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Abstract

Modern sentence encoders are used to gener-
ate dense vector representations that capture
the underlying linguistic characteristics for a
sequence of words, including phrases, sen-
tences, or paragraphs. These kinds of represen-
tations are ideal for training a classifier for an
end task such as sentiment analysis, question
answering and text classification. Different
models have been proposed to efficiently gen-
erate general purpose sentence representations
to be used in pretraining protocols. While av-
eraging is the most commonly used efficient
sentence encoder, Discrete Cosine Transform
(DCT) was recently proposed as an alternative
that captures the underlying syntactic charac-
teristics of a given text without compromis-
ing practical efficiency compared to averag-
ing. However, as with most other sentence
encoders, the DCT sentence encoder was only
evaluated in English. To this end, we utilize
DCT encoder to generate universal sentence
representation for different languages such as
German, French, Spanish and Russian. The ex-
perimental results clearly show the superior ef-
fectiveness of DCT encoding in which consis-
tent performance improvements are achieved
over strong baselines on multiple standardized
datasets.

1 Introduction

Recently, a number of sentence encoding repre-
sentations have been developed to accommodate
the need of sentence-level understanding; some of
these models are discussed in (Hill et al., 2016;
Logeswaran and Lee, 2018; Conneau et al., 2017),
yet most of these representations have focused on
English only.

To generate sentence representations in differ-
ent languages, the most obvious solution is to train
monolingual sentence encoders for each language.
However, training a heavily parameterized mono-

lingual sentence encoder for every language is in-
efficient and computationally expensive, let alone
the impact on the environment. Thus, utilizing a
non-parameterized model with ready-to-use word
embeddings is an efficient alternative to generate
sentence representations in various languages.

A number of non-parameterized models have
been proposed to derive sentence representations
from pre-trained word embeddings (Rücklé et al.,
2018; Yang et al., 2019; Kayal and Tsatsaronis,
2019). However, most of these models, including
averaging, disregard structure information, which
is an important aspect of any given language.
Recently, Almarwani et al. (2019) proposed a
structure-sensitive sentence encoder, which utilizes
Discrete Cosine Transform (DCT) as an efficient
alternative to averaging. The authors show that
this approach is versatile and scalable because it
relies only on word embeddings, which can be eas-
ily obtained from large unlabeled data. Hence, in
principle, this approach can be adapted to different
languages. Furthermore, having an efficient, ready-
to-use language-independent sentence encoder can
enable knowledge transfer between different lan-
guages in cross-lingual settings, empowering the
development of efficient and performant NLP mod-
els for low-resource languages.

In this paper, we empirically investigate the gen-
erality of DCT representations across languages as
both a single language model and a cross-lingual
model in order to assess the effectiveness of DCT
across different languages.

2 DCT as sentence Encoder

In signal processing domain DCT is used to decom-
pose signal into component frequencies revealing
dynamics that make up the signal and transitions
within (Shu et al., 2017). Recently, DCT has been
adopted as a way to compress textual information
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(Kayal and Tsatsaronis, 2019; Almarwani et al.,
2019). A key observation in NLP is that word vec-
tors obey laws of algebra King – Man + Woman
= (approx.) Queen (Mikolov et al., 2013). Thus,
given word embeddings, cast a sentence as a multi-
dimensional signal over time, in which DCT is used
to summarize the general feature patterns in word
sequences and compress them into fixed-length vec-
tors (Kayal and Tsatsaronis, 2019; Almarwani et al.,
2019).

Mathematically, DCT is an invertible function
that maps an input sequence of N real numbers
to the coefficients of N orthogonal cosine basis
functions of increasing frequencies (Ahmed et al.,
1974). The DCT components are arranged in order
of significance. The first coefficient (c[0]) repre-
sents the sum of the input sequence normalized
by the square length, which is proportional to the
average of the sequence (Ahmed et al., 1974). The
lower-order coefficients represent lower signal fre-
quencies which correspond to the overall patterns
in the sequence. For example, DCT is used for
compression by preserving only the coefficients
with large magnitudes. These coefficients can be
used to reconstruct the original sequence exactly
using the inverse transform (Watson, 1994).

In NLP, Kayal and Tsatsaronis (2019) applied
DCT at the word level to reduce the dimensional-
ity of the embeddings size, while Almarwani et al.
(2019) applied it along the sentence length as a
way to compress each feature in the embedding
space independently. In both implementations, the
top coefficients are concatenated to generate the
final representation for a sentence. As shown in
(Almarwani et al., 2019), applying DCT along the
features in the embeddings space renders repre-
sentations that yield better results. Also, Zhu and
de Melo (2020) noted that similar to vector aver-
aging the DCT model proposed by (Almarwani
et al., 2019) yields better overall performance com-
pared to more complex encoders, thus, in this work,
we adopt their implementation to extract sentence-
level representations.

Specifically, given a sentence matrix N ×d, a se-
quence of DCT coefficients c[0], c[1], ..., c[K] are
calculated by applying the DCT type II along the
d-dimensional word embeddings, where c[K] =√

2
N

∑N−1
n=0 vn cos

π
N (n+ 1

2)K (Shao and John-
son, 2008). Finally, a fixed-length sentence vector
of size Kd is generated by concatenating the first

Task Description
SentLen Length prediction
WC Word Content analysis
BShift Word order analysis
TreeDepth Tree depth prediction
Tense Verb tense prediction
CoordInv Coordination Inversion
SubjNum Subject number prediction
ObjNum Object number prediction
SOMO Semantic odd man out

Table 1: Probing Tasks as described in (Conneau et al.,
2018; Ravishankar et al., 2019).

K DCT coefficients, which we refer to as c[0 : K].1

3 Multi-lingual DCT Embeddings

3.1 Experimental Setups and Results

In our study, DCT is used to learn a separate en-
coder for each language from existing monolin-
gual word embeddings. To evaluate DCT em-
beddings across different languages, we used the
probing benchmark provided by Ravishankar et al.
(2019), which includes a set of multi-lingual prob-
ing datasets.2 The benchmark covers five lan-
guages: English, French, German, Spanish and
Russian, derived from Wikipedia. The task set
comprises 9 probing tasks, summarized in Table 1,
that address varieties of linguistic properties includ-
ing surface, syntactic, and semantic information
(Conneau et al., 2018; Ravishankar et al., 2019).
Ravishankar et al. (2019) used the datasets to evalu-
ate different sentence encoders trained by mapping
sentence representations to English. Unlike Ravis-
hankar et al. (2019), we use the datasets to evaluate
DCT embeddings for each language independently.
As a baseline, in addition to the DCT embeddings,
we use vector averaging to extract sentence repre-
sentations from the pre-trained embeddings.

For model evaluations, we utilize the SentE-
val framework introduced in (Conneau and Kiela,
2018). In all experiments, we use a single-layer
MLP on top of DCT sentence embeddings with the
following parameters: kfold=10, batch size=128,
nhid=50, optim=adam, tenacity=5, epoch size=4.

1Unlike (Almarwani et al., 2019), we note no further im-
provements with larger coefficients, thus, we only report the
results of 1 ≤ K ≤ 4.

2Refer to (Conneau et al., 2018) and (Ravishankar et al.,
2019) for more details about the probing tasks.
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Figure 1: Results of the probing tasks comparing XX languages performance relative to English. White indicates
a value of 1, demonstrating parity in performance with English. Red indicates better English performance while
green indicates better XX Lang results.

For the word embeddings, we relied on the publicly
available pre-trained FastText embeddings intro-
duced in (Grave et al., 2018).3

Results: Figure 1 shows a heat-map reflecting
the probing results of the different languages rela-
tive to English. Overall, French (FR) seems to be
the closest to English (EN) followed by Spanish
(ES) then German (DE) and then finally Russian
(RU) across the various DCT coefficients. Higher
coefficients reflect majority better performance
across most tasks for FR, ES and DE. We see the
most variation with worse results than English on
the syntactic tasks of TreeDepth, CoordInv, Tense,
SubjNum and ObjNum for RU. SOMO stands out
for RU where it outperforms EN. The variation in
Russian might be due to the nature of RU being
a more complex language that is morphologically
rich with flexible word order (Toldova et al., 2015).

In terms of the performance per number of DCT
coefficients, we observe consistent performance
gain across different languages that is similar to
the English result trends. Specifically, for the sur-
face level tasks, among the DCT models the c[0]
model significantly outperforms the AV G with
an increase of ∼30 percentage points in all lan-
guages. The surface level tasks (SentLen and WC)
show the most notable variance in performance, in
which the highest results are obtained using the c[0]
model. However, the performance decreases in all
languages when K is increased. On the other hand,
for all languages, we observe a positive effect on
the model’s performance with larger K in both the
syntactic and semantic tasks. The complete numer-
ical results are presented in the Appendix in Table

3Available at: https://fasttext.cc.

5.

4 Cross-lingual Mapping based on DCT
Encoding

4.1 Approach

Aldarmaki and Diab (2019)proposed sentence-level
transformation approaches to learn context-aware
representations for cross-lingual mappings. While
the word-level cross-lingual transformations utilize
an aligned dictionary of word embeddings to learn
the mapping, the sentence-level transformations
utilize a large dictionary of parallel sentence em-
beddings. Since sentences provide contexts that are
useful for disambiguation for the individual word’s
specific meaning, sentence-level mapping yields
a better cross-lingual representation compared to
word-level mappings.

A simple model like sentence averaging can be
used to learn transformations between two lan-
guages as shown in (Aldarmaki and Diab, 2019).
However, the resulting vectors fail to capture struc-
tural information such as word order, which may
result in poor cross-lingual alignment. There-
fore, guided by the results shown in (Aldarmaki
and Diab, 2019), we further utilize DCT to con-
struct sentence representations for the sentence-
level cross-lingual modeling.

4.2 Experiments Setups and Results

For model evaluation, we use the same cross-
lingual evaluation framework introduced in (Aldar-
maki and Diab, 2019). Intuitively, sentences tend
to be clustered with their translations when their
vectors exist in a well-aligned cross-lingual space.
Thus, in this framework, cross-lingual mapping ap-
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proaches are evaluated using sentence translation
retrieval by calculating the accuracy of correct sen-
tence retrieval. Formally, the cosine similarity is
used to find the nearest neighbor for a given source
sentence from the target side of the parallel corpus.

4.3 Evaluation Datasets and Results

To demonstrate the efficacy of cross-lingual map-
ping using the sentence-level representation gener-
ated by DCT models, similarly to Aldarmaki and
Diab (2019), we used the WMT’13 data set that
includes EN, ES and DE languages (Bojar et al.,
2013). We further used five language pairs from
the WMT’17 translation task to evaluate the effec-
tiveness of DCT-based embeddings. Specifically,
we used a sample of 1 million parallel sentences
from WMT’13 common-crawl data; this subset is
the same one used in (Aldarmaki and Diab, 2019).4

To assess efficacy of the DCT models for the cross-
lingual mapping, we reported the performances of
the sentence translation retrieval task within the
WMT’13 test set, which includes EN, ES, and DE
as test languages (Bojar et al., 2013). Specifically,
we first used the 1M parallel sentences for the align-
ment between source languages (ES and DE) to a
target language (EN) independently. We evaluated
the translation retrieval performance in all language
directions, from source languages to English: ES-
EN and DE-EN, as well as between the sources
languages: ES-DE.

Similarly, we conduct a series of experiments
on 5 different language pairs from the WMT’17
translation task, which includes DE, Latvian (LV),
Finnish (FI), Czech (CS), and Russian (RU), each
of which is associated with an English translation
(Zhang et al., 2018).5 For each language pair, we
sampled 1M parallel sentences from their train-
ing corpus for the cross-lingual alignment between
each source language and EN. Also, we used the
test set available for each language pair to evaluate
the translation retrieval performances.

In our experiments, we evaluate the translation
retrieval performance in all language directions us-
ing three type of word embeddings: 1- a publicly
available pre-trained word embeddings in which
we show the performance of DCT against averag-
ing, which we refer to hereafter as out-of-domain

4Evaluation scripts and WMT’13 dataset as de-
scribed in (Aldarmaki and Diab, 2019) are available in
https://github.com/h-aldarmaki/sent translation retrieval

5The pre-processed version of the WMT’17 dataset was
used. For more information refer to (Zhang et al., 2018).

Lang pair AV G c[0] c[0 : 1] c[0 : 2] c[0 : 3]

Lang→EN
ES→EN 65.67 64.87 71.26 71.80 70.13
DE→EN 51.80 50.30 57.23 58.13 56.57
RU→EN 45.22 52.75 61.91 64.35 63.33
CS→EN 41.87 42.50 52.89 54.99 55.05
FI→EN 40.46 42.00 47.57 47.80 46.16
LV→EN 21.26 40.13 51.42 56.37 60.16
EN→Lang
EN→ES 69.97 69.50 73.73 73.87 71.73
EN→DE 67.50 66.23 69.27 68.70 65.83
EN→RU 38.09 44.29 54.73 59.51 60.94
EN→CS 39.73 40.40 50.99 54.00 54.12
EN→FI 39.34 42.52 51.67 52.59 51.74
EN→LV 15.83 33.55 47.08 53.22 55.72
Lang1→Lang2
DE→ES 43.80 42.20 49.50 51.20 51.17
ES→DE 57.67 56.46 60.53 59.83 57.87

Table 2: Sentence translation retrieval accuracy based
on out of domain pre-trained Fasttext embeddings. Ar-
rows indicate the direction, with English (EN ), Span-
ish (ES), German (DE), Russian (RU ), Czech (CS),
Finnish (FI) , Turkish (TR), and Latvian (LV ).

embeddings as shown in Table 2. 2- Also, we
ran additional experiments in which we used a do-
main specific word embedding (that we trained on
genre that is similar to the translation task) and
3-contextualized word embedding, which we refer
to hereafter as in-domain embeddings as shown in
Table 3.

Out-of-domain embeddings: For all language
pairs, DCT-based models outperform AVG and c[0]
models in the sentence translation retrieval task.
In the direction → EN , while the c[0:2] model
achieve the highest accuracy for ES, DE, RU, and
FI languages, the c[0:3] model achieved the highest
accuracy for CS and LV languages. Specifically,
the c[0:2] model yields increases of 5.59%-30% in
the direction from source languages (ES, DE, RU,
and FI) to English compared to the AVG model.
Also, while the c[0:3] model yielded an increase of
13% gains over the baseline for CS, it provides the
most notable increase of 38% for LV. For the op-
posite directions EN → source, the DCT-based
embeddings model also outperformed AVG and
c[0] models. In particular, we observed accuracy
gains of at least 3.81% points using more coeffi-
cients in DCT-based models compared to the AVG
and c[0] models for all languages. A similar trend
is observed in the zero-shot translation retrieval
between the two non English languages (ES and
DE), in which DCT-based models outperform the
AVG and c[0] models.
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Lang pair Embed AV G c[0] c[0 : 1] c[0 : 2] c[0 : 3]

Lang→EN

ES→EN
FT 82.97 82.40 84.50 83.97 82.90
BERT 92.10 92.00 93.23 93.13 92.20

DE→EN
FT 79.33 78.73 81.87 80.20 77.93
BERT 89.76 89.66 91.83 91.20 90.57

EN→Lang

EN→ES
FT 82.33 82.07 85.47 84.60 83.17
BERT 93.63 93.66 94.10 94.00 92.80

EN→DE
FT 74.73 74.50 79.10 78.70 76.90
BERT 91.30 91.43 91.90 91.53 90.30

Lang1→Lang2

DE→ES
FT 73.27 72.20 77.43 75.96 74.60
BERT 87.80 87.57 90.23 90.36 88.96

ES→DE
FT 68.90 68.07 73.97 73.10 72.43
BERT 87.70 87.70 89.67 89.50 88.53

Table 3: Accuracy using in-domain FastText (FT) and
Contextualized mBERT embeddings. The best results
for each row in Bold & for each direction in gray .

In-domain embeddings: To ensure comparabil-
ity to state-of-the-art results, we further utilized in-
domain FastText embeddings as those used in (Al-
darmaki and Diab, 2019) as well as contextualized-
based word embeddings. For the in-domain Fast-
Text embeddings, the FastText (Bojanowski et al.,
2017) is utilized to generate word embeddings from
1 Billion Word benchmark (Chelba et al., 2014) for
English, and equivalent subsets of about 400 mil-
lion tokens from WMT’13 (Bojar et al., 2013) news
crawl data. For the contextualized-based embed-
dings, we utilized multilingual BERT (mBERT)
introduced in (Devlin et al., 2019) as contextual
word embeddings, in which representations from
the last BERT layer are taken as word embeddings.
As shown in Table 3, using in-domain word em-
beddings yields stronger results compared to the
pre-trained embeddings we use in the previous ex-
periments as illustrated in Table 2. On the other
hand, we observe additional improvements using
mBERT as word embeddings on all models. Fur-
thermore, increasing K has positive effect on both
embeddings, in which c[0 : 1] demonstrate per-
formance gains compared to other models in all
language directions. This trend is clearly observed
in the zero-shot performance between the non En-
glish languages.

Furthermore, as shown in Table 4, we obtained
a state-of-the-art result using mBERT c[0 : 1] with
91.83% average accuracy across all translation di-
rections compared to the 84.03% average accu-
racy of ELMo as reported in (Aldarmaki and Diab,
2019).

Model Average Accuracy
FastText (dict) [ALD2019] 69.04
ELMo (word) [ALD2019] 82.23
FastText (word) [ALD2019] 74.00
FastText AV G (sent) [ALD2019] 76.92
ELMo AV G (sent) [ALD2019] 84.03
FastText c[0] (sent) 76.33
FastText c[0 : 1] (sent) 80.39
FastText c[0 : 2] (sent) 79.42
FastText c[0 : 3] (sent) 77.99
mBERT AV G (sent) 90.38
mBERT c[0] (sent) 90.34
mBERT c[0 : 1] (sent) 91.83
mBERT c[0 : 2] (sent) 91.62
mBERT c[0 : 3] (sent) 90.56

Table 4: The average accuracy of various models across
all language retrieval directions as reported in (Aldar-
maki and Diab, 2019), refer to as [ALD2019] in the
table, along with the different DCT-based models in
this work, in which (word) refers to word-level map-
ping, (sent) refers to sentence-level mapping, and (dict)
refers to the baseline (using a static dictionary for map-
ping). Bold shows the best overall result.

5 Conclusion

In this paper, we extended the application of DCT
encoder to multi- and cross-lingual settings. Exper-
imental results across different languages showed
that similar to English using DCT outperform the
vector averaging. We further presented a sentence-
level-based approach for cross-lingual mapping
without any additional training parameters. In this
context, the DCT embedding is used to generate
sentence representations, which are then used in
the alignment process. Moreover, we have shown
that incorporating structural information encoded
in the lower-order coefficients yields significant
performance gains compared to the AVG in sen-
tence translation retrieval.
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Language AVG c[0] c[0:1] c[0:2] c[0:3] c[0:4]
EN 56.28 89.03 88.91 88.95 88.7 88.08
ES 59.92 89.59 90.00 89.8 89.73 90.05

SentLen FR 57.9 93.72 93.44 93.14 92.82 92.38
DE 53.41 88.81 88.36 88.16 87.54 87.69
RU 54.42 89.66 89.12 89.18 88.26 88.04
EN 26.97 66.69 64.55 62.49 60.39 59.08
ES 25.4 64.80 62.18 60.62 58.76 57.64

WC FR 27.14 68.60 66.13 64.71 62.8 61.04
DE 29.33 64.99 64.52 63.93 63.12 61.54
RU 36.33 67.50 65.58 64.69 62.69 61.32
EN 54.78 54.98 54.58 54.86 54.81 55.58
ES 54.7 54.52 54.53 54.21 54.71 55.77

Bshift FR 54.69 54.7 54.68 54.91 55.53 56.50
DE 54.23 54.22 54.35 54.43 54.6 56.46
RU 56.48 56.8 56.81 56.28 57.4 58.51
EN 41.34 45.18 48.64 49.84 49.44 50.47
ES 42.9 48.53 52.29 53.34 53.87 53.54

TreeDepth FR 41.06 47.68 50.05 51.65 52.27 52.15
DE 37.06 41.97 45.14 47.33 47.55 47.36
RU 35.27 39.21 40.76 41.02 40.65 40.51
EN 86.49 89.23 91.83 92.17 92.26 92.21
ES 94.52 95.97 96.68 96.67 96.62 96.53

Tense FR 91.96 94.06 95.7 95.96 96.12 95.99
DE 94.13 94.71 95.82 96.44 96.28 95.92
RU 86.07 86.39 90.28 90.4 90.16 90.38
EN 73.47 74.22 84.56 87.20 87.03 87.19
ES 67.08 68.13 81.61 84.15 85.17 85.77

CoordInv FR 71.06 71.12 85.97 88.03 89.21 89.61
DE 74.25 74.33 89.99 92.52 93.45 94.09
RU 60.33 60.77 79.95 83.13 84.03 84.34
EN 76.46 77.41 80.49 81.68 81.76 82.31
ES 86.4 86.68 89.34 90.42 90.12 90.84

SubjNum FR 88.48 88.62 91.05 92.23 92.72 92.76
DE 75.94 75.78 78.79 78.9 79.25 79.28
RU 70.47 70.44 72.31 72.81 73.12 73.13
EN 68.44 69.71 71.78 73.24 73.98 74.93
ES 78.31 79.23 82.21 83.96 85.2 85.7

ObjNum FR 77.47 78.5 83.74 85.82 86.92 88.1
DE 68.38 68.74 69.88 70.41 71.14 71.90
RU 63.9 63.79 65.33 65.32 65.54 65.11
EN 50.12 50.91 51.72 51.71 51.36 50.42
ES 51.7 51.98 51.34 49.62 50.71 53.07

SOMO FR 50.7 48.85 48.87 49.44 49.56 49.36
DE 50.57 50.47 49.99 49.99 49.99 49.99
RU 52.49 52.91 52.86 52.8 53.07 53.13

Table 5: DCT embeddings Performance per language compared to AVG. EN=English, ES=Spanish, FR=French,
DE=German, and RU=Russian


