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Abstract

The predominant challenge in weakly super-
vised semantic parsing is that of spurious pro-
grams that evaluate to correct answers for the
wrong reasons. Prior work uses elaborate
search strategies to mitigate the prevalence of
spurious programs; however, they typically
consider only one input at a time. In this work
we explore the use of consistency between the
output programs for related inputs to reduce
the impact of spurious programs. We bias the
program search (and thus the model’s training
signal) towards programs that map the same
phrase in related inputs to the same sub-parts
in their respective programs. Additionally, we
study the importance of designing logical for-
malisms that facilitate this kind of consistency-
based training. We find that a more consis-
tent formalism leads to improved model perfor-
mance even without consistency-based train-
ing. When combined together, these two in-
sights lead to a 10% absolute improvement
over the best prior result on the Natural Lan-
guage Visual Reasoning dataset.

1 Introduction

Semantic parsers map a natural language utterance
into an executable meaning representation, called a
logical form or program (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2005). These programs
can be executed against a context (e.g., database,
image, etc.) to produce a denotation (e.g., answer)
for the input utterance. Methods for training seman-
tic parsers from only (utterance, denotation) super-
vision have been developed (Clarke et al., 2010;
Liang et al., 2011; Berant et al., 2013); however,
training from such weak supervision is challeng-
ing. The parser needs to search for the correct
program from an exponentially large space, and the
presence of spurious programs—incorrect repre-
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Figure 1: Utterance x and its program candidates
z1-z4, all of which evaluate to the correct denotation
(True). z2 is the correct interpretation; other programs
are spurious. Related utterance x′ shares the phrase
yellow object above a black object with x. Our consis-
tency reward would score z2 the highest since it maps
the shared phrase most similarly compared to z′.

sentations that evaluate to the correct denotation—
greatly hampers learning. Several strategies have
been proposed to mitigate this issue (Guu et al.,
2017; Liang et al., 2018; Dasigi et al., 2019). Typi-
cally these approaches consider a single input utter-
ance at a time and explore ways to score programs.

In this work we encourage consistency between
the output programs of related natural language ut-
terances to mitigate the issue of spurious programs.
Consider related utterances, There are two boxes
with three yellow squares and There are three yel-
low squares, both containing the phrase three yel-
low squares. Ideally, the correct programs for the
utterances should contain similar sub-parts that cor-
responds to the shared phrase. To incorporate this
intuition during search, we propose a consistency-
based reward to encourage programs for related
utterances that share sub-parts corresponding to
the shared phrases (§3). By doing so, the model is
provided with an additional training signal to distin-
guish between programs based on their consistency
with programs predicted for related utterances.
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We also show the importance of designing the
logical language in a manner such that the ground-
truth programs for related utterances are consistent
with each other. Such consistency in the logical
language would facilitate the consistency-based
training proposed above, and encourage the seman-
tic parser to learn generalizable correspondence
between natural language and program tokens. In
the previously proposed language for the Natural
Language Visual Reasoning dataset (NLVR; Suhr
et al., 2017), we notice that the use of macros leads
to inconsistent interpretations of a phrase depend-
ing on its context. We propose changes to this
language such that a phrase in different contexts
can be interpreted by the same program parts (§4).

We evaluate our proposed approaches on NLVR
using the semantic parser of Dasigi et al. (2019)
as our base parser. On just replacing the old log-
ical language for our proposed language we see
an 8% absolute improvement in consistency, the
evaluation metric used for NLVR (§5). Combin-
ing with our consistency-based training leads to
further improvements; overall 10% over the best
prior model, reporting a new state-of-the-art on the
NLVR dataset.

2 Background

In this section we provide a background on the
NLVR dataset (Suhr et al., 2017) and the semantic
parser of Dasigi et al. (2019).

Natural Language Visual Reasoning (NLVR)
dataset contains human-written natural language
utterances, where each utterance is paired with 4
synthetically-generated images. Each (utterance,
image) pair is annotated with a binary truth-value
denotation denoting whether the utterance is true
for the image or not. Each image is divided into
three boxes, where each box contains 1-8 objects.
Each object has four properties: position (x/y coor-
dinates), color (black, blue, yellow), shape (trian-
gle, square, circle), and size (small, medium, large).
The dataset also provides a structured represen-
tation of each image which we use in this paper.
Figure 1 shows an example from the dataset.

Weakly supervised iterative search parser We
use the semantic parser of Dasigi et al. (2019)
which is a grammar-constrained encoder-decoder
with attention model from Krishnamurthy et al.
(2017). It learns to map a natural language utter-
ance x into a program z such that it evaluates to the

correct denotation y = JzKr when executed against
the structured image representation r. Dasigi et al.
(2019) use a manually-designed, typed, variable-
free, functional query language for NLVR, inspired
by the GeoQuery language (Zelle and Mooney,
1996).

Given a dataset of triples (xi, ci, yi), where xi is
an utterance, ci is the set of images associated to it,
and yi is the set of corresponding denotations, their
approach iteratively alternates between two phases
to train the parser: Maximum marginal likelihood
(MML) and a Reward-based method (RBM). In
MML, for an utterance xi, the model maximizes
the marginal likelihood of programs in a given set
of logical forms Zi, all of which evaluate to the
correct denotation. The set Zi is constructed either
by performing a heuristic search, or generated from
a trained semantic parser.

The reward-based method maximizes the (ap-
proximate) expected value of a reward functionR.

max
θ

∑
∀i

Ep̃(zi|xi;θ)R(xi, zi, ci, yi) (1)

Here, p̃ is the re-normalization of the probabili-
ties assigned to the programs on the beam, and the
reward function R = 1 if zi evaluates to the cor-
rect denotation for all images in ci, or 0 otherwise.
Please refer Dasigi et al. (2019) for details.

3 Consistency reward for programs

Consider the utterance x = There is a yellow object
above a black object in Figure 1. There are many
program candidates decoded in search that eval-
uate to the correct denotation. Most of them are
spurious, i.e., they do not represent the meaning
of the utterance and only coincidentally evaluate
to the correct output. The semantic parser is ex-
pected to distinguish between the correct program
and spurious ones by identifying correspondence
between parts of the utterance and the program can-
didates. Consider a related utterance x′ = There are
2 boxes with a yellow object above a black object.
The parser should prefer programs for x and x′

which contain similar sub-parts corresponding to
the shared phrase p = yellow object above a black
object. That is, the parser should be consistent in
its interpretation of a phrase in different contexts.
To incorporate this intuition during program search,
we propose an additional reward to programs for
an utterance that are consistent with programs for
a related utterance.
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Specifically, consider two related utterances x
and x′ that share a phrase p. We compute a reward
for a program candidate z of x based on how simi-
larly it maps the phrase p as compared to a program
candidate z′ of x′. To compute this reward we need
(a) relevant program parts in z and z′ that corre-
spond to the phrase p, and (b) a consistency reward
that measures consistency between those parts.

(a) Relevant program parts Let us first see how
to identify relevant parts of a program z that corre-
spond to a phrase p in the utterance.

Our semantic parser (from Krishnamurthy et al.
(2017)) outputs a linearized version of the pro-
gram z = [z1, . . . , zT ], decoding one action at
a time from the logical language. At each time
step, the parser predicts a normalized attention vec-
tor over the tokens of the utterance, denoted by
[at1, . . . , a

t
N ] for the zt action. Here,

∑N
i=1 a

t
i = 1

and ati ≥ 0 for i ∈ [1, N ]. We use these attention
values as a relevance score between a program ac-
tion and the utterance tokens. Given the phrase
p with token span [m,n], we identify the relevant
actions in z as the ones whose total attention score
over the tokens in p exceeds a heuristically-chosen
threshold τ = 0.6.

A(z, p) =
{
zt
∣∣ t ∈ [1, T ] and

n∑
i=m

ati ≥ τ
}

(2)

This set of program actions A(z, p) is consid-
ered to be generated due to the phrase p. For
example, for utterance There is a yellow ob-
ject above a black object, with program objEx-
ists(yellow(above(black(allObjs))), this approach
could identify that for the phrase yellow object
above a black object the actions corresponding to
the functions yellow, above, and black are relevant.

(b) Consistency reward Now, we will define a
reward for the program z based on how consis-
tent its mapping of the phrase p is w.r.t. the pro-
gram z′ of a related utterance. Given a related
program z′ and its relevant action set A(z′, p), we
define the consistency reward S(z, z′, p) as the F1
score for the action set A(z, p) when compared to
A(z′, p). If there are multiple shared phrases pi
between x and x′, we can compute a weighted av-
erage of different S(z, z′, pi) to compute a singular
consistency reward S(z, z′) between the programs
z and z′. In this work, we only consider a sin-
gle shared phrase p between the related utterances,
hence S(z, z′, p) = S(z, z′, p) in our paper.

As we do not know the gold program for x′,
we decode top-K program candidates using beam-
search and discard the ones that do not evaluate
to the correct denotation. We denote this set of
programs by Z ′c. Now, to compute a consistency
reward C(x, z, x′) for the program z of x,we take a
weighted average of S(z, z′) for different z′ ∈ Z ′c
where the weights correspond to the probability of
the program z′ as predicted by the parser.

C(x, z, x′) =
∑
z′∈Z′c

p̃(z′|x′; θ)S(z, z′) (3)

Consistency reward based parser Given x and
a related utterance x′, we use C(x, z, x′) as an ad-
ditional reward in Eq. 1 to upweight programs for
x that are consistent with programs for x′.

max
θ

∑
∀i

Ep̃(zi|xi;θ)
[
R(xi, zi, ci, yi)+C(xi, zi, x′i)

]
This consistency-based reward pushes the parser’s
probability mass towards programs that have con-
sistent interpretations across related utterances,
thus providing an additional training signal over
simple denotation accuracy. The formulation pre-
sented in this paper assumes that there is a single
related utterance x′ for the utterance x. If multiple
related utterances are considered, the consistency
reward C(x, z, x′j) for different related utterances
x′j can be summed/averaged to compute a single
consistency reward C(x, z) the program z of utter-
ance x based on all the related utterances.

4 Consistency in Language

The consistency reward (§3) makes a key assump-
tion about the logical language in which the ut-
terances are parsed: that the gold programs for
utterances sharing a natural language phrase actu-
ally correspond to each other. For example, that the
phrase yellow object above a black object would
always get mapped to yellow(above(black)) irre-
spective of the utterance it occurs in.

On analyzing the logical language of Dasigi et al.
(2019), we find that this assumption does not hold
true. Let us look at the following examples:
x1: There are items of at least two different colors
z1: objColorCountGrtEq(2, allObjs)
x2: There is a box with items of at least two differ-
ent colors
z2: boxExists(

memberColorCountGrtEq(2, allBoxes))
Here the phrase items of at least two different colors
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Model
Dev Test-P Test-H

Acc. Cons. Acc. Cons. Acc. Cons.

ABS. SUP. (Goldman et al., 2018) 84.3 66.3 81.7 60.1 - -
ABS. SUP. + RERANK (Goldman et al., 2018) 85.7 67.4 84.0 65.0 82.5 63.9
ITERATIVE SEARCH (Dasigi et al., 2019) 85.4 64.8 82.4 61.3 82.9 64.3

+ Logical Language Design (ours) 88.2 73.6 86.0 69.6 - -
+ Consistency Reward (ours) 89.6 75.9 86.3 71.0 89.5 74.0

Table 1: Performance on NLVR: Design changes in the logical language and consistency-based training, both
significantly improve performance. Larger improvements in consistency indicate that our approach efficiently
tackles spurious programs.

is interpreted differently in the two utterances. In
x2, a macro function memberColorCountGrtEq is
used, which internally calls objColorCountGrtEq
for each box in the image. Now consider,
x3: There is a tower with exactly one block
z3: boxExists(memberObjCountEq(1,allBoxes))
x4: There is a tower with a black item on the top
z4: objExists(black(top(allObjs)))
Here the phrase There is a tower is interpreted dif-
ferently: z3 uses a macro for filtering boxes based
on their object count and interprets the phrase using
boxExists. In the absence of a complex macro for
checking black item on the top, z4 resorts to using
objExists making the interpretation of the phrase
inconsistent. These examples highlight that these
macros, while they shorten the search for programs,
make the language inconsistent.

We make the following changes in the logical
language to make it more consistent. Recall from
§2 that each NLVR image contains 3 boxes each
of which contains 1-8 objects. We remove macro
functions like memberColorCountGrtEq, and in-
troduce a generic boxFilter function. This function
takes two arguments, a set of boxes and a filtering
function f: Set[Obj]→ bool, and prunes the input
set of boxes to the ones whose objects satisfies the
filter f. By doing so, our language is able to reuse
the same object filtering functions across different
utterances. In this new language, the gold program
for the utterance x2 would be
z2: boxCountEq(1, boxFilter(allBoxes,

objColorCountGrtEq(2)))
By doing so, our logical language can now con-
sistently interpret the phrase items of at least two
different colors using the object filtering function
f: objColorCountGrtEq(2) across both x1 and x2.
Similarly, the gold program for x4 in the new logi-
cal language would be

z4: boxExists(boxFilter(allBoxes, black(top)))
making the interpretation of There is a box consis-
tent with x3. Please refer appendix §A for details.

5 Experiments

Dataset We report results on the standard de-
velopment, public-test, and hidden-test splits of
NLVR. The training data contains 12.4k (utterance,
image) pairs where each of 3163 utterances are
paired with 4 images. Each evaluation set roughly
contains 270 unique utterances.

Evaluation Metrics (1) Accuracy measures the
proportion of examples for which the correct de-
notation is predicted. (2) Since each utterance
in NLVR is paired with 4 images, a consistency
metric is used, which measures the proportion of
utterances for which the correct denotation is pre-
dicted for all associated images. Improvement in
this metric is indicative of correct program pre-
diction as it is unlikely for a spurious program to
correctly make predictions on multiple images.

Experimental details We use the same parser,
training methodology, and hyper-parameters as
Dasigi et al. (2019). For discovering related ut-
terances, we manually identify ∼10 sets of equiv-
alent phrases that are common in NLVR. For ex-
ample, there are NUM boxes, COLOR1 block on a
COLOR2 block, etc. For each utterance that con-
tains a particular phrase, we pair it with one other
randomly chosen utterance that shares the phrase.
We make 1579 utterance pairs in total. Refer ap-
pendix §B for details about data creation.1

Baselines We compare against the state-of-the-
art models; ABS. SUP. (Goldman et al., 2018) that

1We release the data and code at https://www.
github.com/nitishgupta/allennlp-semparse/tree/nlvr-v2/
scripts/nlvr v2

https://www.github.com/nitishgupta/allennlp-semparse/tree/nlvr-v2/scripts/nlvr_v2
https://www.github.com/nitishgupta/allennlp-semparse/tree/nlvr-v2/scripts/nlvr_v2
https://www.github.com/nitishgupta/allennlp-semparse/tree/nlvr-v2/scripts/nlvr_v2
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uses abstract examples, ABS. SUP. + RERANK

that uses additional data and reranking, and the
iterative search parser of Dasigi et al. (2019).

Results Table 1 compares the performance of our
two proposed methods to enforce consistency in the
decoded programs with the previous approaches.
We see that changing the logical language to a more
consistent one (§4) significantly improves perfor-
mance: the accuracy improves by 2-4% and con-
sistency by 4-8% on the dev. and public-test sets.
Additionally, training the parser using our proposed
consistency reward (§3) further improves perfor-
mance: accuracy improves by 0.3-0.4% but the
consistency significantly improves by 1.4-2.3%.2

On the hidden-test set of NLVR, our final model
improves accuracy by 7% and consistency by 10%
compared to previous approaches. Larger improve-
ments in consistency across evaluation sets indi-
cates that our approach to enforce consistency be-
tween programs of related utterances greatly re-
duces the impact of spurious programs.

6 Conclusion

We proposed two approaches to mitigate the issue
of spurious programs in weakly supervised seman-
tic parsing by enforcing consistency between out-
put programs. First, a consistency based reward
that biases the program search towards programs
that map the same phrase in related utterances to
similar sub-parts. Such a reward provides an ad-
ditional training signal to the model by leveraging
related utterances. Second, we demonstrate the
importance of logical language design such that
it facilitates such consistency-based training. The
two approaches combined together lead to signifi-
cant improvements in the resulting semantic parser.
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A Logical language details

In Figure 2, we show an example utterance with
its gold program according to our proposed logi-
cal language. We use function composition and
function currying to maintain the variable-free na-
ture of our language. For example, action z7

uses function composition to create a function
from Set[Object]→ bool by composing two func-
tions, from Set[Object] → bool and Set[Object]
→ Set[Object]. Similarly, action z11 creates a
function from Set[Object]→ Set[Object] by com-
posing two functions with the same signature.

Actions z8 - z10 use function currying to curry
the 2-argument function objectCountGtEq by giv-
ing it one int=2 argument. This results in a
1-argument function objectCountGtEq(2) from
Set[Object]→ bool.

B Dataset details

To discover related utterance pairs within the
NLVR dataset, we manually identify 11 sets of
phrases that commonly occur in NLVR and can be
interpreted in the same manner:

1. { COLOR block at the base, the base is
COLOR }

2. { COLOR block at the top, the top is COLOR
}

3. { COLOR1 object above a COLOR2 object }

4. { COLOR1 block on a COLOR2 block,
COLOR1 block over a COLOR2 block }

5. { a COLOR tower }

6. { there is one tower, there is only one tower,
there is one box, there is only one box }

7. { there are exactly NUMBER towers, there
are exactly NUMBER boxes }

8. { NUMBER different colors }

9. { with NUMBER COLOR items, with
NUMBER COLOR blocks, with NUMBER
COLOR objects }

10. { at least NUMBER COLOR items, at least
NUMBER COLOR blocks, at least NUMBER
COLOR objects }

11. {with NUMBER COLOR SHAPE, are NUM-
BER COLOR SHAPE, with only NUM-
BER COLOR SHAPE, are only NUMBER
COLOR SHAPE }

In each phrase, we replace the abstract COLOR,
NUMBER, SHAPE token with all possible options
from the NLVR dataset to create grounded phrases.
For example, black block at the top, yellow object
above a blue object. For each set of equivalent
grounded phrases, we identify the set of utterances
that contains any of the phrase. For each utterance
in that set, we pair it with 1 randomly chosen ut-
terance from that set. Overall, we identify related
utterances for 1420 utterances (out of 3163) and
make 1579 pairings in total; if an utterance con-
tains two phrases of interest, it can be paired with
more than 1 utterance.
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x: There is one box with at least 2 yellow squares
z: boxCountEq(1, boxFilter(allBoxes, objectCountGtEq(2)(yellow(square))))

Program actions for z:
z1: bool→ [<int,[Set[Box]:bool>, int, Set[Box]]
z2: <int,[Set[Box]:bool>→ boxCountEq
z3: int→ 1
z4: Set[Box]→ [<Set[Box],<Set[Object]:bool>:Set[Box]>, Set[Box], <Set[Object]:bool>]
z5: <Set[Box],<Set[Object]:bool>:Set[Box]>→ boxFilter
z6: Set[Box]→ allBoxes
z7: <Set[Object]:bool>→ [*, <Set[Object]:bool>, <Set[Object]:Set[Object]>]
z8: <Set[Object]:bool>→ [<int,Set[Object]:bool>, int]
z9: <int,Set[Object]:bool>→ objectCountGtEq
z10: int→ 2
z11: <Set[Object]:Set[Object]>→ [*, <Set[Object]:Set[Object]>, <Set[Object]:Set[Object]>]
z12: <Set[Object]:Set[Object]>→ yellow
z13: <Set[Object]:Set[Object]>→ square

Figure 2: Gold program actions for the utterance There is one box with at least 2 yellow squares according to
our proposed logical language. The grammar-constrained decoder outputs a linearized abstract-syntax tree of the
program in an in-order traversal.


