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Abstract

We present TIMERS - a TIME, Rhetorical
and Syntactic-aware model for document-level
temporal relation classification. Our proposed
method leverages rhetorical discourse features
and temporal arguments from semantic role la-
bels, in addition to traditional local syntactic
features, trained through a Gated Relational-
GCN. Extensive experiments show that the
proposed model outperforms previous meth-
ods by 5-18% on the TDDiscourse, TimeBank-
Dense, and MATRES datasets due to our
discourse-level modeling.

1 Introduction

Temporal relation extraction (TempRel) is a chal-
lenging task that involves determining the temporal
order between two events in a text (Pustejovsky
et al., 2003). Understanding the temporal ordering
of events in a document plays a key role in down-
stream tasks such as timeline creation (Leeuwen-
berg and Moens, 2018), time-aware summarization
(Noh et al., 2020), temporal question-answering
(Ning et al., 2020), and temporal information ex-
traction (Leeuwenberg and Moens, 2019).

Prior work focuses on extracting temporal rela-
tions between event pairs (a.k.a., TLINKS) present
in the same sentence (Intra-sentence TLINKS)
or adjacent sentences (Inter-sentence TLINKS),
mostly ignoring document-level pairs (Cross-
document TLINKS) (Reimers et al., 2016). Past
works have used RNN (Cheng and Miyao, 2017;
Meng et al., 2017; Goyal and Durrett, 2019; Ning
et al., 2019; Han et al., 2019a,c,b, 2020b) and
Transformer networks (Ballesteros et al., 2020;
Zhao et al., 2020b) for encoding a few sentences
or a short paragraph but do not capture long-
range dependencies and multi-hop reasoning at the
document-level. This shortcoming is shown in the
TDDiscourse dataset (Naik et al., 2019), which was

designed to highlight global discourse-level chal-
lenges, e.g., multi-hop chain reasoning, future or
hypothetical events, and reasoning requiring world
knowledge.

We propose TIMERS - a TIME, Rhetorical,
and Syntactic-aware model for document-level tem-
poral relation extraction. TIMERS uses discourse
features in the form of connections from Rhetori-
cal Structure Theory (RST) parsers (Bhatia et al.,
2015) to leverage long-range inter-sentential re-
lationships. It also extends existing contextual
embeddings with structural and syntactic depen-
dency parse connections. Lastly, it uses timex-
timex relations, dct (document creation date)-timex
relations, and temporal arguments obtained via
sentence-level semantic role labeling. These rhetor-
ical, syntactic, and temporal features are learned
through a modified version of Relational Graph
Convolutional Networks (R-GCN) with a gating
mechanism (GR-GCN) (Schlichtkrull et al., 2018),
which learns highly relational data relationships in
densely-connected graph networks.

Our main contribution is a document-level
model that incorporates these three features to im-
prove temporal relationship extraction. We obtain
state-of-the-art performance across three datasets
with 5-18% relative improvement, showing im-
provement for events that require chain reasoning,
causal prerequisite links, and future events.

2 Methodology

Let document D be defined as a sequence of n to-
kens wi ∈ W = {w1, · · · , wn}. The entire docu-
ment is a list of m sentences V = [v1, · · · , vm].
Each document has a set of p events E =
{e1, · · · , ep} and q timexes T = {t1, · · · , tq},
where p, q ≤ n. The creation date of the docu-
ment is represented by timestamp tDCT. We denote
the source and target events by es and et, respec-
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DOCUMENT
<DCT> 1998-01-08 </DCT>
1. [Despite the military
conflict with Iraq,]1 [oil
prices have been
falling,]2 [because of
a worldwide glut of
oil]3 [and recession.]4
 3. [Oil prices]5 [have
come down]6 [from the
middle of October]7 
[as we see today.]8

4. [That's built up a roll
up]9 [and that it
will look to increase.]10

[EDU Selection]  Events Timex  Source TargetSentence

v0

v1

v2

v3

vm

w1

w0

w2

w3

w4

w5
w6
w7

w8

w9

w10

wn

h0

h1

h2

hd

D

...
...
...
.

...
...
...
...
...

t0
t1
e1
t2
e2
t3
e3

t4

ep
tq

e
t

v
w

w
w

h

Event Node

Timex Node

Sentence Node

Word Node

Target Node

Source Node

EDU Node Document Node

tdct

GTG

AFTER

AFTER

BEFORE
AFTER

AFTER

BEFORE

ELABORATION

CONDITION

REASON

CONTRAST

LABEL Weighted Unweighted Directed Undirected

Sp
an
Ex
t

DCT-TimexTimex-Timex RST Feature
SRL Temporal ArgumentDependency Parse

w4

w9

GSG GDG
DD

D

Figure 1: Three graphs are created from the input doc-
ument. Time-aware Graph (GTG): DCT-Timex associa-
tions, Timex-Timex associations, and Temporal Argument
connections from semantic role labels; Syntactic-aware Graph
(GSG): structural and syntactic connections; and Rhetoric-
aware Graph (GDG): rhetorical relations between EDU’s (hi).
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Figure 2: TIMERS learns rhetorical, syntactic, and tempo-
ral features through a Gated Relational-Graph Convolutional
Networks (GR-GCN). The output of GSG forms the input
of GTG. The output corresponding to the source and target
nodes learned by GTG (OT ) and GDG (OEDU ) are concate-
nated with the output of the BERT based context encoder
(OCE), which forms the final output hG that passes through
the Softmax layer to predict the temporal relation.

tively. The task is to identify the temporal relation
y ∈ R between the source and target event in a
multi-class classification setup, where R is the set
of all possible temporal links (TLINKs).
To solve this task, our model (Fig.1) builds the
TIMERS-graph, which consists of a Syntactic
Graph (Sec.2.1), a Time Graph (Sec. 2.2), and a
Rhetorical Graph (Sec.2.3). Each graph is learned
through GR-GCN to extract the embeddings used
for temporal relation extraction (Fig.2, Sec.2.4).

2.1 Syntactic-Aware Graph
The syntactic graph captures the document struc-
ture and word dependency. Our syntactic-aware
graph (GSG) is made of separate nodes to represent
the document D, each of its inherent sentences
vi ∈ V , and all the constituent words wi ∈ W of
each sentence. The edges of the Syntactic Graph en-
code five relations: (1) Document-Sentence Affil-
iation and (2) Sentence-Word Affiliation model
the hierarchical structure of the document through
a directed edge from the document node to each
sentence node and from a sentence node to each
word in the sentence. (3) Sentence-Sentence Ad-
jacency and (4) Word-Word Adjacency to pre-
serve sequential ordering for consecutive sentence
and word nodes. (5) Word-Word Dependency

encodes the syntactical nature of the word-level re-
lationships by adding an undirected edge between
two word nodes if they share a parent-child rela-
tionship in the sentence-level dependency tree.

We use BERT to encode each wi and obtain sen-
tence embeddings v

′
i by averaging the second-to-

last hidden layer of BERT for each token. The docu-
ment vector embeddingD

′
i was calculated as the av-

erage of all sentence embedding (D
′
i =

∑m
i=0 v

′
i).

2.2 Time-Aware Graph
When events are anchored to a specific time, it
becomes easier to infer event relationships from
their associated date and time. The time-aware
graph (GTG) exploits this intuition and propagates
relational information among events, timexes, and
the Document Creation Time (DCT). The docu-
ment node D is the node corresponding to the doc-
ument creation date while the timexes ti and events
ei are characterized by their corresponding word
nodes in the Syntactic Graph. We design three
types of edge connections: (1) DCT-Timex As-
sociation: exploit the ordering of timexes with
respect to the document creation time through di-
rected weighted edges from DCT to timexes. (2)
Timex-Timex Association: capture inherent non-
local timeline ordering between timex pairs by a
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directed weighted edge. (3) Predicate-Temporal
Argument: anchor local temporal relations at the
sentence level by connecting each event verb predi-
cate to its temporal argument with a directed edge.
The connections formed between temporal entities
help navigate information from the source event to
the target event while exploring interactions with
other events, timexes, dct, and temporal arguments.

We calculate timestamps for timexes and the
DCT from the annotated TimeML format of
input documents. The weight of the DCT-
timex and timex-timex edges is determined
based on the temporal order of the entities
{After,Before, Simultaneous,None}. We added
None as a relation when one of the timestamps
cannot be anchored in time.

2.3 Rhetorical-Aware Graph
We use discourse features based on Rhetorical
Structure Theory (RST) (Mann and Thompson,
1988) to leverage long-range inter-dependencies
through a discourse tree. The rhetorical discourse
tree of a document contains nodes of phrases,
where each phrase (a.k.a, Elementary Discourse
Unit or EDU) is contiguous, adjacent and non-
overlapping. The interdependencies among EDUs
are represented by conventional rhetorical relations
(Mann, 1987), e.g. Elaboration, Span, Condition,
Attribution. Prior work showed discourse features
in the form of RST connections help leverage long-
range document-level interactions between phrase
units (Bhatia et al., 2015) and identify background-
foreground events (Aldawsari et al., 2020).

Elementary Discourse Unit (EDU), a sub-
sentence phrase unit, is the minimal selection unit
for discourse segmentation of a document. We
generate the document vector representations at
EDU-level hi ∈ H = {h1, · · · , hd} via the Self-
Attentive Span Extractor (SpanExt) from Lee et al.
(2017) over the BERT token embeddings. We use
the converted dependency version of the tree to
build the Rhetorical-aware graph (GDG) by treating
every discourse dependency from the i-th EDU to
the j-th EDU as a directed edge weighted by the
type of the rhetorical relation.

2.4 Temporal Relation Extraction
Each graph is instantiated as a gated variant of Re-
lational Graph Convolutional Networks (R-GCN)
(Schlichtkrull et al., 2018), which we term as Gated
Relational Graph Convolution Network (GR-GCN).
GR-GCN propagates messages among the nodes to

Dataset Train Validation Test Labels
TDDMan (Naik et al., 2019) 4000 650 1500 a, b, s, i, ii
TDDAuto (Naik et al., 2019) 32609 1435 4258 a, b, s, i, ii

MATRES (Ning et al., 2018a) ## 231 25 20 e,a,b,v
TimeBank-Dense (Cassidy et al., 2014) 4032 629 1427 a, b, s, i, ii, v

Table 1: Train/Val/Test data distribution for TDDMan, TD-
DAuto, MATRES, and TimeBank-Dense; a: After, b: Before,
s: Simultaneous, i: Includes, ii: Is included, v: Vague, e:
Equal. (## Ning et al. (2019) use TimeBank and Aquaint for
training, Platinum for test; 20% of train as validation)

Corpus Model F1

TB-Dense

Vashishtha et al. (2019) 56.6
EventPlus (Ma et al., 2021) 64.5
CTRL-PG (Zhou et al., 2020) 65.2
DEER (Han et al., 2020a) 66.8
TIMERS (ours) 67.8

MATRES

CogCompTime (Ning et al., 2018b) 66.6
Goyal and Durrett (2019) 68.61
BiLSTM+MAP (Han et al., 2019c) 75.5
EventPlus (Ma et al., 2021) 75.5
Wang et al. (2020) 78.8
DEER (Han et al., 2020a) 79.3
Zhao et al. (2020a) 79.6
SMTL (Ballesteros et al., 2020) 81.6
TIMERS (ours) 82.3

Table 2: Comparison of TIMERS with recent state-of-the-art
models on TimeBank-Dense and MATRES dataset. TIMERS
outperforms all recent top-performing systems.

obtain a learned node representation and is inspired
by (Zhang et al., 2020). Fig. 2 shows how the
learned representations obtained from the syntactic-
aware graph forms the input to the time-aware
graph. For the time-aware graphs, the learned rep-
resentations of nodes corresponding to the source
event es and target event et are extracted (OT ). In
the case of the rhetorical graphs, the span repre-
sentations of the EDU span nodes corresponding
to the source event (he) and target event (hs) are
extracted (OEDU ).

The output corresponding to the source and
target nodes learnt by GTG (OT ) and GDG

(OEDU ) are concatenated with output of BERT
based context encoder (OCE) (similar to BERT
encoding in (Zhao et al., 2020a)): zG =
ReLU(W [OT ;OEDU ;OCE ]+b). This is followed
by a Softmax layer to predict temporal relations.

3 Experiments

3.1 Data

We train and test our proposed model using the TD-
DMan and TDDAuto subsets of the TDDiscourse
corpus (Naik et al., 2019), which was designed
to explicitly focus on global discourse-level
temporal ordering. We also train and evaluate our
method on the MATRES and TimeBank-Dense
datasets, both of which primarily consist of local
TLINKs that occur in either the same or adjacent
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System TDDMan TDDAuto MATRES TB-Dense
P R F1 P R F1 P R F1 P R F1

B
as

el
in

es
Majority 37.8 36.3 37.1 34.2 32.3 33.2 50.7 50.7 50.7 40.5 40.5 40.5
CAEVO (Chambers et al., 2014) 32.3 10.7 16.1 61.1 32.6 42.5 - - - 49.9 46.6 48.2
SP (Ning et al., 2017) 22.7 22.7 22.7 43.2 43.2 43.2 66.0 72.3 69.0 37.7 37.8 37.7
SP+ILP (Ning et al., 2017) 23.9 23.8 23.8 46.4 45.9 46.1 71.3 82.1 76.3 58.4 58.4 58.4
BiLSTM (Cheng and Miyao, 2017) 24.9 23.8 24.3 55.7 48.3 51.8 59.5 59.5 59.5 63.9 38.9 48.4
BERT-base Transformer 36.5 37.1 37.5 62.0 61.7 62.3 65.6 78.1 77.2 59.7 60.7 62.2
RoBERTa-base 35.7 36.5 37.1 60.6 62.7 61.6 77.3 79.0 78.9 58.1 57.6 61.9

A
bl

at
io

n

TIMERS (ours) 43.7* 46.7* 45.5* 64.3* 72.7* 71.1* 81.1* 84.6* 82.3* 48.1 65.2* 67.8
TIMERS w\o Context Encoder 29.7 35.5 33.7 49.8 52.5 51.6 61.2 69.6 68.6 43.8 54.5 50.6
TIMERS w\o GDG 39.6 39.6 41.8 61.7 66.8 65.4 71.8 79.1 79.7 51.4 63.0 63.3
TIMERS w\o GSG 38.5 42.6 42.3 63.3 69.5 68.9 71.6 78.5 78.2 51.1 62.1 62.8
TIMERS w\o GTG 37.5 39.8 39.5 58.7 68.3 67.1 72.8 78.5 77.7 50.5 62.9 61.8

Table 3: Results comparing performance of TIMERS with baselines and ablative components on TDDMan, TDDAuto, MATRES
and TimeBank-Dense datasets. We adopt the BERT and RoBERTa implementation from (Ballesteros et al., 2020). * indicates
statistical significance over BERT Transformer (p ≤ 0.005) under Wilcoxon’s Signed Rank test. Darker green represents better
F1 performance on ablation studies. Bold denotes the best performing model. TIMERS improves substantially over all datasets.
The ablation shows that context, discourse (GDG), and time-aware (GTG) graph encoders prove to be most beneficial.

sentences. Table 1 reports the data statistics and
label distributions. (Naik et al., 2019) shows the
distribution of the distance between event-pairs for
all TLINKs in the TDD test set and explains that
nearly 53% TLINKs in the TDD dataset comprise
of event pairs that are more than 5 sentences apart.
Like Cheng and Miyao (2017), we report results on
non-vague labels of TimeBank-Dense. MATRES
has no standard validation set. Hence, we follow
the split used in (Ning et al., 2019).

3.2 Experimental Settings

Token Encoding:The word-level token represen-
tations are obtained by summing the correspond-
ing BERT embeddings from the last 4 layers of
pre-trained BERT-base encoder. Syntactic De-
pendency Parser: The dependency parse tree of
individual sentences is obtained via SpaCy1 to
form word-word dependency connections in the
syntactic-aware graph. Semantic Role Labeller:
We extract semantic role labels using AllenNLP’s
SRL parser2 that internally uses SRL-BERT (Shi
and Lin, 2019) to obtain the temporal arguments
corresponding to each verb event. Timex Nor-
malization: Timex phrases are treated as a sin-
gle unit for the purpose of graph construction by
average pooling their BERT tokenized representa-
tions. Microsoft Recognizers-Text3 is employed
to normalize timexes and DCT date-time values.
The normalized timex expressions are compared
through Allen’s interval algebra, where each timex
has a start and an endpoint. The comparison is then

1https://spacy.io/
2https://demo.allennlp.org/semantic-role-labeling
3https://github.com/microsoft/Recognizers-Text

made on the basis of the endpoints of the timexes,
forming an edge going from earlier to later ending
timex. RST Discourse Parser: We used the shift-
reduce discourse parser proposed by Ji and Eisen-
stein (2014) to build the discourse tree 4, which
is post-processed using discoursegraphs library5

(Neumann, 2015) to build the rhetorical dependen-
cies graph. Further implementation details can be
found in the appendix.

3.3 Results

Table 3 compares our work to the baseline methods
reported on the TDDMan, TDDAuto, MATRES,
and TimeBank-Dense datasets. We also include
results for BERT-based Transformer (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) following
Ballesteros et al. (2020). To prevent truncation or
memory errors otherwise caused by multi-sentence
spans, we concatenate only sentences containing
source and events as input to Transformer baselines.
These methods outperform the existing reported
results and provide strong benchmarks but still per-
form similarly to a majority class baseline for the
TDDMan dataset. Our model shows a significant
gain of 8.0 F1 and 8.8 F1 over the BERT baseline
on the TDDMan and TDDAuto datasets. Table
2 compares TIMERS to additional rigorous state-
of-the-art methods for TimeBank-Dense and MA-
TRES. TIMERS achieves state-of-the-art perfor-
mance on all four datasets, showing that it success-
fully handles intra-sentence, inter-sentence, and
cross-sentence TLINK pairs through the same ar-
chitecture.

4Implementation used: https://github.com/jiyfeng/DPLP
5https://pypi.org/project/discoursegraphs/

https://spacy.io/
https://demo.allennlp.org/semantic-role-labeling
https://github.com/microsoft/Recognizers-Text
https://github.com/jiyfeng/DPLP
https://pypi.org/project/discoursegraphs/
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Figure 3: Error analysis on manually annotated discourse-
level phenomena in the test set of TDDMan. SS: Single-
Sent, CR: Chain Reasoning, TI: Tense Indicator, FE: Future
Events, HN: Hypothetical/Negated, EC: Event Coreference,
CP: Causal/Prereq, WK: World Knowledge. TIMERS handles
CR and CP phenomena but struggles on EC and WK.

3.4 Ablation Study

To assess the contribution of discourse, syntactic,
and time-aware graphs, we performed an ablation
experiment with different configurations (Table
3). Removing the context encoder significantly
degrades performance, indicating that the graph
components themselves cannot replace the contex-
tual encoding. Removing any of the graph encoders
hurts the model performance, motivating the need
for all the constituent graph components. We also
analyzed the relative importance of GDG, GSG, and
GTG represented by color shading in the table. The
results show that the syntactic graph is least im-
portant for document level pairs in TDDMan and
TDDAuto, which we believe is due to the longer
range dependencies present in this dataset. How-
ever, removing the discourse graph for TimeBank-
Dense and MATRES datasets leads to the least per-
formance deterioration as inter and intra-sentence
pairs do not fully utilize document-level rhetorical
relations. TIMERS outperforms the BERT base-
line even without GTG, demonstrating its useful
in cases where document creation date or timexes
cannot be obtained easily.

3.5 Error Analysis

The error analysis results of TIMERS and its ab-
lations for TDDMan are shown in Fig. 3 (the re-
sults on TDDAuto are in Appendix Fig.1). The
results provide evidence that the syntactic-aware
graph (GSG) is most important for relations that
can be extracted from a single sentence (SE). The
time-aware graph (GTG) plays an important role in

improving relationships requiring chain reasoning
(multi-hop) and relationship determined by future
events. We also note the role of the rhetorical-
aware graph (GDG) for modeling future possibility
(FE), hypothetical events (HN) and causal condi-
tions for event occurrences (CP). This can be at-
tributed to rhetorical relational features that extract
plausible inter-dependencies such as cause, expla-
nation, contrast (Lioma et al., 2012). None of the
experimented models show improved performance
on TLINK pairs which depend on world knowledge
(WK) or event coreference (EC).

4 Conclusion

This work presents a neural architecture that uti-
lizes local syntactic features, rhetorical discourse
features, and temporal arguments in semantic
role labels through a Gated Relational-GCN for
document-level temporal relation extraction on
TDDiscourse, MATRES, and TimeBank-Dense
datasets. Experiments show that TIMERS shows
substantial improvement for events that require
chain reasoning and causal prerequisite links. Fu-
ture work will focus on exploring real-world sce-
narios in which the temporal extraction task suffers
from absent or erroneous event and timex annota-
tions. We believe our proposed methods can also
be adapted for other languages as well by over-
coming possible limitations such as dependency
parsing, semantic parsing, Timex normalization for
the non-English corpora.

Ethics Statement

This work does not collect or release any new data
resource. Moreover, all four of the datasets used
in experiments (TDDiscourse, TimeBank-Dense
and MATRES) are publicly available and free to
use, hence do not intrude user privacy. During the
course of this work, no human judgements were ex-
ploited nor any user-level data was collected, stored
or processed. Our methods do not add to any pre-
existing data biases. Potential applications of this
work include extracting event timelines from news,
contractual documents, and digitizing patient elec-
tronic health records. We acknowledge that tem-
poral information extraction finds applications in
clinical NLP (Lin et al., 2019; Tourille et al., 2017).
Hence, we would like to caution about shortcom-
ings of the proposed system in terms of misclassifi-
cations on event pairs requiring real-world common
sense reasoning and domain shift.
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A Experiment Settings

A.1 Node Connections
We detail the node connections present in each
graph of our proposed model along with edge at-
tributes in Table 4.

A.2 Edge Relations
Table 6 lists rhetorical relations used in Rhetoric-
aware graph GDGin the TIMERS model, along
with the definitions as provided by Mann (1987).
The weights of the Rhetoric graph GDG are de-
termined based on the RST relations described in
this table. Table 7 details the type of relations be-
tween timex-timex and DCT-timex nodes of the
Time-aware graph GTG.

A.3 Training Setup
Hyperparameter: Hyper-parameters for our
model were tuned on the respective validation set
to find the best configurations for different datasets.
We summarize the range of our model’s hyper
parameters such as: number of hidden layers in
GR-GCN {1, 2, 3}, size of hidden layers in GR-
GCN {64, 128, 256, 512}, BERT embedding size,
dropout δ ∈ {0.2, 0.3, 0.4, 0.5.0.6}, learning rate
λ ∈ {1e−5, 1e−4, 1e−3, 1e−2, 1e−1}, weight
decay ω ∈ {1e− 6, 1e− 5, 1e− 4, 1e− 3}, batch
size b ∈ {16, 32, 64} and epochs (≤ 100).
Contextual Encoder: We used BERT-base-
uncased for generating token embedding of size
1x 768. As BERT-base Transformer provides
a stronger baseline as compared to RoBERTa,
we utilized BERT Transformer for Contextual
Encoder in TIMERS architecture. We use the
default dropout rate (0.1) on BERT’s self attention
layers but do not use additional dropout at the
top linear layer The output from the Contextual
Encoder is a 1-D vector of size 768.
Loss Function and Inference: TIMERS is
trained end to end using Binary Cross Entropy loss
with Adam optimizer. Across all four datasets, we
found the best results correspond with the use of
Adam optimiser set with default values β1 = 0.9,
β2 = 0.999, ε = 1e − 8, weight-decay of 5e − 4
and an initial learning rate of 0.001. We evaluate
the performance of temporal relation extraction
systems in terms of F1, precision and recall score.
Computing Infrastructue: TIMERS is written
in PyTorch library and was trained on Nvidia
GeForce RTX 2080 GPU. Average Runtime: The
model takes a maximum of approximately 6,500

seconds to train on either of the four datasets.
Dataset Access Links to download TD-
Discourse (Naik et al., 2019) dataset:
https://github.com/aakanksha19/TDDiscourse Link
to download MATRES (Ning et al., 2018a) dataset:
https://github.com/qiangning/MATRES Link to
download TimeBank-Dense (Cassidy et al., 2014)
dataset: https://github.com/muk343/TimeBank-
dense

A.4 Reproducibility
Table 5 lists the range ad best values of the hyperpa-
rameters used in TIMERS model for different data
settings. We used grid search to choose the best set
of training configurations across each dataset. We
run 5 rounds of hyper-parameter search trials and
report average of observed results.

B Additional Results

We observe from Figure 4 a similar trend to TD-
DMan, although with a stronger support for SS,
CR, TI and and FE. This is partly due to the fact
that TDDAuto was generated automatically (Naik
et al., 2019) using weakly annotated time relations.
Moreover, 90% of samples in TDDAuto require SS.
Hence, TIMERS trained exclusively on TDDAuto
performs worse on challenging phenomenon like
HN and CP. Consistent with results on TDDMan,
TIMERS and its ablations trained on TDDAuto
struggle on EC and WK.

https://github.com/aakanksha19/TDDiscourse
https://github.com/qiangning/MATRES
https://github.com/muk343/TimeBank-dense
https://github.com/muk343/TimeBank-dense
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Edge Graph Source Target Directed Weighted
Document-Sentence Affiliation Syntactic Doc Node Sent Nod 3 7
Sentence-Word Affiliation Syntactic Sent Nod Word Node 3 7
Sentence-Sentence Adjacency Syntactic Sent Nod Sent Nod 3 7
Word-Word Adjacency Syntactic Word Node Word Node 3 7
Word-Word Dependency Syntactic Word Node Word Node 7 7
DCT-Timex Association Time Doc Node Timex 3 3
Timex-Timex Association Time Timex Timex 3 3
Predicate-Temporal Argument Time Word Node Timex 7 7
RST Discourse Discourse EDU EDU 3 3

Table 4: List of node connections in TIMERS.

Dataset
Hyperparameters TDDMan TDDAuto MATRES TB-Dense

Dropout Ratio 0.5 0.5 0.5 0.5
Optimizer Adam Adam Adam Adam
Input Dimension (Context Encoder) (n,768) (n,768) (n,768) (n,768)
Input Dimension (Syntactic Graph) (n,768) (n,768) (n,768) (n,768)
Input Dimension (Time Graph) (n,256) (n,256) (n,64) (n,64)
Input Dimension (Rhetoric Graph) (n,768) (n,768) (n,768) (n,768)
Hidden Dimension (GR-GCN) 256 256 64 64
Number of hidden layers (GR-GCN) 1 1 1 1
Hidden Dimension of SpanExt {256, 64} {256, 64} {128, 64} {128, 64}
Epochs 20 20 20 20
Batch Size 8 8 16 16
Activation Function of Linear layers ReLU ReLU ReLU ReLU
Dimension of final FCN [(1792 x r)] [(1792 x r)] [(1024 x r)] [(1024 x r)]
Output Classes 5 5 4 5

Table 5: Hyperparameters Details: Training hyperparameters of TIMERS for TDDMan, TDDAuto, MATRES
and TB-Dense datasets. n refers to the number of input samples; r refers to the number of total relation classes
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Figure 4: Error analysis on manually annotated
discourse-level phenomenon in test set of TDDAuto.
SS: SingleSent, CR: Chain Reasoning, TI: Tense Indi-
cator, FE: Future Events, HN: Hypothetical/Negated,
EC: Event Coreference, CP: Causal/Prereq, WK:
World Knowledge. We observe a stronger support
for SS, CR, TI and and FE as compared to TDDMan.
TIMERS trained exclusively on TDDAuto performs
worse on challenging phenomenon like HN and CP.
Consistent with results on TDDMan, TIMERS and its
ablations trained on TDDAuto struggle on EC and WK.

Relation Label Definition
Temporal Relating to time
Summary Shorter restatement
Same-unit Part of the same phrasal unit
Span Extending to multiple phrasal units
Purpose Initiation in order to realize a goal
Example Specific subtypes
Elaboration Providing additional details
Reason Justification with intent to defend a stance
Sequence Subject-matter sequence
Condition Realization of dependency
Means Method or instrument to improve likelihood
Consequence Intended or unintended end goal
Topic Central idea
Attribution Contributing factor
Textual Organization Part of formal text span
Contrast Opposing phenomenon
Manner Semantic course of occurrence
Antithesis Incompatibility due to contrast
Concession Potential Incompatibility
Explanation Providing clarification to an established fact
Circumstance Framework for interpretation

Table 6: RST relations used in Rhetoric-aware graph
GDG in TIMERS, with definition as provided by Mann
(1987)

Relation Label Definition
After TIMEX1 starts after TIMEX2 has ended
Before TIMEX1 ends before TIMEX2 started
Equal TIMEX1 is numerically equal to TIMEX2 upto date resolution.
None One of the timex cannot be extracted or normalized

Table 7: Timex-Timex and DCT-Timex relations used
in the Time-aware graph GTG.


