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Abstract

High-quality alignment between movie scripts
and plot summaries is an asset for learning to
summarize stories and to generate dialogues.
The alignment task is challenging as scripts
and summaries substantially differ in details
and abstraction levels as well as in linguistic
register. This paper addresses the alignment
problem by devising a fully unsupervised ap-
proach based on a global optimization model.
Experimental results on ten movies show the
viability of our method with 76% F1-score and
its superiority over a previous baseline. We
publish alignments for 914 movies to foster re-
search in this new topic.

1 Introduction

Motivation and Problem. An important aspect of
language understanding is the ability to produce a
concise and fluent summary of stories, dialogues
and other textual contents. Automatic text summa-
rization is a long-standing topic in natural language
processing (Nenkova and McKeown, 2012; Dey
and Das, 2020), with numerous approaches for a
variety of inputs, largely focusing on news articles
and scholarly publications (e.g., See et al. (2017);
Hardy et al. (2019); Lev et al. (2019)).

In this paper, our focus is on less explored nar-
rative texts such as books and movie scripts. Our
goal is to automatically align scenes from movie
scripts with sentences from plot summaries. Such
alignments support story browsing and explorative
search over screenplays (e.g., find all love scenes),
and can also be an asset towards improving summa-
rization and text-generation models for dialogues
and other narratives.

Figure 1 shows an example: a scene snippet from
the movie script of Shrek, and its corresponding
sentence from the plot description of the movie’s
Wikipedia article. Establishing this alignment is
challenging for three reasons:

• Input Length: Movies have many scenes (often
more than a hundred), with longer dialogues
or multi-person conversations. Plot summaries,
on the other hand, are much shorter (e.g., 700
words for Shrek on Wikipedia).
• Disparate Registers: Scripts and summaries

have fundamentally different registers (i.e., lan-
guage styles, vocabulary and structure). Scripts
are dominated by direct speech in dialogues,
whereas plot summaries consist of, often com-
plex, descriptive sentences and may introduce
abstractions (e.g. “fell in love ...” instead of
giving details on dating, kissing etc.).
• Disparate Granularities: Scripts contain ev-

ery detail of the screenplay, whereas sum-
maries focus on salient points and can leave out
less important sub-stories. Thus, the units in
scripts–scenes–and the units in plot summaries–
sentences–are difficult to match.

Narrative Alignment Task: Given a script S con-
sisting of a sequence of m scenes {s1, s2, ..., sm}
and a summary U of n sentences {u1, u2, ..., un},
the narrative alignment task is to find a mapping
between S and U , where both sides can be par-
tial (i.e., some scenes and some sentences are not
mapped) and certain constraints are satisfied.

Prior Work and its Limitations. The task of
aligning narratives across different registers, like
script dialogues and plot summaries, has not re-
ceived much attention before. Gorinski and Lap-
ata (2015) proposed a graph-based summarization
method for movie scripts, exploiting given align-
ments between script scenes and plot sentences, to
select a chain of scenes representing a film’s story.
Their focus was on the generation of the textual
summary, and the alignment itself was addressed
merely by simple best-match heuristics based on
Nelken and Shieber (2006). Nevertheless, as this
work is the relatively closest to ours, it is treated as
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Script:
Suddenly the magic of the spell pulls Fiona away. She’s lifted up into the air and she hovers there while
the magic works around her. Suddenly Fiona’s eyes open wide. She’s consumed by the spell and then is
slowly lowered to the ground.

SHREK: (going over to her) Fiona? Fiona. Are you all right?
FIONA: (standing up, she’s still an ogre) Well, yes. But I don’t understand.

I’m supposed to be beautiful.
SHREK: But you ARE beautiful.

Summary:
Fiona is bathed in light as her curse is broken but is surprised that she is still an ogre, as she thought she would become beautiful,
to which Shrek replies that she is beautiful

Figure 1: Snippet from Shrek’s script, and its summary sentence from Shrek’s Wikipedia article.

the baseline against which we evaluate our method.
Tapaswi et al. (2015) used a graph-based method
to compute an alignment between book chapters
and video scenes using matching dialogues and
characters as cues. As far as we know, our work
is the first in-depth investigation of the narrative
alignment task between movie scripts and plot sum-
maries.

Approach and Contributions. We model the nar-
rative alignment task as a global optimization over
the possible pairs of scene-sentence mappings. To
cope with disparate language registers, we devise
embedding-based similarity measures. To cope
with the length issue and different granularities,
we design this for partial mappings where not all
scenes and not all sentences need to be mapped.
Typically, a notable subset of scenes is left out, but
most sentences are aligned. To keep the alignments
concise, we constrain the number of scenes that a
sentence can be mapped to, and vice versa. Fur-
thermore, we assume that script and summary both
follow the chronology of events in the movie. This
is modeled as a constraint for approximate order-
preservation. All these considerations are cast into
an Integer Linear Program (ILP).

The salient contributions of our work are:
• a fully unsupervised methodology using ILP

for aligning two narratives, and
• an aligned corpus of movie scripts and plot

summaries for 914 movies, which can serve as
training data for text summarization and story
generation tasks.

2 Approach

Our alignment method, AligNarr, has three steps:
(i) pre-processing, which includes linking names
found in both inputs, (ii) building a similarity ma-
trix between the text units of the two narratives,
and (iii) constructing the alignment mapping given
the similarity matrix as input.

2.1 Pre-Processing
Given a movie script S and its summary U , we first
segment them into corresponding units si and uj ,
which are scenes and sentences respectively. An in-
terior or exterior indicator ‘INT.’ or ‘EXT.’ is com-
monly used to mark a scene heading–separating
different scenes–followed by a location or setting.
A scene usually contains narrative descriptions as
well as dialogue lines, as shown in Figure 1.

Linking Story Entities. We retrieve all phrases
that are capitalized, as well as speaker names that
start the dialogue lines in a given script, as candi-
date names, excluding the beginning of sentences.
However, in movie scripts it is often the case that
words are in all-capitals for emphasis, e.g., ‘ARE’
in Figure 1. Therefore, we first ran Truecaser1 (Lita
et al., 2003) to avoid having such words identified
as candidate names.

For each pair of collected candidate names, we
compute string similarity based on Levenshtein
distance using FuzzyWuzzy2. Given the distance
matrix between pairs of names, we then cluster
the names using the DBSCAN algorithm (Ester
et al., 1996) in order to have a cluster of names
representing one story entity, e.g., E40: {‘Fiona’,
‘FIONA’, ‘Princess Fiona’}.

To resolve pronouns, we run AllenNLP corefer-
ence resolution3, an end-to-end neural model (Lee
et al., 2017) leveraging SpanBERT embeddings
(Joshi et al., 2020). All occurrences of clustered
names in the script and summary are then replaced
with the corresponding entity identifier (e.g., E40).
Note that we only consider linking story entities
appearing in the summary, since they represent a
subset of story entities that are central to the story.

1github.com/nreimers/truecaser
2github.com/seatgeek/fuzzywuzzy
3demo.allennlp.org/coreference-

resolution

https://github.com/nreimers/truecaser
https://github.com/seatgeek/fuzzywuzzy
https://demo.allennlp.org/coreference-resolution
https://demo.allennlp.org/coreference-resolution
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2.2 Similarity Matrix
We investigate three methods to measure similarity
between units of script S and summary U :

Document Relevance Score. After removing stop
words and punctuation, we compute the relevance
scores of script units {s1, ..., sm} (as the document
collection D), for a given summary unit uj (as the
query q), using a ranking function. In this work,
we use BM25 (Robertson and Zaragoza, 2009), a
TF-IDF-based ranking function.

Word Overlap Score. We consider the sum of
intersecting story entities and words (excluding
stop words) that are similar (e.g., ‘married’ in si
and ‘wedding’ in uj), weighted by their similarity
scores. As the similarity score between two words,
we take the cosine similarity of word2vec embed-
dings (Mikolov et al., 2013); words are considered
to be similar if their cosine similarity is above 0.5.

Sentence Similarity Score. We first compute
sentence embeddings for a given summary unit
uj and all sentences in a script unit si, us-
ing RoBERTa (Liu et al., 2019) in Sentence-
Transformers4 (Reimers and Gurevych, 2019) opti-
mized for the task of Semantic Textual Similarity
(stsb-roberta-large). Taken as the similarity score
is the highest cosine similarity between uj’s em-
beddings and embeddings of sentences in si. For
practical reasons, we only compute sentence simi-
larity scores for pairs of script and summary units
with non-zero word overlap scores.

2.3 Alignment Mapping
Given a similarity matrix between units of script
S = {s1, ..., sm} and summary U = {u1, ..., un},
we devise an Integer Linear Programming (ILP)
model to optimize the overall alignment mapping
as follows:

Objective Function. We want to maximize
the story coherence between S and U in
terms of textual similarity between the units:
max

∑
i

∑
j sim(si, uj) · Xij , where sim(si, uj)

is a numeric feature indicating the similarity or re-
latedness of si and uj resulting from the previous
step, and Xij is a decision variable: Xij = 1 if si
and uj are aligned, 0 otherwise.

Constraints. We define the following constraints
to make sure that the alignment mapping follows
the linear constraint of both narratives:

4sbert.net/

• Each summary sentence can only be aligned
with at most r scenes:

∑
j X∗j ≤ r.

• Each summary sentence can only be aligned
with a block of r consecutive scenes:∑

i

∑
j

∑
kXij + Xkj ≤ 1 if k ≥ i + r and∑

i

∑
j

∑
kXij +Xkj ≤ 1 if k ≤ i− r, i ≥ r.

• The next summary sentence can only be about
the same or the next scenes:

∑
i

∑
j

∑
kXij +

Xkj+1 ≤ 1 if k < i, j < n− 1.
• The previous summary sentence can only

be about the same or the previous scenes:∑
i

∑
j

∑
kXij +Xkj−1 ≤ 1 if k > i, j > 0.

Candidate Space Pruning. To speed up the ILP
inference, we exclude pairs of script and summary
units, si and uj , which are unlikely to be aligned.
We employ the following pruning conditions:
• Given a summary unit uj , we only consider

scenes that yield similarity scores above θ in
the ranked list of scenes.
• Given the most similar scene stop to a summary

unit uj , we only consider scenes si in which
sim(stop, uj)− sim(si, uj) < σ.
• The candidate pairs (si, uj) are within the diag-

onal line boundaries as depicted in Figure 2,
by considering only (i, j) pairs that satisfy
j < ni/m + τn and i < mj/n + τm with
hyper-parameter τ .

3 Experiments

Figure 2: Ground truth alignment for ten movies.

Dataset. We used the ScriptBase corpus5 (Gorin-
ski and Lapata, 2015, 2018) that contains pre-
processed scripts (with various automatic annota-
tions and scene segmentation), along with the cor-
responding plot summaries taken from Wikipedia.
Data statistics are given in Table 3. Two annota-
tors manually created the alignment mappings for
ten movies with varying script lengths, yielding
inter-annotator agreement of 0.79 Fleiss’ κ. The

5github.com/EdinburghNLP/scriptbase

https://www.sbert.net/
https://github.com/EdinburghNLP/scriptbase
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P R F1

Gorinski and Lapata (2015) .520 .739 .482

AligNarr bm25 .757 .719 .737
AligNarr bm25·w2v .789 .716 .746
AligNarr bm25·sts .789 .734 .756
AligNarr bm25·sts·w2v .808 .720 .754

AligNarr bm25·sts non-ILP .690 .717 .702

Table 1: AligNarr’s performance against baseline.

ground-truth alignments (for which both annota-
tors agree) are shown in Figure 2. These mappings
confirm our intuition that a summary normally fol-
lows the corresponding script narration in a linear
manner, with very few exceptions.

Hyper-Parameters. We defined r (in Section 2.3)
as the average ratio of scenes to summary sentences
dm/ne based on ten movies, setting it to r = 5.
θ was set to the 50th percentile (i.e., the median).
σ was set to the standard deviation of similarity
scores for all scenes given the summary sentence
uj . Hyper-parameter τ , for pruning elements out-
side the diagonal line boundaries, was set to 0.3.

Baseline. Gorinski and Lapata (2015) used a clas-
sifier with sentence-level features (lemma overlap
and word stem similarity) to compute sentence-to-
sentence alignments. These aligned sentences were
then used to identify aligned scene-sentence pairs
forming the “gold chain” of scenes in this work
(which focused more on the subsequent summariza-
tion task), in which a scene contains at least one
sentence aligned with a summary sentence. They
reported a precision of .53 at a recall rate of .82 for
four movies. We re-ran their aligner (provided by
the authors) on ten movies in our dataset.

4 Results and Discussion
We report macro-averaged precision (P), recall (R)
and F1 results in Table 1. The best performing
AligNarr variant, which runs ILP on the combina-
tion of document relevance and sentence similarity
scores (AligNarr bm25·sts) outperforms the baseline
by a large margin on precision and F1-score.

Ablation Study. Document relevance scores
alone (AligNarr bm25) already yield very good per-
formance with .737 F1-score averaged over ten
movies. When combined with word overlap scores
(AligNarr bm25·w2v), the overall performance is fur-
ther improved to .746 F1-score. Word overlap
scoring using word embeddings is particularly
useful when the summary uses different vocab-
ulary, for example, using “...a growing seedling”

movie bm25·sts·w2v bm25·sts·bert

P R F1 P R F1

Shrek .85 .80 .82 .92↑ .90↑ .91↑
Pulp Fiction .92 .86 .89 .89 .85 .87
Cars 2 .84 .72 .77 .87↑ .74↑ .79↑
The Silence of the Lambs .86 .78 .81 .82 .78 .80
Anastasia .87 .78 .82 .89↑ .79↑ .83↑
South Park: Bigger, Lo... .83 .72 .76 .82 .71 .75
Wall-E .92 .72 .79 .85 .74 .78
Swordfish .75 .65 .68 .70 .61 .64
The Butterfly Effect .63 .61 .62 .66↑ .61 .63↑
Cast Away .61 .56 .58 .59 .56 .57

average .81 .72 .75 .80 .73↑ .76↑

Table 2: AligNarr bm25·sts·w2v vs AligNarr bm25·sts·bert.

for describing a scene with “...a small plant in
its early stage of growth.” Combining document
relevance scores with sentence similarity scores
(AligNarr bm25·sts) results in the best performance
with .756 F1 score. Adding word overlap scores
on top of that (AligNarr bm25·sts·w2v) yields higher
precision of .808 but unfortunately at a lower recall
rate of .720. Detailed comparisons and runtime are
available in Appendix A and B.

We explored different strategies to combine the
similarity matrices, and found element-wise matrix
multiplication to perform the best.

Global vs. Local Alignments. To assess the bene-
fit of using ILP, we devised an alignment algorithm
focusing on finding the best scene alignment per
summary sentence, that is, locally without using the
ILP. Given a ranked list of scenes for a given sum-
mary sentence, we greedily pick scene-sentence
pairs while observing the constraints on at most r
consecutive scenes and the diagonal boundary for
order-preservation. This local alignment algorithm
results in .702 F1-score (AligNarr bm25·sts non-ILP),
showing the advantage of computing alignment
mappings via global optimization.

Principal Limitation. The ILP constraints and
diagonal line boundaries for candidate space prun-
ing (presented in Section 2.3) are too restrictive to
allow for 100% F1-score. Considering only candi-
date pairs that are within the diagonal line bound-
aries yields in reduced recall of .993, leading to
F1-score of .997. If we also take into account all
constraints employed by the ILP, recall is further
reduced to .944, leading to F1-score of .969.

Contextual Embeddings. We also investigate the
utility of contextual embeddings for computing
word overlap scores. Specifically, we utilized
a pretrained BERT model (bert-large-uncased)
from Huggingface (https://huggingface.co/

https://huggingface.co/transformers/model_doc/bert.html
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movie #scenes #summary ratiosentences P R F1

Shrek 35 38 0.9 .89 .89 .89
Pulp Fiction 85 30 2.8 .89 .88 .88
Cars 2 113 36 3.1 .85 .75 .80
The Silence of the Lambs 136 28 4.9 .80 .79 .79
Anastasia 114 31 3.7 .80 .75 .77
South Park: Bigger, Lo... 120 41 2.9 .81 .72 .75
Wall-E 71 35 2.0 .84 .73 .77
Swordfish 193 29 6.7 .76 .66 .70
The Butterfly Effect 182 17 10.7 .65 .61 .63
Cast Away 300 32 9.4 .60 .56 .58

average 135 32 4.7 .79 .73 .76

Table 3: AligNarr bm25·sts’s performance on ten movies.

transformers/model_doc/bert.html) to embed
sentences from a given pair of script and summary
units. We then retrieved individual vectors for each
token (i.e., wordpiece) by summing together the
outputs of BERT’s last four layers.

For each token in the summary unit uj , we look
for similar tokens in the script unit si by computing
cosine similarity of their embeddings, and take the
highest one from each sentence as our intersecting
tokens (only if their cosine similarity is above 0.7).
Finally, BERT-based word overlap scores are the
sum of overlapping tokens (excluding stop words)
weighted by their cosine similarity.

Replacing word2vec embeddings with BERT
embeddings (AligNarr bm25·sts·bert in Table 2) yields
better performance for some movies like Shrek,
Cars 2 and Anastasia), which interestingly belong
to the same genre (animation). The better perfor-
mance may be attributed to the ability of BERT
to better represent less common words (e.g., ogre)
using contextual information. However, the overall
performance is comparable with the performance
of AligNarr bm25·sts·w2v, which requires much less
computing time (see Appendix B).

Movie Comparison. AligNarr’s performance per
movie is shown in Table 3. We observed a trend that
the higher the ratio of scenes to summary sentences,
the worse the alignment performance, particularly
for three movies with ratio above r (average ratio,
r = 5). This is potentially useful for estimating
AligNarr’s performance on other movies, which is
negatively correlated to the compression rate of a
given summary. The most difficult movie to align
is Cast Away, where (i) there was only one active
story entity throughout the narration, (ii) the sum-
mary is highly abstract (e.g., “He also has regular
conversations and arguments with Wilson.”), and
(iii) the story plots and entity names do not fully
match, possibly due to the outdated script version.
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Figure 3: Histograms of number of scenes and sum-
mary sentences in ScriptBase movies.

Data and Code. We provide alignments by Alig-
Narr for ten movies at d5demos.mpi-inf.mpg.de/
alignarr/experiments; the same platform was
used to manually annotate the alignment mappings.
The code for producing the alignments is published
at github.com/paramitamirza/AligNarr.

We applied the best performing AligNarr bm25·sts
on the ScriptBase corpus6 (Gorinski and Lapata,
2015, 2018), leveraging the XML version of movie
scripts in ScriptBase-J and Wikipedia plot sum-
maries from ScriptBase-alpha, totaling to 914
movies. Figure 3 shows the histograms of num-
ber of scenes and summary sentences in the corpus,
with most summaries containing 20-40 sentences
and most scripts consisting of around 100-180
scenes. The alignment mappings for those movies
are made available for viewing and downloading at
d5demos.mpi-inf.mpg.de/alignarr/script-

base.
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movie AligNarr bm25 AligNarr bm25·w2v AligNarr bm25·sts AligNarr bm25·sts·w2v

P R F1 P R F1 P R F1 P R F1

Shrek .85 .84 .85 .85 .81 .83 .89↑ .89↑ .89↑ .85 .80 .82
Pulp Fiction .85 .86 .86 .88↑ .85 .86 .89↑ .88↑ .88↑ .92↑ .86 .89↑
Cars 2 .86 .76 .80 .81 .71 .75 .85 .75 .80 .84 .72 .77
The Silence of the Lambs .76 .73 .75 .85↑ .76↑ .80↑ .80↑ .79↑ .79↑ .86↑ .78 .81↑
Anastasia .79 .75 .77 .87↑ .78↑ .82↑ .80↑ .75 .77 .87↑ .78↑ .82↑
South Park: Bigger, Lo... .80 .74 .77 .79 .71 .74 .81↑ .72 .75 .83↑ .72 .76↑
Wall-E .78 .71 .74 .86↑ .75↑ .79↑ .84↑ .73↑ .77↑ .92↑ .72 .79↑
Swordfish .65 .62 .63 .71↑ .63↑ .66↑ .76↑ .66↑ .70↑ .75 .65 .68
The Butterfly Effect .62 .61 .61 .62 .58 .60 .65↑ .61 .63↑ .63 .61 .62
Cast Away .61 .57 .59 .65↑ .58↑ .61↑ .60 .56 .58 .61↑ .56 .58

average .76 .72 .74 .79↑ .72 .75↑ .79↑ .73↑ .76↑ .81↑ .72 .75

Table 4: AligNarr’s performance on ten movies (ablation study).

movie text pre- ILP computing similarity matrix
processing (bm25·sts) bm25 w2v sts bert

Shrek 5.5 4.1 0.02 69.7 131.3 1972.5
Pulp Fiction 20.8 12.3 0.03 222.0 172.0 2576.2
Cars 2 56.5 36.1 0.04 168.9 210.2 3169.8
The Silence of the Lambs 29.5 29.4 0.04 329.1 199.9 2439.2
Anastasia 21.6 28.6 0.03 147.6 147.8 1919.6
South Park: Bigger, Lo... 62.2 1350.4 0.04 165.4 251.9 3603.4
Wall-E 6.2 11.6 0.02 172.5 169.3 2771.6
Swordfish 17.0 457.4 0.04 143.4 152.6 1893.6
The Butterfly Effect 8.1 84.2 0.05 233.9 130.0 1297.2
Cast Away 8.3 329.4 0.04 237.4 294.8 3069.5

average 23.6 234.4 0.04 189.0 186.0 2471.2

computing 4x Intel(R) Xeon(R) 1x AMD EPYC 7502P
infrastructure Gold 6136 # of cores: 32

# of cores: 48 # of threads: 64
# of threads: 96 Memory: 1TB
Memory: 1.5TB GPU: 4x NVIDIA Quadro RTX

8000, 48 GB GDDR6

Table 5: AligNarr’s runtime (in seconds).

A Detailed Ablation Study

We report in Table 4 the ablation study on Alig-
Narr’s performance using different similarity ma-
trices on ten movies. In general, leveraging word-

based (w2v) and sentence-based (sts) semantic sim-
ilarity scores via embeddings, in addition to doc-
ument relevance scores (bm25), results in signif-
icantly higher precision for some movies, while
recall remains more or less stable.

B AligNarr’s Runtime

In Table 5 we detail the average runtime of the
best performing AligNarr bm25·sts, along with the
computing infrastructure used.

Note that to compute sentence similarity scores
(sts) we need word overlap scores via word2vec
embeddings (w2v) to filter out scene-sentence pairs
that are unlikely to be similar, in order to speed up
the runtime. Computing word overlap scores using
BERT embeddings (bert) requires almost 13 times
the time of computing the scores with word2vec
embeddings.


