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Abstract

We present an instance-based nearest neigh-
bor approach to entity linking. In contrast to
most prior entity retrieval systems which repre-
sent each entity with a single vector, we build
a contextualized mention-encoder that learns
to place similar mentions of the same entity
closer in vector space than mentions of differ-
ent entities. This approach allows all mentions
of an entity to serve as “class prototypes” as
inference involves retrieving from the full set
of labeled entity mentions in the training set
and applying the nearest mention neighbor’s
entity label. Our model is trained on a large
multilingual corpus of mention pairs derived
from Wikipedia hyperlinks, and performs near-
est neighbor inference on an index of 700 mil-
lion mentions. It is simpler to train, gives more
interpretable predictions, and outperforms all
other systems on two multilingual entity link-
ing benchmarks.

1 Introduction

A contemporary approach to entity linking repre-
sents each entity with a textual description de, en-
codes these descriptions and contextualized men-
tions of entities, m, into a shared vector space
using dual-encoders f(m) and g(de), and scores
each mention-entity pair as the inner-product be-
tween their encodings (Botha et al., 2020; Wu et al.,
2019). By restricting the interaction between e and
m to an inner-product, this approach permits the
pre-computation of all g(de) and fast retrieval of
top scoring entities using maximum inner-product
search (MIPS).

Here we begin with the observation that many
entities appear in diverse contexts, which may not
be easily captured in a single high-level descrip-
tion. For example, Actor Tommy Lee Jones played
football in college, but this fact is not captured in
the entity description derived from his Wikipedia

page (see Figure 1). Furthermore, when new en-
tities need to be added to the index in a zero-shot
setting, it may be difficult to obtain a high quality
description. We propose that both problems can be
solved by allowing the entity mentions themselves
to serve as exemplars. In addition, retrieving from
the set of mentions can result in more interpretable
predictions – since we are directly comparing two
mentions – and allows us to leverage massively
multilingual training data more easily, without forc-
ing choices about which language(s) to use for the
entity descriptions.

We present a new approach (MOLEMAN1) that
maintains the dual-encoder architecture, but with
the same mention-encoder on both sides. Entity
linking is modeled entirely as a mapping between
mentions, where inference involves a nearest neigh-
bor search against all known mentions of all en-
tities in the training set. We build MOLEMAN us-
ing exactly the same mention-encoder architecture
and training data as Model F (Botha et al., 2020).
We show that MOLEMAN significantly outperforms
Model F on both the Mewsli-9 and Tsai and Roth
(2016) datasets, particularly for low-coverage lan-
guages, and rarer entities.

We also observe that MOLEMAN achieves high
accuracy with just a few mentions for each entity,
suggesting that new entities can be added or ex-
isting entities can be modified simply by labeling
a small number of new mentions. We expect this
update mechanism to be significantly more flexible
than writing or editing entity descriptions. Finally,
we compare the massively multilingual MOLEMAN

model to a much more expensive English-only dual-
encoder architecture (Wu et al., 2019) on the well-
studied TACKBP-2010 dataset (Ji et al., 2010) and
show that MOLEMAN is competitive even in this
setting.

1Mention Only Linking of Entities with a Mention Anno-
tation Network
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Figure 1: Illustration of hypothetical contextualized mention (m) and multilingual description (d) embeddings for the entities
‘Tommy Lee Jones (Q170587)’ and ‘Tom Jones (Q18152778). The query mention [F] pertains to the former’s college football
career, which is unlikely to be captured by the high-level entity description. A retrieval against descriptions would get this query
incorrect, but with indexed mentions gets it correct. Note that prior dual-encoder models that use a single vector to represent
each entity are forced to contort the embedding space to solve this problem.

2 Overview

Task definition We train a model that performs
entity linking by ranking a set of entity-linked in-
dexed mentions-in-context. Formally, let a mention-
in-context x = [x1, ..., xn] be a sequence of n
tokens from vocabulary V , which includes desig-
nated entity span tokens. An entity-linked mention-
in-context mi = (xi, ei) pairs a mention with
an entity from a predetermined set of entities E .
LetMI = [m1, ...,mk] be a set of entity-linked
mentions-in-context, and let entity(·) :MI →
E be a function that returns the entity ei ∈ E asso-
ciated with mi, and x(·) returns the token sequence
xi.

Our goal is to learn a function φ(m) that maps
an arbitrary mention-in-context token sequence m
to a fixed vector hm ∈ Rd with the property that

y∗ = entity

(
argmax
m′∈MI

[φ(x(m′))Tφ(xq)]

)

gives a good prediction y∗ of the true entity label
of a query mention-in-context xq.

3 Method

3.1 Model

Recent state-of-the-art entity linking systems em-
ploy a dual encoder architecture, embedding
mentions-in-context and entity representations in
the same space. We also employ a dual encoder ar-
chitecture but we score mentions-in-context (here-
after, mentions) against other mentions, with no
consolidated entity representations. The dual en-
coder maps a pair of mentions (m,m′) to a score:

s(m,m′) =
φ(m)Tφ(m′)

‖φ(m)‖‖φ(m′)‖

where φ is a learned neural network that encodes
the input mention as a d-dimensional vector.

As in (Févry et al., 2020) and (Botha et al., 2020),
our mention encoder is a 4-layer BERT-based
Transformer network (Vaswani et al., 2017; Devlin
et al., 2019) with output dimension d = 300.

3.2 Training Process
3.2.1 Mention Pairs Dataset
We build a dataset of mention pairs using the 104-
language collection of Wikipedia mentions as con-
structed by Botha et al. (2020). This dataset maps
Wikipedia hyperlinks to WikiData (Vrandečić and
Krötzsch, 2014), a language-agnostic knowledge
base. We create mention pairs from the set of all
mentions that link to a given entity.

We use the same division of Wikipedia pages
into train and test splits used by Botha et al. (2020)
for compatibility to the TR2016 test set (Tsai and
Roth, 2016). We take up to the first 100k men-
tion pairs from a randomly ordered list of all pairs
regardless of language, yielding 557M and 31M
training and evaluation pairs, respectively. Of these,
69.7% of pairs involve two mentions from different
languages. Our index set contains 651M mentions,
covering 11.6M entities.

3.2.2 Hard Negative Mining and Positive
Resampling

Previous work using a dual encoder trained with in-
batch sampled softmax has improved performance
with subsequent training rounds using an auxiliary
cross-entropy loss against hard negatives sampled
from the current model (Gillick et al., 2019; Wu
et al., 2019; Botha et al., 2020). We investigate
the effect of such negative mining for MOLEMAN,
controlling the ratio of positives to negatives on a
per-entity basis. This is achieved by limiting each
entity to appear as a negative example at most 10
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times as often as it does in positive examples, as
done by Botha et al. (2020).

In addition, since MOLEMAN is intended to re-
trieve the most similar indexed mention of the cor-
rect entity, we experiment with using this retrieval
step to resample the positive pairs used to construct
our mention-pair dataset for the in-batch sampled
softmax, pairing each mention m with the highest-
scoring other mention m′ of the same entity in the
index set. This is similar to the index refreshing
that is employed in other retrieval-based methods
trained with in-batch softmax (Guu et al., 2020;
Lewis et al., 2020a).

3.2.3 Input Representations
Following prior work (Wu et al., 2019; Botha et al.,
2020), our mention representation consists of the
page title and a window around the mention, with
special mention boundary tokens marking the men-
tion span. We use a total context size of 64 tokens.

Though our focus is on entity mentions, the en-
tity descriptions can still be a useful additional
source of data, and allow for zero-shot entity
linking (when no mentions of an entity exist in
our training set). We therefore experiment with
adding the available entity descriptions as addi-
tional “pseudo-mentions”. These are constructed
in a similar way to the mention representations,
except without mention boundaries. Organic and
psuedo-mentions are fed into BERT using distinct
sets of token type identifiers. We supplement our
training set with additional mention pairs formed
from each entity’s description and a random men-
tion, adding 38M training pairs, and add these de-
scriptions to the index, expanding the entity set to
20M.

3.3 Inference

For inference, we perform a distributed brute-force
maximum inner product search over the index of
training mentions. During this search, we can ei-
ther return only the top-scoring mention for each
entity, which improves entity-based recall, or else
all mentions, which allows us to experiment with
k-Nearest Neighbors inference (see Section 4.1).

4 Experiments

4.1 Mewsli-9

Table 1 shows our results on the Mewsli-9 dataset
compared to the models described by Botha et al.
(2020). Model F is a dual encoder which scores

I HN R@1 R@10 R@100
Model F D N 63.0 91.7 97.4
Model F+ D Y 89.4 96.4 98.2
MGENRE – – 90.6 – –

MOLEMAN M N 89.5 97.4 98.3
B N 89.6 98.0 99.2
B Y 89.9 98.1 99.2

+ k=5 B Y 90.4 – –

Table 1: Results on Mewsli-9 compared to the models
described by (Botha et al., 2020) and (De Cao et al.,
2021). Column I indicates what is being indexed (De-
scriptions, Mentions, Both), and the HN indicates if ad-
ditional rounds of Hard Negative training are applied.

entity mentions against entity descriptions, while
Model F+ adds two additional rounds of training
with hard negative mining and an auxiliary cross-
lingual objective. Despite using an identically-
sized transformer, and trained on the same data,
MOLEMAN outperforms Model F+ when training
only on mention pairs, and sees minimal improve-
ment from a further round of training with hard
negative and resampled positives (as described in
Section 3.2.2). This suggests that training MOLE-
MAN is a simpler learning problem compared to
previous models which must capture all an entity’s
diverse contexts with a single description embed-
ding. Additionally, we examine a further benefit of
indexing multiple mentions per entity: the ability
to do top-K inference, and find that top-1 accuracy
improves by half a point with k=5.

We also compare to the recent MGENRE system
of De Cao et al. (2021), which performs entity link-
ing using constrained generation of entity names.
It should be noted that this work uses an expanded
training set that results in fewer zero- and few-shot
entities (see De Cao et al. (2021) Table 3).

4.1.1 Per-Language Results

Table 2 shows per-language results for Mewsli-9.
A key motivation of Botha et al. (2020) was to
learn a massively multilingual entity linking sys-
tem, with a shared context encoder and entity repre-
sentations between 104 languages in the Wikipedia
corpus. MOLEMAN takes a step further: the in-
dexed mentions from all languages are included in
the retrieval index, and can contribute to the predic-
tion in any language. In fact, we find that for 21.4%
of mentions in the Mewsli-9 corpus, MOLEMAN’s
top prediction came from a different language.
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Language R@1 R@10 R@100
ar +1.1 +0.9 +0.3
de -0.1 +1.5 +0.5
en +0.3 +2.8 +2.3
es -0.2 +1.1 +0.4
fa +1.1 +0.9 +0.9
ja +0.8 +1.2 +0.5
sr -0.1 +0.8 +0.5
ta +3.7 +1.3 +0.6

micro-avg +0.2 +1.6 +1.0
macro-avg +0.8 +1.3 +0.7

Table 2: MOLEMAN results on the Mewsli-9 dataset by
language, listed as a delta against Model F+ (Botha
et al., 2020).

4.1.2 Frequency Breakdown
Table 3 shows a breakdown in performance by en-
tity frequency bucket, defined as the number of
times an entity was mentioned in the Wikipedia
training set. When indexing only mentions, MOLE-
MAN can never predict the entities in the 0 bucket,
but it shows significant improvement in the other
frequency bands, particularly in the “few shot”
bucket of [1,10). This suggests when introducing
new entities to the index, labelling a small number
of mentions may be more beneficial than produc-
ing a single description. To further confirm this
intuition, we retrained MOLEMAN with a modified
training set which had all entities in the [1, 10) band
of Mewsli-9 removed, and only added to the index
at inference time. This model achieved +0.2 R@1
and +5.6 R@10 relative to Model F+ (which was
trained with these entities in the train set). When en-
tity descriptions are added to the index, MOLEMAN

outperforms Model F+ across frequency bands.

4.1.3 Inference Efficiency
Due to the large size of the mention index, nearest
neighbor inference is performed using distributed
maximum inner-product search. We also experi-
ment with approximate search using ScaNN (Guo
et al., 2020). Table 4 shows throughput and recall
statistics for brute force search as well as two ap-
proximate search approaches that run on a single
multi-threaded CPU, showing that inference over
such a large index can be made extremely efficient
with minimal loss in recall.

4.2 Tsai Roth 2016 Hard
In order to compare against previous multilingual
entity linking models, we report results on the
“hard” subset of Tsai and Roth (2016)’s cross-
lingual dataset which links 12 languages to English
Wikipedia. Table 5 shows our results on the same 4

languages reported by Botha et al. (2020). MOLE-
MAN outperforms all previous systems.

4.3 TACKBP 2010

Recent work on entity linking have employed dual-
encoders primarily as a retrieval step before rerank-
ing with a more expensive cross-encoder (Wu et al.,
2019; Agarwal and Bikel, 2020). Table 6 shows
results on the extensively studied TACKBP 2010
dataset (Ji et al., 2010). Wu et al. (2019) used a
24-layer BERT-based dual-encoder which scores
the 5.9 million entity descriptions from English
Wikipedia, followed by a 24-layer cross-encoder
reranker. MOLEMAN does not achieve the same
level of top-1 accuracy as their full model, as it
lacks the expensive cross-encoder reranking step,
but despite using a single, much smaller Trans-
former and indexing the larger set of entities from
multilingual Wikipedia, it outperforms this prior
work in retrieval recall at 100.

We also report the accuracy of a MOLEMAN
model trained only with English training data, and
using an Enlish-only index for inference. This
experiment shows that although the multilingual
index contributes to MOLEMAN’s overall perfor-
mance, the pairwise training data is sufficient for
high performance in a monolingual setting.

5 Discussion and Future Work

We have recast the entity linking problem as an
application of a more generic mention encoding
task. This approach is related to methods which
perform clustering on test mentions in order to im-
prove inference (Le and Titov, 2018; Angell et al.,
2020), and can also be viewed as a form of cross-
document coreference resolution (Rao et al., 2010;
Shrimpton et al., 2015; Barhom et al., 2019). We
also take inspiration from recent instance-based
language modelling approaches (Khandelwal et al.,
2020; Lewis et al., 2020b).

Our experiments demonstrate that taking an
instance-based approach to entity-linking leads to
better retrieval performance, particularly on rare en-
tities, for which adding a small number of mentions
leads to superior performance than a single descrip-
tion. For future work, we would like to explore
the application of this instance-based approach to
entity knowledge related tasks (Seo et al., 2018;
Petroni et al., 2020), and to entity discovery (Ji
et al., 2017).
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MOLEMAN
(mentions only)

MOLEMAN
(+ descriptions) mGENRE

Freq. bin R@1 R@10 R@1 R@10 R@1
[0, 1) -8.3† -33.9† -0.2 +18.3 +13.8
[1, 10) +0.4 +5.6 +1.7 +9.3 -10.4
[10, 100) +1.9 +3.8 +1.7 +3.7 -3.1
[100, 1k) +0.1 +1.8 -0.0 +1.9 +0.3
[1k, 10k) -1.1 +0.7 -1.2 +0.7 +0.6
[10k,+) +0.7 +0.6 +0.7 +0.5 +2.2
macro-avg -1.1 -3.6 +0.5 +5.7 +0.6

Table 3: Results from MOLEMAN (with and without the inclusion of entity descriptions) on the Mewsli-9 dataset,
by entity frequency in the training set plotted as a delta against Model F+. †Note that when using mentions only,
MOLEMAN scores zero on entities that do not appear in the training set.

QPS Latency (ms) R@1 R@100
Brute-force 9.5 5727 89.9 99.2

ScaNN 8000 2.9 89.9 99.1

Table 4: Max throughput (queries per second), latency
(ms per query) and recall for brute force inference
and approximate MIPS inference using the ScaNN li-
brary (Guo et al., 2020). See Appendix A.3 for further
details.

MF+ MM
de 0.62 0.64
es 0.58 0.59
fr 0.54 0.58
it 0.56 0.59

Avg 0.57 0.60

Table 5: Accuracy results on the TR2016hard test set
for Model F+ (MF+) and MOLEMAN (MM)

Method R@1 R@100
AT-Prior – 89.5
AT-Ext – 91.7
BM25 – 68.9
Gillick et al. (2019) – 96.3
Wu et al. (2019) 91.5† 98.3∗

MOLEMAN (EN-only) 85.8 98.4
MOLEMAN 87.9 99.1

Table 6: Retrieval comparison on TACKBP-2010. The
alias table and BM25 baselines are taken from Gillick
et al. (2019). For comparison to Wu et al. (2019), we
report R@1 for their “full Wiki, w/o finetune” cross-
encoder. Their R@100 model is a dual-encoder fine-
tuned on the TACKBP-2010 training set. MOLEMAN is
not finetuned.
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A Appendices

A.1 Training setup and hyperparameters

To isolate the impact of representing entities with
multiple mention embeddings, we follow the train-
ing methodology and hyperparameter choices pre-
sented in Botha et al. (2020) (Appendix A).

We train MOLEMAN using in-batch sampled
softmax (Gillick et al., 2018) using a batch size of
8192 for 500k steps, which takes about a day. Our
model is implemented in Tensorflow (Abadi et al.,
2016), using the Adam optimizer (Kingma and
Ba, 2014; Loshchilov and Hutter, 2017) with the
mention encoder preinitialized from a multilingual
BERT checkpoint2. All model training was carried
out on a Google TPU v3 architecture3.

2github.com/google-research/bert/
multi_cased_L-12_H-768_A-12

3cloud.google.com/tpu/docs/tpus

https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396
github.com/google-research/bert/multi_cased_L-12_H-768_A-12
github.com/google-research/bert/multi_cased_L-12_H-768_A-12
cloud.google.com/tpu/docs/tpus
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A.2 Datasets Links
• Mewsli-9: http://goo.gle/

mewsli-dataset

• TR2016hard: cogcomp.seas.upenn.edu/

page/resource_view/102

• TACKBP-2010: https://catalog.ldc.

upenn.edu/LDC2018T16

A.3 Profiling Details
The brute-force numbers we’ve reported are the the-
oretical maximum throughput for computing 300D
dot-products on an AVX-512 processor running
at 2.2Ghz, and are thus an overly optimistic base-
line. Practical implementations, such as the one
in ScaNN, must also compute the top-k and rarely
exceed 70% to 80% of this theoretical limit. The
brute-force latency figure is the minimum time to
stream the database from RAM using 144 GiB/s of
memory-bandwidth. In practice, we ran distributed
brute-force inference on a large cluster of CPUs,
which took about 5 hours.

The numbers for ScaNN are empirical single-
machine benchmarks of an internal solution that
uses the open-source ScaNN library 4 on a single
24-core CPU. We use ScaNN to search a multi-
level tree that has the following shape: 78, 000 =>
83 : 1 => 105 : 1 (687.3 million datapoints). We
used a combination of several different anisotropic
vector quantizations that combine 3, 6, 12, or 24
dimensions per 4-bit code, as well as re-scoring
with an int8-quantization.

A.4 Expanded experimental results
Tables 7 and 8 present complete numerical com-
parisons between MOLEMAN and Model F+ on
Mewsli-9.

4https://github.com/google-research/
google-research/tree/master/scann

http://goo.gle/mewsli-dataset
http://goo.gle/mewsli-dataset
cogcomp.seas.upenn.edu/ page/resource_view/102
cogcomp.seas.upenn.edu/ page/resource_view/102
https://catalog.ldc.upenn.edu/LDC2018T16
https://catalog.ldc.upenn.edu/LDC2018T16
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
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Model F+ MOLEMAN MOLEMAN
(mentions only) (+ descriptions)

Language R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100
ar 92.3 97.7 99.1 93.4 98.6 99.0 93.4 98.6 99.4
de 91.5 97.3 99.0 91.3 98.2 98.9 91.5 98.9 99.5
en 87.2 94.2 96.7 87.4 95.9 97.4 87.4 97.0 99.3
es 89.0 97.4 98.9 88.7 98.1 98.8 88.7 98.5 99.3
fa 91.8 97.4 98.7 93.5 98.5 99.1 92.9 98.3 99.6
ja 87.8 95.6 97.6 88.7 96.2 97.0 88.5 96.8 98.0
sr 92.6 98.2 99.2 92.2 98.7 99.5 92.5 99.0 99.7
ta 87.6 97.4 98.9 91.5 98.4 99.1 91.3 98.6 99.5

micro-avg 89.4 96.4 98.2 89.5 97.4 98.3 89.6 98.0 99.2
macro-avg 89.8 96.9 98.5 90.6 97.8 98.5 90.6 98.2 99.3

Table 7: Results on the Mewsli-9 dataset by language.

Model F+ MOLEMAN MOLEMAN
(mentions only) (+description)

Bin Queries R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100
[0, 1) 3,198 8.3 33.9 62.7 0.0 0.0 0.0 8.1 52.2 74.7
[1, 10) 6,564 57.7 80.8 91.3 58.1 86.4 93.3 59.4 90.1 96.5
[10, 100) 32,371 80.4 92.8 96.7 82.2 96.5 98.8 82.1 96.5 98.9
[100, 1k) 66,232 89.6 96.6 98.2 89.7 98.4 99.5 89.6 98.5 99.5
[1k, 10k) 78,519 92.9 98.4 99.3 91.9 99.2 99.8 91.8 99.1 99.8
[10k, +) 102,203 94.1 98.8 99.4 94.8 99.4 99.6 94.8 99.3 99.5
micro-avg 89.4 96.4 98.2 89.5 97.4 98.3 89.6 98.0 99.2
macro-avg 70.5 83.5 91.3 69.4 80.0 81.8 70.9 89.3 94.8

Table 8: Results on the Mewsli-9 dataset, by entity frequency in the test set.


