
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 476–483

August 1–6, 2021. ©2021 Association for Computational Linguistics

476

Zero-shot Fact Verification by Claim Generation

Liangming Pan1,2 Wenhu Chen3 Wenhan Xiong3

Min-Yen Kan2 William Yang Wang3

1NUS Graduate School for Integrative Sciences and Engineering
2School of Computing, National University of Singapore, Singapore

3University of California, Santa Barbara, CA, USA
liangmingpan@u.nus.edu

{wenhuchen, xwhan, william}@cs.ucsb.edu
kanmy@comp.nus.edu.sg

Abstract

Neural models for automated fact verification
have achieved promising results thanks to the
availability of large, human-annotated datasets.
However, for each new domain that requires
fact verification, creating a dataset by manu-
ally writing claims and linking them to their
supporting evidence is expensive. We develop
QACG, a framework for training a robust
fact verification model by using automatically-
generated claims that can be supported, re-
futed, or unverifiable from evidence from
Wikipedia. QACG generates question–answer
pairs from the evidence and then convert them
into different types of claims. Experiments
on the FEVER dataset show that our QACG
framework significantly reduces the demand
for human-annotated training data. In a zero-
shot scenario, QACG improves a RoBERTa
model’s F1 from 50% to 77%, equivalent in
performance to 2K+ manually-curated exam-
ples. Our QACG code is publicly available.1

1 Introduction

Fact verification aims to validate a claim in the con-
text of evidence. This task has attracted growing
interest with the rise in disinformation in news and
social media. Rapid progress has been made by
training large neural models (Zhou et al., 2019; Liu
et al., 2020b; Zhong et al., 2020) on the FEVER
dataset (Thorne et al., 2018), containing more than
100K human-crafted (evidence, claim) pairs based
on Wikipedia.

Fact verification is demanded in many domains,
including news articles, social media, and scientific
documents. However, it is not realistic to assume
that large-scale training data is available for every
new domain that requires fact verification. Creating
training data by asking humans to write claims and

1https://github.com/teacherpeterpan/
Zero-shot-Fact-Verification

search for evidence to support/refute them can be
extremely costly.

We address this problem by exploring the possi-
bility of automatically generating large-scale (ev-
idence, claim) pairs to train the fact verification
model. We propose a simple yet general frame-
work Question Answering for Claim Generation
(QACG) to generate three types of claims from any
given evidence: 1) claims that are supported by
the evidence, 2) claims that are refuted by the
evidence, and 3) claims that the evidence does Not
have Enough Information (NEI) to verify.

To generate claims, we utilize Question Gener-
ation (QG) (Zhao et al., 2018; Liu et al., 2020a;
Pan et al., 2020), which aims to automatically ask
questions from textual inputs. QG has been shown
to benefit various NLP tasks, such as enriching QA
corpora (Alberti et al., 2019), checking factual con-
sistency for summarization (Wang et al., 2020), and
data augmentation for semantic parsing (Guo et al.,
2018). To the best of our knowledge, we are the
first to employ QG for fact verification.

As illustrated in Figure 1, given a passage P as
the evidence, we first employ a Question Genera-
tor to generate a question–answer pair (Q,A) for
the evidence. We then convert (Q,A) into a claim
C (QA-to-Claim) based on the following logical
assumptions: a) if P can answer Q and A is the
correct answer, then C is a supported claim; b)
if P can answer Q but A is an incorrect answer,
then C is a refuted claim; c) if P cannot answer
Q, then C is a NEI claim. The Question Genera-
tor and the QA-to-Claim model are off-the-shelf
BART models (Lewis et al., 2020), finetuned on
SQuAD (Rajpurkar et al., 2016) and QA2D (Dem-
szky et al., 2018) datasets.

We generate 100K (evidence, claim) pairs for
each type of claim, which we then use to train a
RoBERTa (Liu et al., 2019) model for fact verifi-
cation. We evaluate the model on three test sets

https://github.com/teacherpeterpan/Zero-shot-Fact-Verification
https://github.com/teacherpeterpan/Zero-shot-Fact-Verification
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Evidence (𝓟)

1992	Los	Angeles	riots

The 1992 Los Angeles riots, also known as 
the Rodney King riots were a series of riots, 
lootings, arsons, and civil disturbances that 
occurred in Los Angeles County, California 
in April and May 1992. 

By the time the riots ended, 63 people had 
been killed. 

Extra Contexts (𝓟𝒆𝒙𝒕)

⋯⋯

⋯⋯

⋯⋯

Q: Where did the Rodney King   
riots happen?

A: Los Angeles County

Q: How many people were killed in  
the Rodney King riots?

A: 63

Question Generator

Q: Where did the Rodney King 
riots happen?

A: San Francisco County

Answer Replacement

The Rodney King riots took place in 
Los Angeles County. 

The Rodney King riots took place in 
San Francisco County. 

63 people were killed in the Rodney 
King riots. 

SUPPORTED

REFUTED

NOT ENOUGH INFO

QA-to-Claim Model

Figure 1: Overview of our QACG framework, consisting of two modules: 1) Question Generator generates
questions from the evidence P and the extra contexts Pext given different answers extracted from the passage (in
green), and 2) QA-to-Claim converts question-answer pairs into claims with different labels.

based on the FEVER dataset. Although we do
not use any human-labeled training examples, the
model achieves over 70% of the F1 performance of
a fully-supervised setting. By finetuning the model
with only 100 labeled examples, we further close
the performance gap, achieving 89.1% of fully-
supervised performance. The above results show
that pretraining the fact verification model with
generated claims greatly reduces the demand for
in-domain human annotation. When evaluating the
model on an unbiased test set for FEVER, we find
that training with generated claims also produces a
more robust fact verification model.

In summary, our contributions are:

• To the best of our knowledge, this is the first work
to investigate zero-shot fact verification.

•We propose QACG, a novel framework to gener-
ate high-quality claims via question generation.

• We show that the generated training data can
greatly benefit the fact verification system in both
zero-shot and few-shot learning settings.

2 Methodology

Given a claim C and a piece of evidence P as
inputs, a fact verification model F predicts a la-
bel Y ∈ {supported,refuted,NEI} to ver-
ify whether C is supported, refuted, or can not be
verified by the information in P .

For the zero-shot setting, we assume no human-
annotated training example is available. Instead,
we generate a synthetic training set based on our
QACG framework to train the model.

2.1 Question Generator and QA-to-Claim
As illustrated in Figure 1, our claim generation
model QACG has two major components: a Ques-
tion Generator G, and a QA-to-Claim modelM.

The Question Generator takes as input an ev-
idence P and a text span A from the given evi-
dence and aims to generate a question Q with A
as the answer. We implement this with the BART
model (Lewis et al., 2020), a large transformer-
based sequence-to-sequence model pretrained on
160GB of text. The model is finetuned on the
SQuAD dataset processed by Zhou et al. (2017),
where the model encodes the concatenation of
the SQuAD passage and the answer text and then
learns to decode the question. We evaluate the ques-
tion generator using automatic and human evalua-
tion and investigate its impact on fact verification
in Appendix A.

The QA-to-Claim Model takes as inputs Q and
A, and outputs the declarative sentence C for the
(Q,A) pair, as shown in Figure 1. We also treat
this as a sequence-to-sequence problem and fine-
tune the BART (Lewis et al., 2020) model on the
QA2D dataset (Demszky et al., 2018), which con-
tains the human-annotated declarative sentence for
each (Q,A) pair in SQuAD.

2.2 Claim Generation
Given the pretrained question generator G and the
QA-to-Claim model M, we then formally intro-
duce how we generate claims with different labels.

Supported claim generation. Given an evi-
dence P , we use named entity recognition to iden-
tify all entities within P , denoted as E . For each
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entity a ∈ E , we treat each a in turn as an answer
and generate a question q = G(P, a) with the ques-
tion generator. The question–answer pair (q, a) are
then sent to the QA-to-Claim model to generate the
supported claim c =M(q, a).

Refuted claim generation. To generate a
refuted claim, after we generate the question–
answer pair (q, a), we use answer replacement
(shown in Figure 1) to replace the answer a with
another entity a′ with the same type such that a′ be-
comes an incorrect answer to the question q. Using
a as the query, we randomly sample a phrase from
the top-5 most similar phrases in the pretrained
Sense2Vec (Trask et al., 2015) as the replacing an-
swer a′. The new pair (q, a′) is then fed to the QA-
to-Claim model to generate the refuted claim.

To avoid the case that a′ is still the correct an-
swer, we define rules to ensure that the a′ has less
lexical overlap with a. However, this problem is
sometimes non-trivial and cannot be completely
avoided. For example, for the QA pair: (“Who
is the producer of Avatar?”; “James Cameron”),
another valid answer a′ is “Jon Landau”, who hap-
pens to be another producer of Avatar. However,
we observe that such coincidences rarely happen:
among the 100 randomly sampled claims, we only
observed 2 such cases. Therefore, we leave them
as the natural noise of the generation model.

NEI claim generation. We need to generate a
question q′ which is relevant but cannot be an-
swered by P . To this end, we link P back to its
original Wikipedia article W and expand the ev-
idence with additional contexts Pext, which are
five randomly-retrieved sentences fromW that are
not present in P . In our example in Figure 1, one
additional context retrieved is “By the time the ri-
ots ended, 63 people had been killed”. We then
concatenate P and Pext as the expanded evidence,
based on which we generate a supported claim
given an entity in Pext as the answer (e.g., “63”).
This results in a claim relevant to but unverifiable
by the original evidence P .

3 Experiments

By applying our QACG model to each of the
18, 541 Wikipedia articles in the FEVER train-
ing set, we generate a total number of 176, 370
supported claims, 360, 924 refuted claims,
and 258, 452 NEI claims. Our generated data is
around five times the size of the human-annotated

claims in FEVER. We name this generated dataset
as QACG-Full. We then create a balanced dataset
QACG-Filtered by randomly sampling 100, 000
samples for each class. Statistics of the FEVER
and the generated dataset are in Appendix B.

Evaluation Datasets. We evaluate fact verifica-
tion on three different test sets based on FEVER:
1) FEVER-S/R: Since only the supported and
refuted claims are labeled with gold evidence
in FEVER, we take the claim–evidence pairs of
these two classes from the FEVER test set for eval-
uation. 2) FEVER-Symmetric: this is a carefully-
designed unbiased test set designed by Schuster
et al. (2019) to detect the robustness of the fact
verification model. Note that only supported
and refuted claims are present in this test set. 3)
FEVER-S/R/N: The full FEVER test set are used
for a three-class verification. We follow Atanasova
et al. (2020) to use the system of Malon (2019) to
retrieve evidence sentences for NEI claims.

Fact Verification Models. As shown in Table 1,
we take a BERT model (S1) and a RoBERTa model
(S2) fine-tuned on the FEVER training set as the
supervised models. Their corresponding zero-shot
settings are Rows U5 and U6, where the models are
trained on our generated QACG-Filtered dataset.
Note that for binary classification (FEVER-S/R
and FEVER-Symmetric), only the supported
and refuted claims are used for training, while
for FEVER-S/R/N, the full training set is used.

We employ four baselines that also do not need
any human-annotated claims to compare with our
method. Random Guess (U1) is a weak base-
line that randomly predicts the class label. GPT2
Perplexity (U2) predicts the class label based on
the perplexity of the claim under a pretrained
GPT2 (Radford et al., 2019) language model,
following the assumption that “misinformation
has high perplexity” (Lee et al., 2020a). MNLI-
Transfer (U3) trains a BERT model for natural lan-
guage inference on the MultiNLI corpus (Williams
et al., 2018) and applies it for fact verification. LM
as Fact Checker (Lee et al., 2020b) (U4) lever-
ages the implicit knowledge stored in the pretrained
BERT language model to verify a claim. The im-
plementation details are given in Appendix C.

3.1 Main Results
Table 1 summarizes the fact verification perfor-
mance, measured by the macro Precision (P ), Re-
call (R), and F1 Score (F1).
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Model
FEVER

-Symmetric FEVER-S/R FEVER-S/R/N

P / R / F1 P / R / F1 P / R / F1

Supervised S1. BERT-base (Devlin et al., 2019) 81.5 / 81.3 / 81.2 92.8 / 92.6 / 92.6 85.7 / 85.6 / 85.6
S2. RoBERTa-large (Liu et al., 2019) 85.5 / 85.5 / 85.5 95.2 / 95.1 / 95.1 88.0 / 87.9 / 87.8

Zero-shot

U1. Random Guess 50.0 / 50.0 / 50.0 50.0 / 50.0 / 50.0 33.3 / 33.3 / 33.3
U2. GPT2 Perplexity 52.7 / 52.7 / 52.7 55.6 / 55.6 / 55.6 35.3 / 35.3 / 35.3
U3. MNLI-Transfer 62.2 / 55.5 / 58.7 63.6 / 60.5 / 61.8 41.4 / 39.6 / 40.7
U4. LM as Fact Checker (Lee et al., 2020b) 71.2 / 64.5 / 67.8 77.9 / 65.6 / 70.2 64.3 / 54.6 / 49.8
U5. QACG (BERT-base) 73.2 / 73.0 / 72.9 74.2 / 74.0 / 74.1 56.5 / 55.7 / 55.9
U6. QACG (RoBERTa-large) 77.3 / 77.0 / 77.1 78.1 / 78.1 / 78.1 64.6 / 62.0 / 62.6

Table 1: Fact verification performance for supervised models and zero-shot models on three different settings.

Comparison with supervised settings. The
zero-shot setting with RoBERTa-large (U6) attains
78.1 F1 on the FEVER-S/R and 62.6 F1 on the
FEVER-S/R/N. The F1 gap to the fully-supervised
RoBERTa-large (S2) is only 17.0 and 15.2 on these
two settings, respectively. These results demon-
strate the effectiveness of QACG in generating
good (evidence, claim) pairs for training the fact
verification model. The RoBERTa model (S2, U6)
is more effective than the BERT model (S1, U5)
for both the zero-shot and the supervised setting.

Comparison with zero-shot baselines. Our
model (U6) achieves the best results among all the
zero-shot baselines across all three test sets. We
find that validating a claim by its perplexity (U2)
only works slightly better than random guess (U1)
(+3.43 F1), showing that misinformation does not
necessary to have high perplexity. Although natural
language inference seems highly correlated with
fact verification, directly transferring the model
trained on the MNLI dataset (U3) only outperforms
random guess by 9.30 F1. We believe this is due to
the domain gap between FEVER (from Wikipedia)
and the MNLI (from fiction, letters, etc.) dataset.
As a generation framework, our model can avoid
the domain gap issue by generating pseudo training
data from the same domain (Wikipedia). Another
reason is the “task gap” between NLI and fact veri-
fication, in which the former makes inference about
the situation described in a sentence, while the lat-
ter focuses on claims about entities in Wikipedia.

Model Robustness. We observe a large perfor-
mance drop when the supervised model is evalu-
ated on the FEVER-Symmetric test set for both the
BERT model (−11.4 F1) and the RoBERTa model
(−9.6 F1). However, the models trained with our
generated data (U2, U3) drop only 1.2 and 1.0 F1

drop. This suggests that the wide range of different
claims we generate as training data helps eliminate
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Figure 2: The few-shot learning experiment. The figure
shows the F1 score on FEVER-Symmetric for progres-
sively larger training dataset sizes.

some of the annotation artifacts present in FEVER,
leading to a more robust fact verification model.

3.2 Few-shot Fact Verification

We then explore QACG’s effectiveness in the few-
shot learning setting where only a few human-
labeled (evidence, claim) pairs are available. We
first train the RoBERT-large fact verification model
with our generated dataset QACG-Filtered. Then
we fine-tune the model with a limited amount of
human-labeled claims in FEVER. The blue solid
line in Figure 2 shows the F1 scores on FEVER-
Symmetric after finetuning with different numbers
of labeled training data. We compare this with train-
ing the model from scratch with the human-labeled
data (grey dashed line).

Our model performs consistently better than
the model without pretraining, regardless of the
amount of labeled training data. The improvement
is especially prominent in data-poor regimes; for
example, our approach achieves 78.6 F1 with only
50 labeled claims for each class, compared with
52.9 F1 without pretraining (+25.7). This only
leaves a 7.9 F1 gap to the fully-supervised setting
(86.5 F1) with over 100K training samples. The re-
sults show pretraining fact verification with QACG
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Evidence Generated Claim

Budapest is cited as one of the most beautiful
cities in Europe, ranked as the most liveable
Central and Eastern European city on EIU’s
quality of life index, ranked as “the world’s
second best city” by Conde Nast Traveler,
and “Europe’s 7th most idyllic place to live”
by Forbes.

SUPPORTED claims
Budapest is ranked as the most liveable city in central Europe.
Budapest ranks 7th in terms of idyllic places to live in Europe.

REFUTED claims
Budapest ranks in 11th in terms of idyllic places to live in Europe.
Budapest is ranked the most liveable city in Asia.

NEI claims
Budapest is one of the largest cities in the European Union.
Budapest is the capital of Hungary.

Alia Bhatt received critical acclaim for portraying
emotionally intense characters in the road drama
Highway (2014), which won her the Filmfare
Critics Award for Best Actress, and the crime
drama Udta Punjab (2016), which won her the
Filmfare Award for Best Actress.

SUPPORTED claims
Bhatt won the Filmfare Award for Best Actress in Udta Punjab.
Bhatt received the Filmfare Critics Award for her role in Highway.

REFUTED claims
Alia Bhatt won the Best Original Screenplay award in Highway.
2 States (2014) won Alia Bhatt the Filmfare Award for Best Actress.

NEI claims
Alia Bhatt made her acting debut in the 1999 thriller Sangharsh.
Bhatt played her first leading role in Karan Johar’s romantic drama.

Table 2: Examples of evidence and claims generated by QACG, categorized by class labels. In the evidence, the
identified answers for question generation are highlighted in blue. For claims, the correct answers are highlighted
in blue for SUPPORTED claims and the replaced wrong answers are in red for REFUTED claims.

Evidence: Roman Atwood is best known for his vlogs,
where he posts updates about his life.

Claim: Roman Atwood is a content creator.
Evidence: In 2004, Slovenia entered NATO and the

European Union.
Claim: Slovenia uses the euro.
Evidence: He has traveled to Chad and Uganda to raise

awareness about conflicts in the regions.
Claim: Ryan Gosling has been to a country in Africa.

Table 3: Examples of claims in FEVER that require
commonsense or world knowledge (underlined).

greatly reduces the demand for in-domain human-
annotated data. Our method can provide a “warm
start” for fact verification system when applied to
a new domain where training data are limited.

3.3 Analysis of Generated Claims

Table 2 shows representative claims generated by
our model. The claims are fluent, label-cohesive,
and exhibit encouraging language variety. How-
ever, one limitation is that our generated claims are
mostly lack of deep reasoning over the evidence.
This is because we finetune the question generator
on the SQuAD dataset, in which more than 80% of
its questions are shallow factoid questions.

To better understand whether this limitation
brings a domain gap between the generated claims
and the human-written claims, we randomly sam-
pled 100 supported claims and 100 refuted
and analyze whether reasoning is involved to verify
those claims. We find that 38% of the supported

claims and 16% of the refuted claims in FEVER
require either commonsense reasoning or world
knowledge to verify. Table 3 show three typical
examples. Therefore, we believe this domain gap
is the main bottleneck of our system. Future stud-
ies are required to generate more complex claims
which involves multi-hop, numerical, and common-
sense reasoning, such that we can apply our model
to more complex fact checking scenario.

4 Conclusion and Future Work

We utilize the question generation model to ask
different questions for given evidence and convert
question–answer pairs into claims with different
labels. We show that the generated claims can train
a well-performing fact verification model in both
the zero-shot and the few-shot learning setting. Po-
tential future directions could be: 1) generating
more complex claims that require deep reasoning;
2) extending our framework to other fact checking
domains beyond Wikipedia, e.g., news, social me-
dia; 3) leveraging generated claims to improve the
robustness of fact checking systems.
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Ethical Considerations

We discuss two potential issues of claim genera-
tion, showing how our work sidesteps these issues.
While individuals may express harmful or biased
claims, our work only focuses on generating fac-
toid claims from a corpus. In this work, we take
Wikipedia as the source for objective fact. Practic-
ing this technique thus requires the identification
of an appropriate source of objective truth to gener-
ate claims from. Another potential misuse of claim
generation is to generate refuted claims and sub-
sequently spread such misinformation. We caution
practitioners to treat the generated claims with care.
In our case, we use the generated claims only to
optimize for the downstream fact verification task.
We advise against releasing generated claims for
public use — especially on public websites, where
they may be crawled and then subsequently used
for inference. As such, we will release the model
code but not the output in our work. Practitioners
can re-run the training pipeline to replicate experi-
ments accordingly.
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A Evaluation of Question Generation

To implement the question generator, we finetune
the pretrained BART model provided by Hugging-
Face library on the SQuAD dataset. The codes
are based on the SimpleTransformers2 library. The
success of our QACG framework heavily rely on
whether we can generate fluent and answerable
questions given the evidence. Therefore, we sep-
arately evaluate the question generator using both
automatic and human evaluation and investigate its
impact to zero-shot fact verification.

A.1 Automatic Evaluation
We employ BLEU-4 (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007), and ROUGE-
L (Lin, 2004) to evaluate the performance of our
implementation. We compare the BART model
with several state-of-the-art QG models, using their
reported performance on the Zhou split of SQuAD.

Table 4 shows the evaluation results compar-
ing against all baseline methods. The BART
model achieves a BLEU-4 of 21.32, outperforming
NQG++, S2ga-mp-gsa, and CGC-QG by large mar-
gins. This is as expected since these three baselines
are based on Seq2Seq and do not apply language
model pretraining. Compared with the current state-
of-the-art model UniLM, the BART model achieves
comparable results, with slightly lower BLEU-4
but higher METEOR.

Model B4 MR RL

NQG++ (Zhou et al., 2017) 13.5 18.2 41.6
S2ga-mp-gsa (Zhao et al., 2018) 15.8 19.7 44.2
CGC-QG (Liu et al., 2020a) 17.6 21.2 44.5
UniLM (Dong et al., 2019) 23.8 25.6 52.0
BART (Lewis et al., 2020) 21.3 27.1 43.6

Table 4: Performance evaluation of the Question Gen-
erator with different model implementations. We adopt
the BART model in our QACG framework. B4: BLEU-
4, MR: METEOR, RL: ROUGE-L.

A.2 Impact of Answerability
Given the evidence P and the answer A, the gen-
erated question Q must be answerable by P and

2https://github.com/ThilinaRajapakse/simpletransformers
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Model Answerable FV Performance
Rate P / R / F1

NQG++ 63.0% 62.2 / 62.4 / 62.3
BART 89.5% 76.3 / 76.0 / 76.1

Table 5: Answerable Rate: the ratio of answerable ques-
tions generated by the NQG++ and the BART model.
FV Performance: the zero-shot fact verification perfor-
mance on the FEVER-Symmetric.

take A as its correct answer. This is the premise of
generating a correct SUPPORTED claim. There-
fore, we specially evaluate this answerability prop-
erty via human ratings. We randomly sample 100
generated question-answer pairs with their corre-
sponding evidence and ask two workers to judge
the answerability of each sample. We do this for
both the NQG++ model and the BART model. To
investigate the impact of question quality on the
fact verification performance, we separately use
the NQG++ and BART as the question generator
to generate claims and train the RoBERTa model.
The performance is summarized in Table 5.

We find that the ratio of answerable questions
generated by the BART model is 89.5%, signif-
icantly outperforms the 63.5% achieved by the
NQG++ model. When switching the question gen-
erator to NQG++, the fact verification F1 drops to
62.3 (−22.1% compared with BART). This shows
that answerability plays an important role in ensur-
ing the validity of the generated claims and has a
huge impact on the fact verification performance.

B Dataset Statistics

Table 6 shows the basic data statistics of the
FEVER, FEVER-Symmetric, and our generated
dataset by QACG. We use the balanced dataset
QACG-Filtered sampled from QACG-Full to train
the fact verification model in the zero/few-shot set-
ting. Compared with the original FEVER dataset,
our generated QACG-Filtered dataset has a bal-
anced number of claims for each class. Moreover,
because QACG can generate three different types
of claims for the same given evidence (shown in
Figure 1), it results in a more “unbiased” dataset in
which the model must rely on the (evidence, claim)
pair rather than the evidence itself to make an infer-
ence of the class label.

C Model Implementation Details

BERT-base and RoBERTa-large (S1, S2, U5,
U6). We use the bert-base-uncased

Dataset Supported Refuted NEI

FEVER Train 80,035 29,775 35,517
Test 6,666 6,666 6,666

FEVER-Symmetric 710 710 −

QACG Full 176,370 360,924 258,452
Filtered 100,000 100,000 100,000

Table 6: Basic statistics of the FEVER dataset and the
dataset generated by QACG.

(110M parameters) and the roberta-large
(355M parameters) model provided by Hugging-
Face library to implement the BERT model and
the RoBERTa model, respectively. The model is
fine-tuned with a batch size of 16, learning rate of
1e-5 and for a total of 5 epochs, where the epoch
with the best performance is saved.

GPT2 Perplexity (U2). To measure the perplex-
ity, we use the HuggingFace implementation of the
medium GPT-2 model (gpt2-medium, 345M pa-
rameters). We then rank the claims in the FEVER
test set by their perplexity under the GPT-2 model.
We then predict the label for each claim based on
the assumption that misinformation has high per-
plexity. However, manually setting the perplexity
threshold is difficult. Since the FEVER test set con-
tains an equal number of claims for each class, we
predict the claims in the top 1/3 of the ranking list
as refuted, and the bottom 1/3 as supported.
The rest claims are set as NEI. Therefore, the num-
ber of predicted labels for each class is also equal.

MNLI-Transfer (U3). We use the HuggingFace
– BERT base model (110M parameters) fine
tuned on the Multi-Genre Natural Language In-
ference (MNLI) corpus3, a crowd-sourced col-
lection of 433K sentence pairs annotated with
textual entailment information. We then di-
rectly apply this model for fact verification in the
FEVER test set. The class label entailment,
contradiction, and neutral in the NLI task
is mapped to supported, refuted, and NEI,
respectively, for the fact verification task.

LM as Fact Checker (U4). Since there is no
public available code for this model, we imple-
ment our own version following the settings de-
scribed in Lee et al. (2020b). We use Hugging-
Face’s bert-base as the language model to pre-
dict the masked named entity, and use the NLI
model described in U3 as the entailment model.

3https://huggingface.co/textattack/bert-base-uncased-
MNLI


