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Abstract

Adaptive Computation (AC) has been shown
to be effective in improving the efficiency of
Open-Domain Question Answering (ODQA)
systems. However, current AC approaches re-
quire tuning of all model parameters, and train-
ing state-of-the-art ODQA models requires
significant computational resources that may
not be available for most researchers. We
propose Adaptive Passage Encoder, an AC
method that can be applied to an existing
ODQA model and can be trained efficiently
on a single GPU. It keeps the parameters of
the base ODQA model fixed, but it overrides
the default layer-by-layer computation of the
encoder with an AC policy that is trained
to optimise the computational efficiency of
the model. Our experimental results show
that our method improves upon a state-of-the-
art model on two datasets, and is also more
accurate than previous AC methods due to
the stronger base ODQA model. All source
code and datasets are available at https://
github.com/uclnlp/APE.

1 Introduction

Open-Domain Question Answering (ODQA) re-
quires finding relevant information for a given ques-
tion and aggregating the information to produce
an answer. The retriever-reader architecture, pop-
ularised by Chen et al. (2017), has shown great
success in this task. The retriever acquires a set of
documents from external sources (e.g., Wikipedia)
and the reader extracts the answer spans from
these documents (Clark and Gardner, 2018; Yang
et al., 2019; Wang et al., 2019; Min et al., 2019;
Asai et al., 2020). Recently, Min et al. (2020);
Lewis et al. (2020b); Izacard and Grave (2020b)
showed that generative reader models that exploit
an encoder-decoder architecture can significantly
outperform previous extractive models, thanks to

Figure 1: Overview of our approach. The adaptive pas-
sage encoder overrides the layer-by-layer computation
of the encoder with an adaptive computation policy (in-
dicated in blue dash arrows).

their better capability in aggregating and combin-
ing evidence from multiple passages. However,
these generative models are much more compu-
tationally expensive than extractive models, and
often need to be trained with a large number of
passages, making it hard to train these models for
most researchers (Schwartz et al., 2020a).

Wu et al. (2020) show that Adaptive Computa-
tion (AC) can significantly improve the efficiency
of extractive ODQA models at inference time.
However, it requires fine-tuning all model parame-
ters with a multitask learning objective, making it
computationally challenging to apply this method
to current state-of-the-art models.

In this work, we explore an efficient approach
to apply adaptive computation to large generative
ODQA models. We introduce the Adaptive Pas-
sage Encoder (APE), a module that can be added
to the encoder of an existing ODQA model, which
has the following features: 1) it efficiently reuses
the encoder’s hidden representations for calculating

https://github.com/uclnlp/APE
https://github.com/uclnlp/APE
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the AC priorities; 2) it does not require tuning of
the base model and hence allows efficient training
under limited resource; 3) it does not require confi-
dence calibration. Our experimental results on Nat-
uralQuestions and TriviaQA show that our method
improves the performance of the state-of-the-art
model FiD (Izacard and Grave, 2020b), while also
producing more accurate results (12.4% EM) than
the AC method proposed by Wu et al. (2020).

2 Related Work

Open Domain Question Answering ODQA is
a task that aims to answer a factoid question given
a document corpus. Most works in this domain
follow a retriever-reader design first proposed by
Chen et al. (2017). The retriever collects a set of
relevant passages, then the reader comprehends and
aggregates the information from multiple passages
to produce the answer. Depending on the design
of the reader model, these systems could be further
categorised into extractive models and generative
models. Extractive models (Min et al., 2019; Yang
et al., 2019; Wang et al., 2019; Asai et al., 2020;
Karpukhin et al., 2020) exploit an answer extrac-
tion model to predict the probabilities of answer
spans, and use global normalisation (Clark and
Gardner, 2018) to aggregate the answer probabili-
ties across multiple passages.

However, thanks to recent advances in sequence-
to-sequence pretrained language models (Raffel
et al., 2020; Lewis et al., 2020a), generative ODQA
models (Min et al., 2020; Lewis et al., 2020b;
Izacard and Grave, 2020b) achieve significant im-
provement upon extractive models, demonstrating
stronger capability in combining evidence from
multiple passages. We focus on generative models
in this work.

Passage Retrieval and Re-Ranking Passage re-
trievers in ODQA systems are initially based on
sparse vector representations. Chen et al. (2017)
use TF-IDF, whereas Yang et al. (2019); Karpukhin
et al. (2020); Wang et al. (2019) rely on BM25
for ranking passages (Robertson, 2004). Recently,
Karpukhin et al. (2020); Lewis et al. (2020b); Izac-
ard and Grave (2020a) achieved substantial in-
crease in retrieval performance using dense rep-
resentations. Our work is based on the retrieval
results from a dense retriever (Izacard and Grave,
2020b), but we show that the proposed method can
still improve the quality of the support passages
despite the strong retrieval performance.

Nogueira and Cho (2019); Qiao et al. (2019);
Mao et al. (2021) show that adding a separate
cross-encoder re-ranker can improve the perfor-
mance, but that comes with a significant increase
of the computation at train or inference time. De-
spite that our proposed adaptive passage encoder
can be viewed as an encoder with an integrated
re-ranker, the focus of our work is to improve the
computational efficiency, namely, enhancing the
performance without a substantial increase in com-
putation.

Adaptive Computation Adaptive computation
allows the model to condition the computation cost
on the input. For example, Schwartz et al. (2020b);
Liu et al. (2020); Xin et al. (2020) propose models
that can dynamically decide to early exit at inter-
mediate layers when the confidence at the layer
exceeds a threshold. They show that adaptively
early exiting can significantly reduce the computa-
tional cost for various sequence classification tasks.
Closest to our work, Wu et al. (2020) introduced
adaptive computation for extractive ODQA mod-
els. We extend adaptive computation to generative
ODQA models, and our approach can be incorpo-
rated in existing generative ODQA models without
finetuning the base model.

3 Method

In this section, we will introduce the base model
and how our proposed adaptive passage encoder
works with it.

3.1 Base Model
Large generative ODQA models (Lewis et al.,
2020b; Izacard and Grave, 2020b) share a similar
encoder-decoder architecture. They first concate-
nate the question with all retrieved passages. Then
the encoder encodes all passages and produces their
hidden representations hL1 , · · · , hLN , where L is the
number of encoder layers and N is the number
of retrieved passages. We denote the hidden rep-
resentation of the i-th passage at its j-th encoder
layer as hji . The decoder will attend to these hid-
den representations and generate the answer tokens
sequentially.

3.2 Adaptive Passage Encoder
As shown in Fig. 1, the adaptive passage encoder
overrides the layer-by-layer computation of the en-
coder of the base model with an adaptive computa-
tion policy. It adds two components on top of the
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base encoder to define the policy: an answerability
prediction model HasAnswer and a scheduler.

The HasAnswer model predicts the probability
that a passage contains an answer to the question,
given its hidden representation hji . It first pools hid-
den representation hji into a vector, then feeds the
pooled representation to a multi-layer perceptron
to produce the probability pji .

The scheduler is then responsible for the selec-
tion and prioritisation of passages that are likely to
contain the answer (Wu et al., 2020). As shown
by the blue arrows in Fig. 1, the scheduler learns a
scheduling policy to allocate encoder layer compu-
tation to passages. The scheduler will exit in early
layers for those spurious passages while allocating
more layers to the ones that it finds promising.

To achieve this goal, the scheduler produces a
priority score qn for each passage:

qn = σ(g(plnn , n, ln))p
ln
n + f(plnn , n, ln) (1)

where n is the passage rank by the retriever, ln is
the index of its current encoder layer, g and f are
two multi-layer perceptrons that learn the weight
and bias respectively. Starting at the initial layer
for all passages, the scheduler will select a passage
with the maximum priority, forward one encoder
layer for it l′n = ln + 1, and updates its priorities
qn with its new hidden representation hl

′
n
n and has-

answer probability pl
′
n
n . This process will iterate

for B (budget) steps, and only k passages with the
most layers computed are retained in the end.

3.3 Training the Adaptive Passage Encoder

Differently from Wu et al. (2020), our method
does not require tuning the underlying base model.
Since the number of parameters introduced by the
HasAnswer model and the scheduler is less than
4% of the base model, APE can be trained very effi-
ciently. The HasAnswer model is first trained with
cross-entropy loss, supervised by the has-answer
labels of the passages. Then we fix HasAnswer
and train the scheduler with REINFORCE algo-
rithm (Williams, 1992) to maximise the expected
return, which is defined to encourage selection and
prioritisation of passages that contain the answer.
The selection action gains a positive reward (1− c)
if it selects a relevant passage, otherwise a negative
reward−c. Since the weight g and bias f in Eq. (1)
are automatically learned during the training of the
scheduler, our method does not require confidence

Train Validation Test

NaturalQuestions 79,168 8,757 3,610
TriviaQA 78,785 8,837 11,313

Table 1: Number of samples of the evaluated datasets.

calibration of the HasAnswer model, unlike the
method proposed by Wu et al. (2020).

4 Experiments

4.1 Experimental Setup

Datasets Following (Lee et al., 2019; Izacard and
Grave, 2020b), we evaluate our method on Natu-
ralQuestions (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017) whose statistics are shown
in Table 1.

Evaluation Metrics Following Wu et al. (2020),
we conduct the evaluation under different computa-
tional costs at inference time. Since the number of
passages k is almost linearly correlated with mem-
ory consumption and number of operations, we
evaluate the performances with various number of
passages k ∈ {5, 10, 20}. To evaluate the end per-
formance of ODQA models, we use the standard
Exact Match (EM) score, which is the proportion of
questions whose predicted answer matches exactly
with the ground truth. We also include the unre-
stricted setting to compare the best performances
of different models.

Technical Details We use FiD (Izacard and
Grave, 2020b) as our base model. FiD-base and
FiD-large contain L = 12 and 24 layers respec-
tively, and we set the budgetB = Lk. For the pool-
ing operation in the HasAnswer model, we found
max-pooling works better than mean-pooling and
the [CLS] token, so max-pooling is used in all our
experiments. We use discount factor γ = 0.8 and
step penalty c = 0.1 during the REINFORCE train-
ing of the scheduler. More hyperparameters are
presented in Appendix A.1.

Computational Feasibility Tuning a FiD-base
model with k = 20 or a FiD-large model with
k = 10 (batch size=1) would yield out-of-memory
errors on a V100 (16GB) GPU. Hence, it is infeasi-
ble to train FiD with the previous AC method (Wu
et al., 2020) in our setting. However, training with
our proposed approach can be done in the same
setting with a batch size 4 or larger within 8-15
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NaturalQuestions TriviaQA

Top-5 Top-10 Top-20 Unrestricted Top-5 Top-10 Top-20 Unrestricted

SkylineBuilder (Wu et al., 2020) 34.4 34.2 - 34.2 - - - -
DPR (Karpukhin et al., 2020) - 40.8 - 41.5 - - - 57.9
DPR (our implementation) 38.4 40.2 40.2 40.2 - - - -

RAG (Lewis et al., 2020b) 43.5 44.1 44.1 44.5 - - - 56.1

FiD-base (Izacard and Grave, 2020b) 39.5 42.9 45.3 48.2 53.9 57.9 60.7 65.0
Ours (APE+FiD-base) 40.3 43.7 46.0 48.2 55.4* 59.0* 62.0* 65.0

FiD-large (Izacard and Grave, 2020b) 42.5 45.8 48.3 51.4 57.2 60.6 63.7 67.6
Ours (APE+FiD-large) 43.4 46.6 49.1 51.4 57.9 61.4* 64.1* 67.6

Table 2: Exact match scores on NaturalQuestions and TriviaQA test sets. * indicates statistical significance.

NaturalQuestions TriviaQA

Top-5 Top-10 Top-20 Top-100 Top-5 Top-10 Top-20 Top-100

BM25 (Lee et al., 2019) - - 59.1 73.7 - - 66.9 76.7
DPR (Karpukhin et al., 2020) 67.1 - 78.4 85.4 - - 79.4 85.0

FiD (Izacard and Grave, 2020b) 66.2 73.9 79.2 86.1 69.8 74.9 78.9 84.8
Ours (APE+FiD-base) 67.4* 75.1* 80.4* 86.1 70.8* 75.8* 79.5 84.8
Ours (APE+FiD-large) 67.2 75.4* 80.2* 86.1 70.4 75.6* 79.2 84.8

Table 3: Top-k retrieval accuracy scores on NaturalQuestions and TriviaQA test sets. * indicates statistical signifi-
cance.

hours.

4.2 Experimental Results

As shown in Table 2 under restricted top-k, our
proposed method improves upon the FiD model
on both datasets, and by a statistically significant
margin on TriviaQA. It also outperforms the previ-
ous AC method (Wu et al., 2020) by 12.4% when
k = 10 due to the stronger base model. The addi-
tion of APE allows FiD to significantly outperform
RAG (Lewis et al., 2020b) on NaturalQuestions
when k ∈ {10, 20}.

Previous adaptive computation methods (Wu
et al., 2020; Schwartz et al., 2020b) was reported
to have plateaued or degraded performances in the
unrestricted setting. However, Table 2 shows that
our approach does not have this issue.

4.3 Analysis of Passage Quality

To understand how APE outperforms the baselines,
we analyse the quality of the final top-k passages
retained by APE. Table 3 reports the top-k retrieval
accuracy of the top-k passages. The results show
that the top-k accuracy of the selected collection
of documents by APE is significantly better than
BM25, DPR, and FiD, which are strong retrieval

baselines for ODQA. Combined with Table 2, it
indicates that the better passage quality yielded by
APE helps to improve the end ODQA performance
of the model.

5 Conclusions

In this work, we explore an adaptive computation
method that can be efficiently applied to an ex-
isting generative ODQA model. We find that, by
replacing the encoder of generative ODQA models
with our proposed adaptive passage encoder, we
can train an effective adaptive computation policy
without tuning the base model. This allows apply-
ing adaptive computation to large state-of-the-art
generative models, which was previously challeng-
ing computation-wise. Our experimental results
show that our method produces more accurate re-
sults than a state-of-the-art generative model on
both NaturalQuestions and TriviaQA, and it outper-
forms the previous AC method by a large margin.
The analysis also shows that our approach achieves
better passage quality that leads to improvements
in ODQA performance.
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A Experimental Details

A.1 Hyper-parameters

Hyper-parameter Value

learning rate 1e-4
batch size 24
epoch 2
optimiser Adam
Adam ε 1e-6
Adam (β1, β2) (0.9, 0.999)
max sequence length 256
pooling max-pooling
number of passages 5/10/20
device Nvidia V100

Table 4: Hyper-parameters for the HasAnswer model
training.

Hyper-parameter Value

learning rate 0.01
batch size 24
epoch 1
optimiser Adam
max number of steps 240
step cost c 0.1
discount factor γ 0.8
hidden size of MLPs 64
number of passages 20/30/50

Table 5: Hyper-parameters for scheduler model REIN-
FORCE training.


