 95.13

WMSEG(Audio) 69.34 70.29 70.46 71.00 71.20 77.17

WMSEG(Text+Audio) 63.29 53.21 69.71 69.20 70.37 70.44

TMIN(Ours) 94.72 94.28 95.96 95.84 96.62 96.73

Table 2: Performance (the overall F-score and the recall of OOV) comparison of different approaches on different

training size. We perform a Friedman test on model- (row-) wise p-value< 0.05.

4.3 CRF Labeling

Since the textual and acoustic semantics of each

character have been integrated by time-dependent

uni-modal and multi-modal interactions, we allow

hi to perform conditional sequence labeling. In-

stead of decoding each label independently, we

model them jointly using a CRF to consider the

correlations between labels in neighborhoods. For-

mally,

p(y|X̂) =

∏n
i=1 Si(yi−1, yi, X̂)

∑
y′∈Y

∏n
i=1 Si(y′i−1, y

′
i, X̂)

(6)

where Si(yi−1, yi, X̂) and Si(y
′
i−1, y

′
i, X̂) are po-

tential functions. X̂ denotes the input of CRF. Y
denotes the output label space.

We use the maximum conditional likelihood es-

timation for CRF training. The logarithm of likeli-

hood is given by:
∑

i logp(y|X̂). In the inference

phase, we predict the output sequence that obtains

the maximum score given by: argmaxy′∈Y p(y|X̂).

5 Experimentation

In this section, we provide the exploratory experi-

mental results and a case analysis.

5.1 Experimental Setting

Data Split. We evaluate our approach on the dif-

ferent size of training sets and the same validation

set and test set, i.e., 50, 100 and 150 sentences for

training, the remaining 50 and 50 sentences for val-

idation and test, respectively. For different training

sets, the Out-of-vocabulary (OOV) rate in test set

is 92.89%, 46.73% and 30.93%, respectively.

Implementation Details. The character em-

beddings of text X are initialized with the cased

BERTbase model pre-trained with dimension of

768, and fine-tuned during training. The character-

level embeddings of audio A are encoded by Trans-

former with dimension of 124. The learning rate,

the dropout rate, and the tradeoff parameter are

respectively set to 1e-4, 0.5, and 0.5, which can

achieve the best performance on the development

set of both datasets via a small grid search over the

combinations of [1e-5, 1e-4], [0.1, 0.5], and [0.1,

0.9] on two pieces of NVIDIA GTX 2080Ti GPU

with pytorch 1.7. Based on best-performed devel-

opment results, the Transformer layers for audio

encoding and the multi-attention times L in gating

is set 2 and 4, respectively. To motivate future re-

search, the dataset, aligned features and code will

be released 3.

Baselines. For a thorough comparison, we im-

plement the following approaches with F1 as met-

ric: 1) BERT and CRF framework, BC: BC(Text)
, BC(Audio), and BC(Text+Audio). 2) A repre-

sentative state-of-the-art, WMSEG (Tian et al.,

2020b): WMSEG(Text), WMSEG(Audio), and

WMSEG(Text+Audio). Note that the approaches

with (Text) take character-level text as input, the

approaches with (Audio) take character-level au-

dio as input, and the approaches with (Text+Audio)

take character-level concatenation of text and audio

as input.

5.2 Main Results

Table 2 shows the performance of different base-

lines compared with our approach, where the over-

all F-score and the recall of OOV are reported.

From this table we can see that:

1) WMSEG performs much better than the gen-

eral framework BC. This indicates that it is effec-

tive for WMSEG to incorporate wordhood infor-

mation with several popular encoder-decoder com-

3https://github.com/MANLP-suda/MCWS
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binations and it is suitable as a competitive base-

line.

2) The approach with only audio perform signif-

icantly worse than the approaches with text only,

suggesting that it is confusing of the various acous-

tic features and we should utilize audio modality

properly.

3) In most cases, the baselines with both text and

audio bring in a poor performance compared with

uni-modal approach, which suggests that simply

concatenation of time-dependent character-level

features for CWS seems a bad choice.

4) Among all approaches, our TMIN performs

best, and significantly outperforms the competi-

tive baselines (p-value< 0.05). Moreover, with

regard to Roov, we can observe that our TMIN is

able to recognize new words more accurately. This

is mainly because our approach can obtain effec-

tive multi-modal information by time-dependent

fusion against only textual, acoustic or early fused

approaches.

5.3 Case Study

Figure 3 illustrates a real instance of the predicted

boundaries by different approaches. From this fig-

ure, we can see that both WMSRG and BC give

the wrong prediction of the boundary in “史” and

“性” though they determine the correct segmenta-

tion for “历史” and “成就”. However, our TMIN
achieves all exact segmentation of this instance.

This is mainly because it is very effective for au-

dio, where there are a continuous breathing in the

character “性”, thus ”历史性” is a complete word.

6 Conclusion and Future Work

This paper proposes a new dataset for multi-modal

Chinese word segmentation (MCWS), which is

the first attempt to explore the multi-modality

for traditional CWS. Meanwhile, we propose a

time-dependent multi-modal interactive network

(TMIN) to effectively integrate textual and acous-

tic features. The preliminary experimental results

and case analysis demonstrate the reliability of our

motivation and the effectiveness of the proposed

approach.

In the future, we will annotate more samples at

the current setting, and collect new samples with

more modalities, such as visual information in so-

cial media, monologues and dialogues with con-

tinuous front face. Moreover, we will employ the

neural active learning approaches for MCWS to

reduce the annotation and achieve the best perfor-

mance.
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