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Abstract

The growth of online consumer health ques-
tions has led to the necessity for reliable and
accurate question answering systems. A re-
cent study showed that manual summariza-
tion of consumer health questions brings sig-
nificant improvement in retrieving relevant an-
swers. However, the automatic summarization
of long questions is a challenging task due to
the lack of training data and the complexity of
the related subtasks, such as the question fo-
cus and type recognition. In this paper, we in-
troduce a reinforcement learning-based frame-
work for abstractive question summarization.
We propose two novel rewards obtained from
the downstream tasks of (i) question-type iden-
tification and (ii) question-focus recognition
to regularize the question generation model.
These rewards ensure the generation of se-
mantically valid questions and encourage the
inclusion of key medical entities/foci in the
question summary. We evaluated our pro-
posed method on two benchmark datasets and
achieved higher performance over state-of-the-
art models. The manual evaluation of the
summaries reveals that the generated ques-
tions are more diverse and have fewer factual
inconsistencies than the baseline summaries.
The source code is available here: https:

//github.com/shwetanlp/CHQ-Summ.

1 Introduction

The growing trend in online web forums is to at-
tract more and more consumers to use the Internet
for their health information needs. An instinctive
way for consumers to query for their health-related
content is in the form of natural language questions.
These questions are often excessively descriptive
and contain more than required peripheral infor-
mation. However, most of the textual content is
not particularly relevant in answering the question

∗∗These authors contributed equally to this work.

(Kilicoglu et al., 2013). A recent study showed that
manual summarization of consumer health ques-
tions (CHQ) has significant improvement (58%)
in retrieving relevant answers (Ben Abacha and
Demner-Fushman, 2019). However, three major
limitations impede higher success in obtaining se-
mantically and factually correct summaries: (1)
the complexity of identifying the correct question
type/intent, (2) the difficulty of identifying salient
medical entities and focus/topic of the question,
and (3) the lack of large-scale CHQ summariza-
tion datasets. To address these limitations, this
work presents a new reinforcement learning based
framework for abstractive question summarization.
We also propose two novel question-aware seman-
tic reward functions: Question-type Identification
Reward (QTR) and Question-focus Recognition
Reward (QFR). The QTR measures correctly iden-
tified question-type(s) of the summarized question.
Similarly, QFR measures correctly recognized key
medical concept(s) or focus/foci of the summary.

We use the reinforce-based policy gradient ap-
proach, which maximizes the non-differentiable
QTR and QFR rewards by learning the optimal pol-
icy defined by the Transformer model parameters.
Our experiments show that these two rewards can
significantly improve the question summarization
quality, separately or jointly, achieving the new
state-of-the-art performance on the MEQSUM and
MATINF benchmark datasets. The main contribu-
tions of this paper are as follows:

• We propose a novel approach towards
question summarization by introducing two
question-aware semantic rewards (i) Question-
type Identification Reward and (ii) Question-
focus Recognition Reward, to enforce the gen-
eration of semantically valid and factually cor-
rect question summaries.

• The proposed models achieve the state-of-
the-art performance on two question summa-

https://github.com/shwetanlp/CHQ-Summ
https://github.com/shwetanlp/CHQ-Summ
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rization datasets over competitive pre-trained
Transformer models.

• A manual evaluation of the summarized ques-
tions reveals that they achieve higher abstrac-
tion levels and are more semantically and fac-
tually similar to human-generated summaries.

2 Related Work

In recent years, reinforcement learning (RL) based
models have been explored for the abstractive sum-
marization task. Paulus et al. (2017) introduced RL
in neural summarization models by optimizing the
ROUGE score as a reward that led to more readable
and concise summaries. Subsequently, several stud-
ies (Chen and Bansal, 2018; Pasunuru and Bansal,
2018; Zhang and Bansal, 2019; Gupta et al., 2020;
Zhang et al., 2019b) have proposed methods to op-
timize the model losses via RL that enables the
model to generate the sentences with the higher
ROUGE score. While these methods are primarily
supervised, Laban et al. (2020) proposed an unsu-
pervised method that accounts for fluency, brevity,
and coverage in generated summaries using multi-
ple RL-based rewards. The majority of these works
are focused on document summarization with con-
ventional non-semantics rewards (ROUGE, BLEU).
In contrast, we focus on formulating the semantic
rewards that bring a high-level semantic regular-
ization. In particular, we investigate the question’s
main characteristics, i.e., question focus and type,
to define the rewards.

Recently, Ben Abacha and Demner-Fushman
(2019) defined the CHQ summarization task and
introduced a new benchmark (MEQSUM) and a
pointer-generator model. Ben Abacha et al. (2021)
organized the MEDIQA-21 shared task challenge
on CHQ, multi-document answers, and radiology
report summarization. Most of the participating
team (Yadav et al., 2021b; He et al., 2021; Sänger
et al., 2021) utilized transfer learning, knowledge-
based, and ensemble methods to solve the question
summarization task. Yadav et al. (2021a) proposed
question-aware transformer models for question
summarization. Xu et al. (2020) automatically cre-
ated a Chinese dataset (MATINF) for medical ques-
tion answering, summarization, and classification
tasks focusing on maternity and infant categories.
Some of the other prominent works in the abstrac-
tive summarization of long and short documents
include Cohan et al. (2018); Zhang et al. (2019a);
MacAvaney et al. (2019); Sotudeh et al. (2020).

3 Proposed Method

Given a question, the goal of the task is to generate
a summarized question that contains the salient
information of the original question. We pro-
pose a RL-based question summarizer model over
the Transformer (Vaswani et al., 2017) encoder-
decoder architecture. We describe below the pro-
posed reward functions.

3.1 Question-aware Semantic Rewards

(a) Question-type Identification Reward: In-
dependent of the pre-training task, most language
models use maximum likelihood estimation (MLE)-
based training for fine-tuning the downstream tasks.
MLE has two drawbacks: (1) “exposure bias”
(Ranzato et al., 2016) when the model expects
gold-standard data at each step during training but
does not have such supervision when testing, and
(2) “representational collapse” (Aghajanyan et al.,
2021), is the degradation of generalizable represen-
tations of pre-trained models during the fine-tuning
stage. To deal with the exposure bias, previous
works used the ROUGE and BLEU rewards to train
the generation models (Paulus et al., 2017; Ranzato
et al., 2016). These evaluation metrics are based on
n-grams matching and might fail to capture the se-
mantics of the generated questions. We, therefore,
propose a new question-type identification reward
to capture the underlying question semantics.

We fine-tuned a BERTBASE network as a
question-type identification model to provide
question-type labels. Specifically, we use the
[CLS] token representation (h[CLS]) from the fi-
nal transformer layer of BERTBASE and add the
feed-forward layers on top of the h[CLS] to com-
pute the final logits

l = W (tanh(Uh[CLS] + a)) + b

Finally, the question types are predicted using the
sigmoid activation function on each output neu-
ron of logits l. The fine-tuned network is used
to compute the reward rQTR(Qp, Q∗) as F-Score
of question-types between the generated question
summary Qp and the gold question summary Q∗.

(b) Question-focus Recognition Reward: A
good question summary should contain the key
information of the original question to avoid fac-
tual inconsistency. In the literature, ROUGE-based
rewards have been explored to maximize the cov-
erage of the generated summary, but it does not
guarantee to preserve the key information in the
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question summary. We introduce a novel reward
function called question-focus recognition reward,
which captures the degree to which the key in-
formation from the original question is present in
the generated summary question. Similar to QTR,
we fine-tuned the BERTBASE network for question-
focus recognition to predict the focus/foci of the
question. Specifically, given the representation ma-
trix (H ∈ Rn×d) of n tokens and d dimensional
hidden state representation obtained from the final
transformer layer of BERTBASE, we performed the
token level prediction using a linear layer of the
feed-forward network. For each token representa-
tion (hi), we compute the logits li ∈ R|C|, where
(|C|) is the number of classes and predict the ques-
tion focus as follows: fi = softmax(Whi + b).
The fine-tuned network is used to compute the re-
ward rQFR(Qp, Q∗) as F-Score of question-focus
between the generated question summary Qp and
the gold question summary Q∗.

3.2 Policy Gradient REINFORCE
We cast question summarization as an RL problem,
where the “agent” (ProphetNet decoder) interacts
with the “environment” (Question-type or focus pre-
diction networks) to take “actions” (next word pre-
diction) based on the learned “policy” pθ defined
by ProphetNet parameters (θ) and observe “reward”
(QTR and QFR). We utilized ProphetNet (Qi et al.,
2020) as the base model because it is specifically
designed for sequence-to-sequence training and it
has shown near state-of-the-art results on natural
language generation task. We use the REINFORCE
algorithm (Williams, 1992) to learn the optimal
policy which maximizes the expected reward. To-
ward this, we minimize the loss function LRL =
−EQs∼pθ [r(Qs, Q∗)], where Qs is the question
formed by sampling the words qst from the model’s
output distribution, i.e. p(qst |qs1, qs2, . . . , qst−1,S).
The derivative of LRL is approximated using a sin-
gle sample along with baseline estimator b:

5θLRL = −(r(Qs, Q∗)− b)5θ logpθ(Q
s) (1)

The Self-critical Sequence Training (SCST) strat-
egy (Rennie et al., 2017) is used to estimate the
baseline reward by computing the reward with the
question generated by the current model using the
greedy decoding technique, i.e., b = r(Qg, Q∗).
We compute the final reward as a weighted sum of
QTR and QFR as follows:

r(Qp, Q∗) = γQTR×rQTR(Qp, Q∗)+γQFR×rQFR(Qp, Q∗)
(2)

We train the network with the mixed loss as dis-
cussed in Paulus et al. (2017). The overall network
loss is as follows:

L = αLRL + (1− α)LML (3)

where, α is the scaling factor and LML is the
negative log-likelihood loss and equivalent to
−
∑t=m

t=1 logp(q
∗
t |q∗1, q∗2, . . . , q∗t−1,S), where S is

the source question.

4 Experimental Results & Analysis

4.1 Datasets
We utilized two CHQ abstractive summarization
datasets: MEQSUM and MATINF1 to evaluate the
proposed framework. The MEQSUM2 training set
consists of 5, 155 CHQ-summary pairs and the test
set includes 500 pairs. We chose 100 samples from
the training set as the validation dataset.

For fine-tuning the question-type identification
and question-focus recognition models, we manu-
ally labeled the MEQSUM dataset with the ques-
tion type: (‘Dosage’, ‘Drugs’, ‘Diagnosis’, ‘Treat-
ments’, ‘Duration’, ‘Testing’, ‘Symptom’, ‘Usage’,

‘Information’, ‘Causes’) and foci. We use the la-
beled data to train the question-type identifica-
tion and question-focus recognition networks. For
question-focus recognition, we follow the BIO no-
tation and classify each token for the beginning of
focus token (B), intermediate of focus token (I),
and other token (O) classes. Since, the gold anno-
tations for question-types and question-focus were
not available for the MATINF dataset, we used
the pre-trained network trained on the MEQSUM

dataset to obtain the silver-standard question-types
and question-focus information for MATINF3.
The MATINF dataset has 5, 000 CHQ-summary
pairs in the training set and 500 in the test set.

4.2 Experimental Setups
We use the pre-trained uncased version4 of Prophet-
Net as the base encoder-decoder model. We use a
beam search algorithm with beam size 4 to decode
the summary sentence. We train all summarization
models on the respective training dataset for 20
epochs. We set the maximum question and sum-
mary sentence length to 120 and 20, respectively.

1Since the dataset was in Chinese, we translated it to En-
glish using Google Translate.

2https://github.com/abachaa/MeQSum
3https://github.com/WHUIR/MATINF
4https://huggingface.co/microsoft/

prophetnet-large-uncased

https://github.com/abachaa/MeQSum
https://github.com/WHUIR/MATINF
https://huggingface.co/microsoft/prophetnet-large-uncased
https://huggingface.co/microsoft/prophetnet-large-uncased
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Models MEQSUM MATINF∗

R-1 R-2 R-L R-1 R-2 R-L

B
as

el
in

es

Seq2Seq (Sutskever et al., 2014) 25.28 14.39 24.64 17.77 5.10 21.48
Seq2Seq + Attention (Bahdanau et al., 2015) 28.11 17.24 27.82 19.45 6.45 23.77
Pointer Generator (PG) (See et al., 2017) 32.41 19.37 36.53 23.31 7.01 26.61
SOTA (Ben Abacha and Demner-Fushman, 2019) 44.16 27.64 42.78 − − −
SOTA∗ (Ben Abacha and Demner-Fushman, 2019) 40.00 24.13 38.56 24.58 7.30 28.08
Transformer (Vaswani et al., 2017) 25.84 13.66 29.12 22.25 5.89 26.06
BertSumm (Liu and Lapata, 2019) 26.24 16.20 30.59 31.16 11.94 34.70
T5BASE (Raffel et al., 2019) 38.92 21.29 40.56 39.66 21.24 41.52
PEGASUS (Zhang et al., 2019a) 39.06 20.18 42.05 40.05 23.67 43.30
BARTLARGE (Lewis et al., 2019) 42.30 24.83 43.74 42.52 23.13 43.98
MINILM (Wang et al., 2020) 43.13 26.03 46.39 35.60 18.08 38.70
ProphetNet (Qi et al., 2020) 43.87 25.99 46.52 46.94 27.77 48.43
ProphetNet + ROUGE-L 44.33 26.32 46.90 48.17 28.13 48.66

Jo
in

t
L

ea
rn

in
g ProphetNet + Q-type 44.40 26.63 47.05 47.19 28.02 48.70

ProphetNet + Q-focus 44.62 26.61 47.28 47.14 28.06 48.64
ProphetNet + Q-type + Q-focus 44.67 26.72 47.34 47.18 28.04 48.65

Pr
op

os
ed

A
pp

ro
ac

h ProphetNet + QTR 44.60 26.69 47.38 47.51 28.40 48.94
ProphetNet + QFR 45.36 27.33 47.96 47.53 28.29 49.11
ProphetNet + QTR + QFR 45.52 27.54 48.19 47.73 28.54 49.33

Table 1: Comparison of the proposed models and various baselines. SOTA∗ denotes the method trained on the
same data that we used. MATINF∗ denotes a translated English subset of the original Chinese MATINF dataset.

Summary Label MEQSUM MATINF
M1 M2 M3 M4 M1 M2 M3 M4

Semantics Preserved (PC/FC) 14/19.5 9.5/29 18/28 19.5/29 6/32.5 9.5/33 13.5/34 14/35
Factual Consistent (PC/FC) 11/25 7.5/35 9.5/36.5 10/38 5.5/35 7/36 7.5/41 9/42.5
Incorrect 23 11 12.5 11 10.5 11.5 11.5 10
Acceptable 18.5 10 12.5 12.5 15 10.5 8.5 9.5
Perfect 8.5 29 25 26.5 24.5 28 30 30.5

Table 2: Results of the manual evaluation of the summaries generated by ProphetNet (M1), M1+QTR (M2),
M1+QFR (M3), and M1+QTR+QFR (M4). For Semantic Preserved and Factual Consistent, we report the partially
correct (PC) and fully correct (FC) numbers.

We first fine-train the proposed network by min-
imizing only the maximum likelihood (ML) loss.
Next, we initialize our proposed model with the
fine-trained ML weights and train the network with
the mixed-objective learning function (Eq. 3). We
performed experiments on the validation dataset
by varying the α, γQTR and γQFR in the range
of (0, 1). The scaling factor (α) value 0.95, was
found to be optimal (in terms of Rouge-L) for
both the datasets. The values of γQTR = 0.4 and
γQFR = 0.6 were found to be optimal on the vali-
dation sets of both datasets. To update the model
parameters, we used Adam (Kingma and Ba, 2015)
optimization algorithm with the learning rate of
7e − 5 for ML training and 3e − 7 for RL train-
ing. We obtained the optimal hyper-parameters
values based on the performance of the model on
the validation sets of MEQSUM and MATINF in
the respective experiments. We used a cosine an-
nealing learning rate (Loshchilov and Hutter, 2017)
decay schedule, where the learning rate decreases
linearly from the initial learning set in the optimizer

to 0. To avoid the gradient explosion issue, the gra-
dient norm was clipped within 1. For all the base-
line experiments, we followed the official source
code of the approach and trained the model on our
datasets. We implemented the approach of Ben
Abacha and Demner-Fushman (2019) to evaluate
the performance on both datasets. All experiments
were performed on a single NVIDIA Tesla V100
GPU having GPU memory of 32GB. The average
runtimes (each epoch) for the proposed approaches
M2, M3 and M4 were 2.7, 2.8 and 4.5 hours, re-
spectively. All the proposed models have 391.32
million parameters.

4.3 Results

We present the results of the proposed question-
aware semantic rewards on the MEQSUM and
MATINF datasets in Table-1. We evaluated the
generated summaries using the ROUGE (Lin,
2004) metric5. The proposed model achieves new
state-of-the-art performance on both datasets by

5https://pypi.org/project/py-rouge/

https://pypi.org/project/py-rouge/


253

Original Question-I: who makes bromocriptine i am wonder-
ing what company makes the drug bromocriptine... i have on
my pituitary gland ... i have to buy them...

Reference: who manufactures bromocriptine?

Generated Summary

ProphetNet: what is bromocriptine?
Proposed Approach: what company makes bromocriptine
and how much does it cost?

Original Question-II: Have been on methadone for four
years. I am interested in the rapid withdrawal under anes-
thesia, but do not have a clue where I can find a doctor or
hospital who does this. I also would like to know the ap-
proximate cost and if or what insurance companies pay for
this.
Reference: how can I find a physician (s) or hospital (s) who
specialize in rapid methadone withdrawal under anesthesia,
and the cost and insurance benefits for the procedure?

Generated Summary

ProphetNet: what is the treatment for rapid withdrawal of
methadone under anesthesia?
Proposed Approach: where can i find physician (s) who
specialize in rapid withdrawal of methadone?

Table 3: Correct/Incorrect summaries generated on
MEQSUM. Example-I shows a perfect summary over
ProphetNet. The second example shows an incorrect
summary with a partially extracted focus (‘under anes-
thesia’) and two missing types (‘cost’, ‘procedures’).

outperforming competitive baseline Transformer
models. We also compare the proposed model with
the joint learning baselines, where we regularize
the question summarizer with the additional
loss obtained from the question-type (Q-type)
identification and question-focus (Q-focus)
recognition model. To make a fair comparison
with the proposed approach, we train these joint
learning-based models with the same weighted
strategy shown in Eq. 3. The results reported in
Table 1 show the improvement over the ProphetNet
on both datasets.

In comparison to the benchmark model on MEQ-
SUM, our proposed model obtained an improve-
ment of 9.63%. A similar improvement is also
observed on the MATINF dataset. Furthermore,
the results show that individual QTR and QFR re-
wards also improve over ProphetNet and ROUGE-
based rewards. These results support two major
claims: (1) question-type reward assists the model
to capture the underlying question semantics, and
(2) awareness of salient entities learned from the
question-focus reward enables the generation of
fewer incorrect summaries that are unrelated to
the question topic. The proposed rewards are
model-independent and can be plugged into any

pre-trained Seq2Seq model. On the downstream
tasks of question-type identification and question-
focus recognition, the pre-trained BERT model
achieves the F-Score of 97.10% and 77.24%, re-
spectively, on 10% of the manually labeled MEQ-
SUM pairs.

Manual Evaluation: Two annotators, experts in
medical informatics, performed an analysis of 50
summaries randomly selected from each test set.
In MATINF, nine out of the 50 samples contained
translation errors. We thus randomly replaced them.
In both datasets, we annotated each summary with
two labels ‘Semantics Preserved’ and ‘Factual Con-
sistent’ to measure (1) whether the semantics (i.e.,
question intent) of the source question was pre-
served in the generated summary and (2) whether
the key entities/foci were present in the generated
summary. In the manual evaluation of the quality
of the generated summaries, we categorize each
summary into one of the following categories: ‘In-
correct’, ‘Acceptable’, and ‘Perfect’. We report
the human evaluation results (average of two an-
notators) on both datasets in Table-2. The results
show that our proposed rewards enhance the model
by capturing the underlying semantics and facts,
which led to higher proportions of perfect and ac-
ceptable summaries. The error analysis identified
two major causes of errors: (1) Wrong question
types (e.g. the original question contained multiple
question types or has insufficient type-related train-
ing instances) and (2) Wrong/partial focus (e.g. the
model fails to capture the key medical entities).

5 Conclusion

In this work, we present an RL-based framework
by introducing novel question-aware semantic re-
wards to enhance the semantics and factual con-
sistency of the summarized questions. The auto-
matic and human evaluations demonstrated the ef-
ficiency of these rewards when integrated with a
strong encoder-decoder based ProphetNet trans-
former model. The proposed methods achieve
state-of-the-art results on two-question summariza-
tion benchmarks. In the future, we will explore
other types of semantic rewards and efficient multi-
rewards optimization algorithms for RL.
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