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Abstract

Ordered word sequences contain the rich struc-
tures that define language. However, it’s of-
ten not clear if or how modern pretrained lan-
guage models utilize these structures. We
show that the token representations and self-
attention activations within BERT are surpris-
ingly resilient to shuffling the order of input
tokens, and that for several GLUE language
understanding tasks, shuffling only minimally
degrades performance, e.g., by 4% for QNLI.
While bleak from the perspective of language
understanding, our results have positive impli-
cations for cases where copyright or ethics ne-
cessitates the consideration of bag-of-words
data (vs. full documents). We simulate such a
scenario for three sensitive classification tasks,
demonstrating minimal performance degrada-
tion vs. releasing full language sequences.

1 Introduction

Masked language models (MLMs) like BERT (De-
vlin et al., 2019) use an ordered sequence of tokens
as input. And rightfully so! Any model capable
of “language understanding” undoubtedly should
need access to the hierarchical, syntactic structures
implicitly encoded in language. But are MLMs
really doing better because they have access to full
word sequences?

To assess this question, we first compare the
internal representations of BERT and RoBERTa
(Liu et al., 2019) when the sequence of unigrams
is not available.! We do this by using the bag-
of-words counts of an input to generate a random
ordering of the unigrams, i.e., “shuffling” the input.
For example, in a sentiment classification corpus,
if an intact input was “The movie was great!”, a
possible shuffled ordering might be “movie the
great was” (tokenization details are in §4). We
find that, though BERT appears to become more

"We use the “base” models supplied by the authors
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sensitive to ordering in later layers, shuffled token
representations and self-attention activations still
closely resemble their unshuffled counterparts.

Following cues from prior work (Sugawara et al.,
2020; Si et al., 2019; K et al., 2020), we next report
the performance of pre-trained MLMs fine-tuned
on GLUE, a suite of English-language understand-
ing benchmarks, when given access only to uni-
gram count information by handing models ran-
domly ordered sequences of words (an approach
we call BoWw-BERT, for short). For most GLUE
tasks, performance degradation when shuffling is
minimal, e.g., MNLI, QQP, and QNLI accuracy
degrade by less than 5 accuracy points.

The bad news: Despite BERT being trained on
intact word sequences, BoWw—BERT demonstrates
that MLMs can readily ignore syntax (while main-
taining strong performance) when fine-tuned for
even carefully designed downstream language un-
derstanding tasks.> We thus advocate for reporting
BoW-BERT’s performance as a strong baseline.

The good news: BoW-BERT offers a practical
modeling choice for researchers who must oper-
ate with only bag-of-words representations for le-
gal or ethical reasons.> Bag-of-words data re-
leases are sometimes the only legal format in which
copyright-sensitive corpora may be distributed, e.g.,
HathiTrust* (16M historical volumes) (Christen-
son, 2011), Google N-grams (Michel et al., 2011),
etc. And while ethical considerations sometimes
preclude the full release of privacy-sensitive docu-

*Bowman and Dahl (2021) provide perspective on “fixing”
NLU tasks.

3This is a surprisingly common case: our initial motivation
for BoWw-BERT was our experience in exploring such a corpus.

“In Authors Guild, Inc. v. HathiTrust (2014), the 2nd
Circuit U.S. Court of Appeals ruled that showing only “the
number of times [a search term] appears on each page” con-
stitutes legal fair use, but “[displaying] to the user any text
from the underlying copyrighted work” might not.

204

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 204-211
August 1-6, 2021. ©2021 Association for Computational Linguistics



ments (e.g., medical transcriptions), bag-of-words
data release offers the potential for compromise.
While releasing unigram counts is one way of
anonymizing documents (Gallé and Tealdi, 2015),
recent work in differential privacy (Dwork, 2008;
Fernandes et al., 2019; Schofield et al., 2019;
Schein et al., 2019) has resulted in randomized
algorithms capable of privatizing BoW count data
(under varying definitions of privacy).’

We explore classification tasks on three sensitive
corpora, simulating different input fidelity availabil-
ity: full sequences, BoW counts, and differentially
private (DP) BoW counts. We find that BoW—BERT
often significantly outperforms prior BoW models,
especially for shorter documents. And, for longer
documents, BoWw—BERT can even outperform full-
sequence BERT. Finally, for the (naive) DP con-
figuration we consider, BoW—-BERT is a viable op-
tion for classifying shorter privatized documents,
though linear BoW models remain competitive for
longer documents.

2 Related Work

Shuffling inputs to non-pretrained models.
Word order shuffling has been tested as part of
the full training process for non-pretrained mod-
els. Sankar et al. (2019) shuffle words in a dialog
corpus, and find that LSTMs are more sensitive
than Transformers to word order. Khandelwal et al.
(2018) show that shuffling distant context words
(e.g., beyond 50 tokens) has little effect in outcome
for LM-LSTMs. Adi et al. (2017) show that LSTM
autoencoders encode significant ordering informa-
tion when fit to a corpus of Wikipedia sentences.
Nie et al. (2019) report minimal performance de-
creases from word shuffling while training a num-
ber of model architectures, e.g., ESIM (Chen et al.,
2017), for SNLI/MNLI tasks. In a multimodal set-
ting, Cirik et al. (2018) show that shuffling doesn’t
affect performance for an LSTM in a referring ex-
pression task.

Shuffling inputs to pretrained MLMs. While
at the time of submission of this work, shuffling
results had not been fully reported on the popu-
lar GLUE taskset, prior results have used word-
shuffling as a baseline with varying results.
Sugawara et al. (2020) operationalize ablations
of reading comprehension skills from Kintsch

5Releasing BoW counts is related to, but distinct from, the
setting considered by Beigi et al. (2019), who produce private
vector representations with uninterpretable dimensions.

(1988), and report that shuffling n-grams in 10 QA
corpora results in 10-20% performance decreases
for BERT. Si et al. (2019) report similar results
when shuffling questions+answers in MCRC cor-
pora, reporting absolute accuracy drops of between
5-20% when shuffling both passage/question words
(e.g., BERT on DREAM drops from 63 — 41 ac-
curacy relative to a 33% constant baseline). K et al.
(2020) report that swapping tokens during pretrain-
ing of a multilingual BERT model results in mod-
erate performance degradation for XNLI (e.g., 71
— 63 for en-es) but more significant performance
degradation for NER (63 — 40 in the same setting).
They find that a purely frequency-based corpus “is
not enough for a reasonable cross-lingual perfor-
mance.”

Several works have examined shuffling inputs in
multi-language scenarios (e.g., translation) when
languages have variable syntax (Ahmad et al.,
2019; Liu et al., 2020). Zhao et al. (2020) use
a random token permutation to provide a baseline.
Yang et al. (2019) find that self-attention networks
are surprisingly bad at identifying two tokens that
are swapped in the input. Ettinger (2020) show that
shuffling BERT inputs decreases word cloze pre-
diction performance on a corpus of 102 sentences
without fine-tuning. Wang et al. (2020) incorporate
a deshuffling objective into pre-training.

In some cases, shuffled inputs provide a stronger
baseline than might be assumed, while in oth-
ers, shuffling significantly degrades performance.
At present, determining whether or not order is
“needed” for a particular task is largely an experi-
mental, empirical endeavor.

Syntax in MLMs. Prior works have investigated
BERT’s capacity to represent syntax: some re-
searchers have designed prediction tasks that re-
quire syntactic knowledge (Linzen et al., 2016;
Jawahar et al., 2019; Lin et al., 2019; Goldberg,
2019), while others have probed representations
for linguistic information directly (Marecek and
Rosa, 2018; Liu et al.; Hewitt and Manning, 2019;
Reif et al., 2019). Tenney et al. (2019) find that con-
textual representations outperform lexical represen-
tations on many syntactic tasks, but not in a suite
of semantic prediction tasks. Htut et al. (2019) and
Clark et al. (2019) find that some attention heads
encode information useful for dependency parsing.
Glavas and Vuli¢ (2020) show that intermediate
supervised training of a biaffine parser has little
effect on downstream MLM performance.
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A Bouquet of Contemporaneous Work. While
this work was in submission, several related works
were posted to arXiv. Gupta et al. (2021) examine
NLI, paraphrase detection, and sentiment classifi-
cation, and show that destructive interventions do
not significantly affect either model predictions or
model confidence. Sinha et al. (2020) find a similar
result for NLI tasks, and, in follow-up work, Sinha
et al. (2021) demonstrate pretraining is possible
on unordered sequences. Pham et al. (2020) look
specifically at GLUE classification for BERT-based
models. Beyond contemporaneous confirmation of
the GLUE results, our work contributes to this bou-
quet by: 1) examining internal activations/layers
and 2) exploring classification settings where one
might need to operate on (potentially differentially
private) count-only data.

3 Representation analysis

We might expect that shuffling the order of tokens
in an input sentence would significantly corrupt
the internal representations of BERT, but is that
actually the case? We investigate with two new
metrics. Consider applying a pre-trained, fixed
BERT model to z =“the movie was great” and the
shuffled ' =“movie the great was”.

Token identifiability measures the similarity of
BERT’s vector representations of a word token
(e.g., “movie”) in z and 2. Identifiability is high
if the model has similar representations for tokens
after their order is shuffled.

Self-attention distance measures if BERT attends
to similar tokens for each token in z and 2’ regard-
less of their order (e.g., is “the movie was great”
~ “movie the great was” to BERT?). Self-attention
distance is low if the model attends to the same
tokens after input shuffling.

Token Identifiability. Let MLM;(z) be a R¥*?
matrix, where t is the number of tokens in sen-
tence x, d is the MLM’s dimension, and [ is the
layer index. In this setting, row 7 of MLM,(z) is the
MLM’s representation of the ¢th token in sentence
x. We compare MLM,;(z) to E[MLM;(X’)], where
X' is drawn uniformly from the permutations of x:
perm(z). For a specific sample 2’ ~ perm(z), we
first take the row-wise cosine similarity of MLM; ()
and MLM, (z'), and treat the resulting ¢ X ¢ matrix as
an instance of a bipartite linear assignment problem.
The assignment accuracy (AA) score for (z,x') is
the proportion of assigned token pairs that have
the same underlying word type. To avoid biasing
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Figure 1: Token identifiability and attention distance by
layer for BERT and RoBERTa; dashed lines represent
baseline values of metrics with unshuffled sequences,
error bars are 95% CI for mean, scatterplot=per-
attention head result. Identifiability decreases towards
1 (pure random token features) when shuffled inputs
produce very different embeddings from the intact in-
puts, while self-attention distance increases towards 1
(pure random attention) in this case. While later layers
in both models are more order-sensitive, information is
retained for shuffled inputs.

towards shorter sentences, we take the ratio of the
accuracy relative to chance, i.e.,

_ Ex/[AA(MLM(2), MLV (X))]
ID-MLM(z, 1) = IF;;AND [AA(MILMZ(JU), RIAND)]
(D

9

where RAND is a random matrix of reals R*4.0

Self-Attention Distance. Let AMLM;;(z) be
the row-l;-normalized R'*! matrix representing
the self-attention matrix at layer [ for atten-
tion head h. We can compute the same ma-
trix for a shuffled input AMLM, 5, (2’), and then
perform a transformation to re-order the rows
and columns of this matrix to match the origi-
nal order of tokens in z, yielding AMLMY, (z').
We then define the row-wise Jensen-Shannon di-
vergence DS-ISD(BAMLM, »(x), AMLM/, (z')) as
the mean row-wise JSD between AMLMl,h(x)
and the DeShuffled reordered attention ma-
trix AMLM, (2').  As before, to reduce the
effect of sentence length, we normalize us-
ing RND-JSD(AMLM, ;(z), AMLM/ ), (27)), which
chooses a random row/column permutation. ’ The

®1n practice, we simply compute the assignment step of
AA using a R”* matrix drawn from U0, 1).

"If there are multiple possible valid permutations of x’
that match z (e.g., if there are repeated words), DS-JSD will
choose the order that minimizes the JSD, and RND-JSD will
search through a number of random orderings equal to the
number of valid permutations. If the number of valid permuta-
tions is > 16, 16 random valid permutations are sampled.
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MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE

Acc/Acc F1/Acc Acc Acc  MCC PCC-r/SCC-p  Fl/Acc  Acc

RoBERTa (full seq) 87.3/87.1 72.0/88.8 929 958 588 89.5/88.8 90.2/86.6 69.9
BoW-RoBERTa 81.1/82.8 68.8/87.5 86.8  85.5 10.4 85.0/83.8 82.1/76.6  58.8
BERT (full seq) 84.2/83.2 71.6/89.1 906 926  50.7 87.3/86.4 87.5/82.8 68.4
BoW-BERT 79.8/79.7 68.3/87.5 86.2  86.7 14.3 81.8/80.3 82.9/75.2 60.4
CBOW GloVe 56.0/56.4 51.4/79.1 721 80.0 0.0 61.2/58.7 81.5/73.4 54.1

Table 1: GLUE test set prediction results.

final attention distance metric is defined as
AD-MLM(z, [, h) =
Ex/[DS-JSD(AMLM, (), AMLM;, (X'))]
E x/[RND-JSD(AMLM; 4 (), AMLM], (X))]

2)

Results. We randomly sample 100 sentences
from each training set of 8 GLUE tasks, for a to-
tal of 800 sentences. To approximate expectations
from Equations 1 and 2, we sample 32 random per-
mutations per sentence. Figure 1 gives the per-layer
token identifiability/attention similarity scores for
both MLMs. For both metrics, later layers are more
order sensitive to order, i.e., ID-MLM | and AD-
MLM 1. Attention heads vary significantly in their
order sensitivity: each attention head is a single
point in the scatterplot of Figure 1b. But, even at
late layers, both metrics suggest significantly more
than random correspondence: internal represen-
tations of BoW— (Ro) BERT (a) clearly resemble
their unshuffled counterparts.

4 BoW-BERT for Classification

We compare BERT and RoBERTa to their BoW
counterparts on nine tasks from GLUE (Wang
et al., 2019).8 We run single-task training for six
epochs, use early stopping, and optimize batch size
({16, 32}) and learning rate ({5,2,1,.5} x 107°)
via grid search on the validation set. To shuffle
documents: we lowercase, tokenize, remove all to-
kens that consist only of punctuation, shuffle, then
concatenate with whitespaces. We re-shuffle the
training tokens each epoch, but fix validation and
test tokens to one shuffled permutation.

8These tasks span NLI (MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016), and RTE (Dagan et al., 2006;
Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009)); semantic similarity estimation (QQP,° MRPC
(Dolan and Brockett, 2005), STS-B (Cer et al., 2017)); senti-
ment analysis (SST-2 (Socher et al., 2013)), and grammatical-
ity judgement (CoLA (Warstadt et al., 2019)). We omit WNLI
(Levesque et al., 2011) as is common (all models achieve
chance performance on that corpus).
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Results. Table 1 gives the GLUE test set results
of our algorithms vs. GloVe CBOW, the best BoW
baseline on the GLUE leaderboard at the time of
submission. In all cases BoW—-BERT outperforms
CBOW. The extent to which BoW-BERT under-
performs relative to BERT varies for each dataset,
but in terms of relative percent performance de-
crease, ranges from over | 70% for CoLA to only
$3% QQP. Outside of CoLLA, performance degrada-
tion never exceeds 10 absolute points for any task’s
metric.

According to the GLUE diagnostic set (which
tests 33 categories of linguistic phenomena)
BoW-BERT has the most trouble with dealing with
double negations (e.g., “I have never seen a hum-
mingbird not flying.”: MCC degrades 31.7 — -4.3
when switching BERT — BoW-BERT), quantifiers
(“our sympathy to all [vs. some] of the victims”:
61.8 — 46.1); and temporal logic (“Mary left be-
fore John entered”: 8.0 — -8.6). Results for GLUE
diagnostic meta-categories are: Knowledge (24.4
— 24.3); Pred-Arg Structure (39.2 — 39.1); Logic
(24.7 — 22.1); Lexical Semantics (39.7 — 31.5).

Classification for Sensitive Texts

Privacy and legal concerns frequently necessitate
BoW-only data releases. We ask: for potentially
sensitive text classification tasks, how does perfor-
mance degrade if only bag of words counts are
available (instead of full sequences)? We con-
sider three such tasks: Reddit controversy pre-
diction on AskWomen/AskMen (CONT) (Hessel
and Lee, 2019), offensiveness prediction in social
media (SBF) (Sap et al., 2020), and sample med-
ical transcript categorization (MTSAMP).!® For
each task, we compare models with access to se-
quences vs. models that can only access bag-of-
words features. Our baselines are unigram/tfidf
linear models, and CBOW models GloVe and fast-
text (Mikolov et al., 2018). Table 2 contains corpus

Yhttps://www.mtsamples.com/
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statistics and prediction results. For CONT and
SBF, BoWw-BERT outperforms all BoW methods.
For all tasks, performance drop-off from a full-
sequence fine-tuned MLM to its BoW counterpart
is less than 1%. CBOW;/tfidf remain strong for
MTSAMP, in which documents are longer.

Given that de-shuffling BoW representations is
at least partially possible (Tao et al., 2021), we ad-
ditionally consider a more robust differentially pri-
vate (DP) unigram count data release (also known
as the “local model” of DP) (Warner, 1965; Dwork
et al., 2006; Schein et al., 2019). We follow a
process similar to Schofield et al. (2019) by first
compressing the original unigram count matrices
via Gaussian random projection to S00D.!! In the
compressed space, we add noise per-entry with the
Laplace mechanism (Dwork et al., 2006) with a
per-feature privacy budget of €. Then, we invert the
random projection, normalize the vector to be a cat-
egorical word distribution, and sample (unordered)
pseudodocuments from the resulting distribution
with length ~ Poisson({).

We report results in an easier setting ¢ =
256, = 100 and a harder setting £ = 128, = 50
in the bottom half of Table 2. For these settings
of DP, the linear baselines generally outperform
BoW- (Ro) BERT (a) . However, MLMs are again
most competitive for the shortest document setting,
SBF, where BoW— (Ro) BERT (a) exceeds the best
linear model performance (60.4 vs. 62.0 F1).

Taken together, these results suggest 1) that re-
leasing word counts instead of full document se-
quences is a viable data release strategy for some
sensitive classification tasks; 2) BoW-BERT offers
a means of accessing the representational power of
modern MLMs in cases where only BoW informa-
tion is available; and 3) for at least some local DP
settings, linear models remain competitive particu-
larly for long documents, while Bow-RoBERTa is
viable when the underlying documents are shorter.

5 Conclusion and Future Work

We advocate for BoW— (Ro) BERT (a) as a surpris-
ingly strong baseline for language understanding
tasks, as well as a performant practical option for

"Our original submission used DP PCA instead. But it
was brought to our attention that the paper proposing that
algorithm was retracted for being non-private (+ discontinued
in the library we used after we submitted). We have adjusted
our code and recompiled our experiments using a comparable
mechanism. Our intent isn’t to advocate for this particular DP
method, but rather, to fairly compare NLP algorithms on the
same DP corpora.
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CONT SBF MTSAMP
Mean len (toks) 111 23 578
# of docs 6.3K 45K 5.0K
# classes 2 2 40

Acc F1  Acc/W-F1

BERT (full seq) 652 84.1 30.1/274
BOW-BERT 64.1 834 34.3/29.6
RoBERTa (full seq) 66.5 84.8 31.5/29.1
BoW-RoBERTa 629 829 34.9/32.0
CBOW fasttext 61.7 777 39.4/36.0
CBOW GloVe 61.1 77.0 38.8/35.2
Unigram tfidf 57.3 789 36.2/25.0
Unigram Counts 58.0 79.5 33.5/20.6
Popular Class 50.0 0.0 20.7/7.1
Random Prediction 512 473 8.9/8.5
DP;=% BoW-BERT 534 595 29.0/15.7
DP;=% Bow-RoBERTa  53.0  62.0 28.9/14.9
DP;=% Best Linear 577 604 31.3/215
DP§=> BoWw-BERT 50.5 57.0 22.4/10.8
DP{=), Bow-RoBERTa  51.8 589 21.8/10.7
DP;=)%, Best Linear 55.0 58.8 25.9/17.8

Table 2: Top: text classification prediction results on
sensitive texts; best BoW bolded, best overall itali-
cized. Bottom: DP = results on differentially pri-
vate data; “Best Linear” is the most performant lin-
ear model, tfidf for DP;=)5 and unigram counts for
D PE:50

(=128

classifying (privatized) BoW texts when documents
are short. Future work includes:

1. Evaluating BoW-BERT representations on
BoW-only corpora in unsupervised text clus-
tering scenarios (vs. classification) + designing
self-supervised objectives for fine-tuning MLM
weights from unlabelled domain-specific BoW
corpora, e.g., HathiTrust.;

2. Extending (K et al., 2020) by further exploring
BoW classification using non-English MLMs,
where model dependence on syntactic informa-
tion may differ;

3. Designing local private data release methods
better adapted to MLM fine-tuning.
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