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Abstract

In this paper, we present an improved model
for voicing silent speech, where audio is syn-
thesized from facial electromyography (EMG)
signals. To give our model greater flexibility
to learn its own input features, we directly use
EMG signals as input in the place of hand-
designed features used by prior work. Our
model uses convolutional layers to extract fea-
tures from the signals and Transformer lay-
ers to propagate information across longer dis-
tances. To provide better signal for learning,
we also introduce an auxiliary task of predict-
ing phoneme labels in addition to predicting
speech audio features. On an open vocabulary
intelligibility evaluation, our model improves
the state of the art for this task by an absolute
25.8%.

1 Introduction

EMG-based voicing of silent speech is a task that
aims to synthesize vocal audio from muscular sig-
nals captured by electrodes on the face while words
are silently mouthed (Gaddy and Klein, 2020; Toth
et al., 2009). While recent work has demonstrated
a high intelligibility of generated audio when re-
stricted to a narrow vocabulary (Gaddy and Klein,
2020), in a more challenging open vocabulary set-
ting the intelligibility remained low (68% WER). In
this work, we introduce an new model for voicing
silent speech that greatly improves intelligibility.

We achieve our improvements by modifying sev-
eral different components of the model. First, we
improve the input representation. While prior work
on EMG speech processing uses hand-designed fea-
tures (Jou et al., 2006; Diener et al., 2015; Meltzner
et al., 2018; Gaddy and Klein, 2020) which may
throw away some information from the raw signals,
our model learns directly from the complete sig-
nals with minimal pre-processing by using a set of
convolutional neural network layers as feature ex-

tractors. This modification follows recent work in
speech processing from raw waveforms (Collobert
et al., 2016; Schneider et al., 2019) and gives our
model the ability to learn its own features for EMG.

Second, we improve the neural architecture of
the model. While other silent speech models have
been based around recurrent layers such as LSTMs
(Janke and Diener, 2017; Gaddy and Klein, 2020),
we use the self-attention-based Transformer archi-
tecture (Vaswani et al., 2017), which has been
shown to be a more powerful replacement across a
range of tasks.

Finally, we improve the signal used for learn-
ing. Since the relatively small data sizes for this
task creates a challenging learning problem, we
introduce an auxiliary task of predicting phoneme
labels to provide additional guidance. This auxil-
iary loss is inspired by prior work on the related
problem of generating speech from ECoG sensors
on the brain, which greatly benefited from inter-
mediate prediction of phonemic information (Anu-
manchipalli et al., 2019).

We evaluate intelligibility of audio synthesized
by our model on the single-speaker data from
Gaddy and Klein (2020) in the most challenging
open-vocabulary setting. Our results reflect an ab-
solute improvement in error rate of 25.8% over the
state of the art, from 68.0% to 42.2%, as measured
by automatic transcription. Evaluation by human
transcription gives an even lower error rate of 32%.

2 Model

At a high level, our system works by predicting
a sequence of speech features from EMG signals
and using a WaveNet vocoder (van den Oord et al.,
2016) to synthesize audio from those predicted fea-
tures, as was done in Gaddy and Klein (2020). The
first component, dubbed the transduction model,
takes in EMG signals from eight electrodes around
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Figure 1: Model overview

the face and outputs a sequence of speech features
represented as Mel-frequency cepstral coefficients
(MFCCs). The final step of vocoding audio from
MFCCs is unchanged in our work, so we defer
to Gaddy and Klein (2020) for the details of the
WaveNet model.

The neural architecture for our transduction
model is made up of a set of residual convolu-
tion blocks followed by a transformer with rela-
tive position embeddings, as shown in Figure 1.
We describe these two components in Sections 2.1
and 2.2 below. Next, in Section 2.3 we describe
our training procedure, which aligns each silent
utterance to a corresponding vocalized utterance as
in Gaddy and Klein (2020) but with some minor
modifications. Finally, in Section 2.4 we describe
the auxiliary phoneme-prediction loss that provides
additional signal to our model during training.1

2.1 Convolutional EMG Feature Extraction
The convolutional layers of our model are designed
to directly take in EMG signals with minimal pre-
processing. Prior to use of the input EMG signals,
AC electrical noise is removed using band stop fil-
ters at harmonics of 60 Hz, and DC offset and drift
are removed with a 2 Hz high-pass filter. The sig-
nals are then resampled from 1000 Hz to 800 Hz,
and the magnitudes are scaled down by a factor of
10.

Our convolutional architecture uses a stack of
3 residual convolution blocks inspired by ResNet
(He et al., 2016), but modified to use 1-dimensional

1Code for our model is available at https://github.
com/dgaddy/silent_speech.

Figure 2: Convolution block architecture

convolutions. The architecture used for each con-
volution block is shown in Figure 2, and has two
convolution-over-time layers along the main path
as well as a shortcut path that does not do any ag-
gregation over the time dimension. Each block
downsamples the signal by a factor of 2, so that the
input signals at 800 Hz are eventually transformed
into features at 100Hz to match the target speech
feature frame rate. All convolutions have channel
dimension 768.

Before passing the convolution layer outputs to
the rest of the model, we include an embedding of
the session index, which helps the model account
for differences in electrode placement after elec-
trodes are reattached for each session. Each session
is represented with a 32 dimensional embedding,
which is projected up to 768 dimensions with a
linear layer before adding to the convolution layer
outputs at each timestep.

2.2 Transformer with Relative Position
Embeddings

To allow information to flow across longer time
horizons, we use a set of bidirectional Transformer
encoder layers (Vaswani et al., 2017) on top of the
convolution layers in our model. To capture the
time-invariant nature of the task, we use relative
position embeddings as described by Shaw et al.
(2018) rather than absolute position embeddings.
In this variant, a learned vector p that depends on
the relative distance between the query and key po-
sitions is added to the key vectors when computing
attention weights. Thus, the attention logits are
computed with

eij =
(WKxj + pij)

>(WQxi)√
d

https://github.com/dgaddy/silent_speech
https://github.com/dgaddy/silent_speech
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where pij is an embedding lookup with index i− j,
up to a maximum distance k in each direction (x
are inputs to the attention module,WQ andWK are
query and key transformations, and d is the dimen-
sion of the projected vectorsWQxi). For our model,
we use k = 100 (giving each layer a 1 second view
in each direction) and set all attention weights with
distance greater than k to zero. We use six of these
Transformer layers, with 8 heads, model dimension
768, feedforward dimension 3072, and dropout 0.1.

The output of the last Transformer layer is
passed through a final linear projection down to
26 dimensions to give the MFCC audio feature
predictions output by the model.

2.3 Alignment and Training
Since silent EMG signals and vocalized audio fea-
tures must be recorded separately and so are not
time-aligned, we must form an alignment between
the two recordings to calculate a loss on predic-
tions from silent EMG. Our alignment procedure is
similar to the predicted-audio loss used in Gaddy
and Klein (2020), but with some minor aspects
improved.

Our loss calculation takes in a sequence of
MFCC features ÂS predicted from silent EMG
and another sequence of target features AV from a
recording of vocalized audio for the same utterance.
We compute a pairwise distance between all pairs
of features

δ[i, j] =
∥∥∥AV [i]− ÂS [j]

∥∥∥
2

and run dynamic time warping (Rabiner and Juang,
1993) to find a minimum-cost monotonic alignment
path through the δ matrix. We represent the align-
ment as a[i]→ j with a single position j in ÂS for
every index i inAV , and take the first such position
when multiple are given by dynamic time warp-
ing. The loss is then the mean of aligned pairwise
distances:

L =
1

NV

NV∑
i=1

δ[i, a[i]]

In addition to the silent-EMG training, we also
make use of EMG recordings during vocalized
speech which are included in the data from Gaddy
and Klein (2020). Since the EMG and audio targets
are recorded simultaneously for these vocalized ex-
amples, we can calculate the pairwise distance loss
directly without any dynamic time warping. We
train on the two speaking modes simultaneously.

To perform batching across sequences of differ-
ent lengths during training, we concatenate a batch
of EMG signals across time then reshape to a batch
of fixed-length sequences before feeding into the
network. Thus if the fixed batch-sequence-length is
l, the sum of sample lengths across the batch is NS ,
and the signal has c channels, we reshape the inputs
to size (dNS/le , l, c) after zero-padding the con-
catenated signal to a multiple of l. After running
the network to get predicted audio features, we do
the reverse of this process to get a set of variable-
length sequences to feed into the alignment and
loss described above. This batching strategy allows
us to make efficient use of compute resources and
also acts as a form of dropout regularization where
slicing removes parts of the nearby input sequence.
We use a sequence length l = 1600 (2 seconds)
and select batches dynamically up to a total length
of NSmax = 204800 samples (256 seconds).

We train our model for 80 epochs using the
AdamW optimizer (Loshchilov and Hutter, 2017).
The peak learning rate is 10−3 with a linear warm-
up of 500 batches, and the learning rate is decayed
by half after 5 consecutive epochs of no improve-
ment in validation loss. Weight decay 10−7 is used
for regularization.

2.4 Auxiliary Phoneme Loss
To provide our model with additional training sig-
nal and regularize our learned representations, we
introduce an auxiliary loss of predicting phoneme
labels at each output frame.

To get phoneme labels for each feature frame of
the vocalized audio, we use the Montreal Forced
Aligner (McAuliffe et al., 2017). The aligner
uses an acoustic model trained on the LibriSpeech
dataset in conjunction with a phonemic dictionary
to get time-aligned phoneme labels from audio and
a transcription.

We add an additional linear prediction layer and
softmax on top of the Transformer encoder to pre-
dict a distribution over phonemes. For training, we
modify the alignment and loss cost δ by appending
a term for phoneme negative log likelihood:

δ′[i, j] =
∥∥∥AV [i]− ÂS [j]

∥∥∥
2
− λPV [i]

> log P̂S [j]

where P̂S is the predicted distribution from the
model softmax and PV is a one-hot vector for the
target phoneme label. We use λ = .1 for the
phoneme loss weight. After training, the phoneme
prediction layer is discarded.
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Model WER

Gaddy and Klein (2020) 68.0
This work 42.2

Ablation: Replace convolution features with hand-designed features 45.2
Ablation: Replace Transformer with LSTM 46.0
Ablation: Remove phoneme loss 51.7

Table 1: Open vocabulary word error rate results from an automatic intelligibility evaluation.

3 Results

We train our model on the open-vocabulary data
from Gaddy and Klein (2020). This data contains
19 hours of facial EMG data recordings from a
single English speaker during silent and vocalized
speech. Our primary evaluation uses the automatic
metric from that work, which transcribes outputs
with an automatic speech recognizer2 and com-
pares to a reference with a word error rate (WER)
metric. We also evaluate human intelligibility in
Section 3.1 below.3

The results of the automatic evaluation are
shown in Table 1. Overall, we see that our model
improves intelligibility over prior work by an abso-
lute 25.8%, or 38% relative error reduction. Also
shown in the table are ablations of our three primary
contributions. We ablate the convolutional feature
extraction by replacing those layers with the hand-
designed features used in Gaddy and Klein (2020),
and we ablate the Transformer layers by replacing
with LSTM layers in the same configuration as that
work (3 bidirectional layers, 1024 dimensions). To
ablate the phoneme loss, we simply set its weight in
the overall loss to zero. All three of these ablations
show an impact on our model’s results.

3.1 Human Evaluation

In addition to the automatic evaluation, we per-
formed a human intelligibility evaluation using a
similar transcription test. Two human evaluators
without prior knowledge of the text were asked to
listen to 40 synthesized samples and write down
the words they heard (see Appendix A for full in-
structions given to evaluators). We then compared
these transcriptions to the ground-truth reference
with a WER metric.

2An implementation of DeepSpeech (Hannun et al.,
2014) from Mozilla (https://github.com/mozilla/
DeepSpeech)

3Output audio samples available at https://dgaddy.
github.io/silent_speech_samples/ACL2021/.

The resulting word error rates from the two
human evaluators’ transcriptions are 36.1% and
28.5% (average: 32.3%), compared to 42.2% from
automatic transcriptions. These results validate the
improvement shown in the automatic metric, and
indicate that the automatic metric may be under-
estimating intelligibility to humans. However, the
large variance across evaluators shows that the au-
tomatic metric may still be more appropriate for
establishing consistent evaluations across different
work on this task.

4 Phoneme Error Analysis

One additional advantage to using an auxiliary
phoneme prediction task is that it provides a more
easily interpretable view of model predictions. Al-
though the phoneme predictions are not directly
part of the audio synthesis process, we have ob-
served that mistakes in audio and phoneme pre-
diction are often correlated. Therefore, to better
understand the errors that our model makes, we
analyze the errors of our model’s phoneme pre-
dictions. To analyze the phoneme predictions, we
align predictions on a silent utterance to phoneme
labels of a vocalized utterance using the procedure
described above in Sections 2.3 and 2.4, then eval-
uate the phonemes using the measures described in
Sections 4.1 and 4.2 below.

4.1 Confusion

First, we measure the confusion between each pair
of phonemes. We use a frequency-normalized met-
ric for confusion: (ep1,p2 + ep2,p1)/(fp1 + fp2),
where ep1,p2 is the number of times p2 was pre-
dicted when the label was p1, and fp1 is the num-
ber of times phoneme p1 appears as a target label.
Figure 3 illustrates this measure of confusion us-
ing darkness of lines between the phonemes, and
Appendix B lists the values of the most confused
pairs.

We observe that many of the confusions are be-

https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://dgaddy.github.io/silent_speech_samples/ACL2021/
https://dgaddy.github.io/silent_speech_samples/ACL2021/
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Figure 3: Phoneme confusability (darker lines indicate
more confusion - maximum darkness is 13% confu-
sion)

tween pairs of consonants that differ only in voic-
ing, which is consistent with the observation in
Gaddy and Klein (2020) that voicing signals ap-
pear to be subdued in silent speech. Another find-
ing is a confusion between nasals and stops, which
is challenging due to the role of the velum and
its relatively large distance from the surface elec-
trodes, as has been noted in prior work (Freitas
et al., 2014). We also see some confusion between
vowel pairs and between vowels and consonants,
though these patterns tend to be less interpretable.

4.2 Articulatory Feature Accuracy

To better understand our model’s accuracy across
different consonant articulatory features, we per-
form an additional analysis of phoneme selection
across specific feature dimensions. For this anal-
ysis, we define a confusion set for an articulatory
feature as a set of English phonemes that are iden-
tical across all other features. For example, one of
the confusion sets for the place feature is {p, t, k},
since these phonemes differ in place of articula-
tion but are the same along other axes like manner
and voicing (a full listing of confusion sets can be
found in Appendix C). For each feature of interest,
we calculate a forced-choice accuracy within the
confusion sets for that feature. More specifically,
we find all time steps in the target sequence with
labels belonging in a confusion set and restrict our
model output to be within the corresponding set
for those positions. We then compute an accuracy
across all those positions that have a confusion set.

To evaluate how much of the articulatory feature
accuracies can be attributed to contextual infer-
ences rather than information extracted from EMG,

40 60 80 100

Place

Oral manner

Nasality

Voicing

Accuracy

Full context Phoneme context Majority class

Figure 4: Accuracy of selecting phonemes along artic-
ulatory feature dimensions. We compare our full EMG
model (full context) with a majority class baseline and
a model given only phoneme context as input.

we compare our results to a baseline model that is
trained to make decisions for a feature based on
nearby phonemes. In the place of EMG feature
inputs, this baseline model is given the sequence
of phonemes predicted by the full model, but with
information about the specific feature being tested
removed by collapsing phonemes in each of its con-
fusion sets to a single symbol. Additional details
on this baseline model can be found in Appendix C.

The results of this analysis are shown in Figure 4.
By comparing the gap in accuracy between the
full model and the phoneme context baseline, we
again observe trends that correspond to our prior
expectations. While place and oral manner features
can be predicted much better by our EMG model
than from phonemic context alone, nasality and
voicing are more challenging and have a smaller
improvement over the contextual baseline.

5 Conclusion

By improving several model components for voic-
ing silent speech, our work has achieved a 38%
relative error reduction on this task. Although the
problem is still far from solved, we believe the
large rate of improvement is a promising sign for
continued progress.
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A Instructions to Human Evaluators

The following instructions were given to human
evaluators for the transcription test described in
Section 3.1:

Please listen to each of the attached sound files
and write down what you hear. There are 40 files,
each of which will contain a sentence in English.
Write your transcriptions into a spreadsheet such
as Excel or Google sheets so that the row numbers
match the numbers in the file names. Many of the
clips may be difficult to hear. If this is the case,
write whatever words you are able to make out,
even if it does not form a complete expression. If
you are not entirely sure about a word but can
make a strong guess, you may include it in your
transcription, but only do so if you beleive it is more
likely than not to be the correct word. If you cannot
make out any words, leave the corresponding row
blank.
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B Phoneme Confusability

This section provides numerical results for
phoneme confusions to complement the illustration
given in Section 4.1 of the main paper. We com-
pare the frequency of errors between two phonemes
to the frequency of correct predictions on those
phonemes. We define the following two quantities:

Confusion: (ep1,p2 + ep2,p1)/(fp1 + fp2)

Accuracy: (ep1,p1 + ep2,p2)/(fp1 + fp2)

where ep1,p2 is the number of times p2 was pre-
dicted when the label was p1, and fp1 is the num-
ber of times phoneme p1 appears as a target label.
Results for the most confused pairs are shown in
the table below.

Phonemes Confusion (%) Accuracy (%)

Ã Ù 13.2 49.4
v f 10.4 72.0
p b 10.3 64.3
m b 9.3 74.3
k g 8.9 77.2
S Ù 8.3 59.8
p m 8.1 73.0
t d 7.2 64.0
z s 6.6 80.0
I E 6.5 60.6
t n 6.3 67.1
n d 6.0 66.8
I 2 6.0 65.8
ô Ä 5.7 78.2
t s 5.5 72.8
E æ 4.7 70.9
u oU 4.3 77.4
T D 4.1 76.9
2 æ 3.2 72.1
I æ 3.1 64.9

C Articulatory Feature Analysis Details

The following table lists all confusion sets used in
our articulatory feature analysis in Section 4.2.

Feature Confusion Sets

Place {p,t,k} {b,d,g} {m,n,N}
{f,T,s,S,h} {v,D,z,Z}

Oral manner {t,s} {d,z,l,r} {S,Ù} {Z,Ã}
Nasality {b,m} {d,n} {g,N}
Voicing {p,b} {t,d} {k,g} {f,v}

{T,D} {s,z} {S,Z} {Ù,Ã}

The phoneme context baseline model uses a
Transformer architecture with dimensions identi-
cal to our primary EMG-based model, but is fed
phoneme embeddings of dimension 768 in the
place of the convolutional EMG features. The
phonemes input to this model are the maximum-
probability predictions output by our primary
model at each frame, but with all phonemes from
a confusion set replaced with the same symbol.
We train a separate baseline model for each of the
four articulatory feature types to account for dif-
ferent collapsed sets in the input. During training,
a phoneme likelihood loss is applied to all posi-
tions and no restrictions are enforced on the output.
Other training hyperparameters are the same be-
tween this baseline and the main model.

D Additional Reproducability
Information

All experiments were run on a single Quadro RTX
6000 GPU, and each took approximately 12 hours.
Hyperparameters were tuned manually based on
automatic transcription WER on the validation set.
The phoneme loss weight hyperparameter λ was
chosen from {1, .5, .1, .05, .01, .005}. We report
numbers on the same test split as Gaddy and Klein
(2020), but increase the size of the validation set to
200 examples to decrease variance during model
exploration and tuning. Our model contains ap-
proximately 40 million parameters.


