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Abstract 

Pretrained language models (PLM) achieve 

surprising performance on the Choice of 

Plausible Alternatives (COPA) task. 

However, whether PLMs have truly 

acquired the ability of causal reasoning 

remains a question. In this paper, we 

investigate the problem of semantic 

similarity bias and reveal the vulnerability 

of current COPA models by certain attacks. 

Previous solutions that tackle the 

superficial cues of unbalanced token 

distribution still encounter the same 

problem of semantic bias, even more 

seriously due to the utilization of more 

training data. We mitigate this problem by 

simply adding a regularization loss and 

experimental results show that this solution 

not only improves the model’s 

generalization ability, but also assists the 

models to perform more robustly on a 

challenging dataset, BCOPA-CE, which 

has unbiased token distribution and is more 

difficult for models to distinguish cause and 

effect. 

1 Introduction 

Supervised learning algorithms recklessly 

absorbing all the correlations found in training 

data is statistically correct but might have missed 

the point (Ahuja et al., 2020). Hence, recent work 

has focused more on spurious correlations in 

datasets in computer vision and NLP (Jia and 

Liang, 2017; McCoy et al., 2019). In inference 

tasks over natural language, spurious correlation 

has been identified a lot, such as lexical and 
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grammatical constructs, word overlap, sentence 

length (Gururangan et al., 2018), and unbalanced 

token distribution (Poliak et al., 2018; Kavumba et 

al., 2019). COPA (Roemmele et al., 2011) is a 

natural language understanding task, which 

requires a system to choose either a cause or effect 

of a given story event. It is one of the natural 

language understanding tasks in SuperGlue 

benchmark (Wang et al., 2019). Pretrained 

language models gain a great improvement on 

COPA, such as BERT (Devlin et al., 2019), 

RoBERTa (Liu et al., 2019), and ALBERT (Lan et 

al., 2020). The recent state-of-the-art model on 

COPA, DeBERTa (He et al., 2020), reached a 

surprising accuracy of 98.4%. However, the 

complexity of causal reasoning and the 

requirements of world knowledge imply that the 

ability of causal reasoning in PLMs might be 

overestimated. It is worth exploring whether the 

models have acquired the ability of causal 

reasoning. 

We observe that 66.8% accuracy can be reached 

by a text semantic similarity model (Mulyar, 2020) 

based on BERT which is close to the performance 

(69.5%) of fine-tuning BERT on COPA training 

set. It indicates BERT is over-dependent on 

semantic similarity. Since the cause and effect of 
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A Sample from development dataset 

Premise: The woman banished the children from her 

property. 

ask-for: “cause” 

Alt1: The children hit a ball into her yard. × (effect) 

Alt2: The children trampled through her garden. √ (cause) 

Table 1: A challenging case where BERT predicts 

wrongly 
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the same event often share the similar context, can 

PLMs really discriminate what we are asking for? 

A special case where BERT made mistakes on 

COPA development set in Table 1 seems to confirm 

our conjecture. BERT is more likely to fail in these 

challenging samples where the wrong alternative is 

the answer of its reverse question type. These 

investigations imply the models with satisfactory 

performance might have focused excessively on 

the topic semantic similarity instead of 

understanding cause and effect more finely. For 

this purpose, we design several probing 

experiments (Section 2) to verify our conjecture: (1) 

perturbation with distractors, (2) masking question 

type. 

The main work on exploring bias in COPA is 

from Kavumba et al. (2019). They investigate 

unbalanced token distributions in correct answers 

in COPA training set and show that the good 

performance brought by BERT can be explained by 

its ability to exploit token distribution in 

alternatives. They augment the training set with a 

mirrored-COPA set to prevent the models from 

predicting with token distribution imprudently. 

However, we observed this improved model relies 

on semantic bias more seriously than the original 

PLMs. We further test the models on a new dataset, 

BCOPA-CE, which evaluates the ability of a 

system to distinguish the cause and effect and to 

reason without the clues of token distribution. For 

alleviating the semantic bias problem, we propose 

to add a regularization loss to the original objective 

(Section 3). Experimental results show that this 

solution is not only effective in our challenging test 

set, but improves the generalization ability of the 

model on the original test set. It also performs more 

robustly than the original PLMs in COPA-test hard 

set proposed by Kavumba et al. (2019). 

In sum, our contributions are as follows:  

(1) We explore the vulnerability of different 

COPA models by perturbing them with distractive 

alternatives. (2) We mitigate the weakness of 

COPA models by adding a regularization loss 

while maintaining their generalization ability. Our 

improved models also perform more robustly on 

the COPA-test hard set. (3) We introduce the 

BCOPA-CE dataset, which can evaluate the ability 

of a system to distinguish the cause and effect and 

to choose cause or effect under unbiased token 

distribution. 

2 Probing Experiments 

Unlike bias about token distribution or sentence 

length, indirect semantic cues cannot be analyzed 

statistically. We explore whether PLMs rely 

excessively on semantic similarity with special 

probing experiments. Firstly, we observe whether 

the model has dropped to a great extent if they see 

a distractive alternative, like a premise. This 

distractor cannot be the correct answer, but it has a 

higher similarity score than the correct alternative. 

Moreover, inspired by Table 1, we investigate 

whether the model is aware of the question type 

during prediction. This is achieved by evaluating 

the model’s performance while removing/masking 

the question type. We observe whether they still 

keep good performance without seeing the 

question type. We describe the model 

implementation details in Appendix A. 

2.1 Exp1：Perturbation with Distractors 

Model architecture: General PLMs assume that 

the first sentence and the second sentence describe 

a cause and an effect, respectively. For example, 

BERT take as input {cause, [SEP], effect}, which 

entails the question type in its formation. The 

general architecture in our experiment is shown in 

Figure 1. The shared parameters 𝜃,𝜔, 𝑏 are learned 

to classify each choice independently with the 

premise, where (𝑐𝑖, 𝑒𝑖) is the 𝑖-th cause-effect pair, 

taking the first hidden vector in the final PLM layer: 

 ℎ𝑖
0 =  𝜃(𝑐𝑖 , 𝑒𝑖) (1) 

yielding the logits for each cause-effect pair: 

 𝑧𝑖 = 𝜔
𝑇ℎ𝑖
0 + 𝑏 (2) 

For training, we pass the logits [𝑧0; 𝑧1] through a 

softmax function to determine a probability 

 

Figure 1: The general architecture of the PLMs on 

COPA task. 
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distribution and minimize the cross-entropy loss 

with the labels. For prediction, we choose the 

answer with the highest score by 𝑖∗ =
 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{0,1}𝑧𝑖 . If we evaluate the trained 

models on ternary-choice test set, the prediction is 

then 𝑖∗  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{0,1,2}𝑧𝑖. 

Perturbation: We perturb models by adding a 

third choice, which does not affect human 

judgment. The “premise” is a good candidate since 

it is highly semantically related to itself while it 

cannot be the cause or effect of itself due to the 

non-reflexive trait of causality. We anticipate that 

the model will change its prediction when it meets 

the added choice. Meanwhile, we need to make 

sure that the performance drop is not from the 

increased difficulty of the problem since it 

becomes a ternary choice from a binary choice, 

hence we compare the results with a control 

experiment, where we add a choice randomly 

sampled from the COPA-test set. 

 COPA-random: We control the difficulty of 

perturbation test by taking a wrong choice 

randomly sampled from the COPA-test set as 

the third alternative for each sample. We refer 

to COPA-random as “Rand” in Table 2. 

 COPA-premise: we take the premise as the 

third alternative. We refer to COPA-premise 

as “Prem” in Table 2. 

2.2 Exp2: Masking Question Type 

As mentioned above, models are likely to ignore 

the question information (cause or effect, often 

share the same context) if they rely excessively on 

the semantic similarity. We mask the “ask-for” for 

each sample in COPA-test set by inputting the 

models with an arbitrary question type. The order 

of the alternative and the premise is determined by 

the question type. In masking setting, we randomly 

input [alternative; premise] or [premise; alternative] 

for each instance in spite of the question. In this 

way, half of the samples will keep the original 

question type, and the other samples get the wrong 

question type, which do not have the real correct 

answer. We observe whether these models still 

keep good performance without seeing the 

question type. If they do, the question type is 

ignored for the prediction of the models. We refer 

to this experimental setting as “Mask” in Table 2. 

                                                           
1 The PLMs could be found at 

https://github.com/huggingface/transformers 

The lower accuracy on “Mask” setting, the more 

robust the models are. 

2.3 Baseline models  

We conduct the aforementioned experiments with 

both traditional and SOTA COPA models. 

 CS: Sasaki et al. (2017) handled the COPA 

task by statistically estimating causality 

scores using causal knowledge extracted from 

a corpus with causal templates. 

 PLMs: We take BERT-large, RoBERTa-large, 

ALBERT-xxlarge-v1, and DeBERTa-large as 

baseline models (referred to as b-l, rb-l, alb, 

and db-l, respectively), and fine-tune them on 

the COPA-dev set, using the implementation 

from hugging face1.  

 PLMs-aug (b-l-aug, rb-l-aug, alb-aug and db-

l-aug): PLMs are fine-tuned on BCOPA, a 

dataset with unbiased token distribution 

between the correct alternatives and the 

wrong alternatives proposed by Kavumba et 

al. (2019). The BCOPA dataset was 

constructed by mirroring the original training 

set with a modified premise. 

2.4 Results and analysis 

As is shown in Table 2, The CS method based on 

causal knowledge is the most robust system, barely 

affected by the added alternative. PLMs show 

different degrees of weakness when they are 

disturbed by the added alternative. The defensive 

Model 

Exp1:  

Perturbation 

Exp2: 

Masking 

Rand 

 

Prem 

 

 

 

Test 

 

Mask 

 

CS 70.1 70.5 -0.4 70.8 61.1 

b-l 59.3 11.6 47.6 69.5 69.0 

b-l-aug 63.3 13.0 50.3 70.0 69.6 

rb-l 83.3 66.7 16.6 86.3 82.8 

rb-l-aug 85.6 65.7 19.9 87.3 83.5 

alb 86.7 71.9 14.7 88.0 80.2 

alb-aug 86.4 61.2 25.2 87.9 84.1 

db-l 90.8 77.9 12.9 91.6 87.8 

db-l-aug 91.1 78.9 12.2 91.8 88.8 

Table 2. The accuracy of models in probing 

experiments. “” denotes a negative indicator (the 

lower, the better) and “” denotes a positive indicator 

(the higher, the better). 
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ability of BERT is the weakest, which is almost 

completely fooled by distractor and remains the 

original accuracy without seeing the questions. 

RoBERTa, ALBERT, and DeBERTa also drop 

16.6%, 14.7%, 12.9% respectively compared with 

the performance of “Rand” setting. The fact that 

the systems perform worse on “Prem” (premise as 

a distractor) supports our hypothesis that PLMs 

have semantic similarity bias. This is because the 

premise is 100% similar to itself, being much more 

similar than a random distractor. For masking 

experiments, the theoretical accuracy of a perfectly 

robust model should be half of the chance-level 

(i.e., 50%) plus half of the original accuracy. The 

CS method achieves an accuracy of 61.1% and 

pays attention to the question type. On the contrary, 

PLMSs seem not to be aware of the question type 

and perform similarly without this information as 

original model setting. However, PLMs do not 

completely ignore the question type since they do 

not keep the same performance as the original test 

set. 

We also investigate the robustness of the 

debiased methods of augmenting training data 

which focus on the unbalanced token distributions 

proposed by Kavumba et al. (2019). They suffer 

from the same issue even more seriously than the 

original PLMs except DeBERTa. This might be 

due to the fact that the models are more likely to 

capture the semantic similarity since each 

alternative pair in BCOPA appears twice. 

3 Model-improving Method 

3.1 BCOPA-CE Test 

As is shown in Table 3, we introduce a balanced 

COPA test set, BCOPA-CE, by taking cause event 

and effect event as two alternatives for each 

premise. Specifically, for each premise of the 500 

samples in COPA-test set, we generate one event 

manually which is a plausible answer to the 

opposite question type of the original sample, In 

the sample in Table 3, for the premise: “The 

accident was my fault.”, we generate the cause of 

it: “I was absent-minded.”, since the original 

question is asking for “effect”. After this process, 

we obtain 500 triplets of <premise, cause, effect>. 

Then, we construct 1000 samples by giving two 

different questions (cause or effect) to each triplet. 

This guarantees the balanced token distribution 

between the correct and the wrong alternatives. 

The dataset generation details are described in 

Appendix B. Human evaluation has been 

conducted to ensure the quality of the new dataset 

in Appendix C. 

3.2 Regularization Loss 

We expect the model to make good choices while 

paying attention to the question type. For a sample 

in the COPA training set, the proposed loss 

includes two parts: The CrossEntropy loss and a 

regularization loss. The first part prompts the 

model to answer correctly given the question type. 

The extra regularization loss requires that a model 

should be neutral when it sees the opposite 

question type for the same premise and same 

alternatives, since neither alternative is the correct 

answer.  

General PLMs take the first input sentence as 

the cause, and the second sentence as the effect. 

Mathematically, the logits of two input sentences 

in reverse cause-effect order should be as close as 

possible, even if one of two alternatives is 

semantically similar to the premise (the correct 

answer of the original question). 

 𝐿 = (1 − 𝜆) ∗ 𝐿𝐶𝐸 + 𝜆 ∗ 𝐿𝑅𝑒𝑔   (3) 

 𝐿𝑅𝑒𝑔 =  ‖𝑧0
𝑟 − 𝑧1

𝑟‖2
2 (4) 

𝑧𝑖
𝑟  is the logit of input [𝑒𝑖; 𝑐𝑖]  computed by 

equation (1), which reverses the order of cause and 

effect of choice 𝑖 . We set 𝜆 = 0.01  in all 

experiments corresponding to regularization loss. 

3.3 Result and Analysis 

Table 4 demonstrates the performance of our 

improved models on the COPA-test set, the 

BCOPA-CE set and the COPA-hard set. It’s noted 

that the models with a regularization loss not only 

have improved performance on BCOPA-CE set, 

A Sample in COPA-test set New Samples in BCOPA-CE test set 

Premise: The accident was my fault. 

ask-for: “effect” 

Alt1: I felt guilty. √ 

Alt2: I pressed charges. × 

Premise: The accident was my fault. 

ask-for: “effect” 

Alt1: I felt guilty. √ 

Alt2:I was absent-minded. × 

Premise: The accident was my fault. 

ask-for: “cause” 

Alt1: I felt guilty. × 

Alt2: I was absent-minded. √ 

Table 3 The samples in COPA-test set and BCOPA-CE test set. 
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but also perform better than the original PLMs on 

COPA-test set. Previous debiased models on token 

distribution perform worse than the original model, 

which is consistent with our conjecture that they 

amplify the semantic bias. Our solution also 

performs better on COPA-test-hard than the 

original PLMs, which has balanced token 

distribution as Kavumba et al. (2019) introduced. 

Regularization in our method considers debiasing 

token distribution as well, because we tend to stop 

the models from capturing any cues when it 

reverses the input order. 

3.4 Error Analysis 

We conduct an error analysis for the SOTA model, 

DeBERTa, using the run that is closest to the 

average of 20 runs. We give an example (the 

second row) from the BCOPA-CE dataset in Table 

5 where DeBERTa predicts wrongly but the 

regularized DeBERTa model succeeds. 

Interestingly, both models make a correct 

prediction on the original sample (the first row) 

from COPA-test set, which indicates that the new 

alternative we generate perturbs the choice of the 

original DeBERTA model. 

We calculate the word importance of all tokens 

in correct answer through erasure (Li et al., 2017). 

The importance score is computed by the relative 

difference in log likelihood on gold-standard labels 

while replacing the token with [MASK]. We 

observe two models predict correctly in this 

original sample but with different attention on 

tokens. As is shown in Figure 2, DeBERTa chooses 

Alt2 by focusing on “He” and “spoke”, but 

DeBERTa-reg pays the most attention to 

“microphone”, which is more in line with human 

causal intuition. When people make such inference, 

the causal relation between "microphone" and " 

projected clearly throughout the auditorium" 

should be more important than the co-reference 

relationship.  

4 Conclusion 

In this paper, we explore whether COPA models 

rely excessively on semantic similarity for 

prediction. We add the regularization loss to the 

training objective to alleviate this weakness. 

Results show that our solution is effective in our 

adversarial test, and improve the generalization 

ability and the robustness of models on previous 

COPA-hard dataset. Moreover, previous debiased 

models on token distribution rely on semantic bias 

more seriously than the original models, which 

reminds us if debiasing bring more other bias. 
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Model 
Test 

 

BCOPA-

CE  

 

 

Test-

hard  

b-l 69.5  51.5  18.0  61.6  

b-l-reg 71.1  64.1  7.0  63.6  

b-l-aug 70.0  51.1  18.9  69.7  

rb-l 86.3  73.0  13.3  83.1  

rb-l-reg 87.7  83.9  3.8  84.5  

rb-l-aug 87.3  69.2  18.2  87.0  

alb 88.0  80.5  7.6  86.9  

alb-reg 89.4  86.7  2.7  88.6  

alb-aug 87.9  71.4  16.5  88.0  

db-l 91.6  72.3  19.3  88.6  

db-l-reg 92.2  86.3  5.9  89.7  

db-l-aug 91.8  69.8  21.9  90.5  

Table 4 The performance of PLMs and their 

variants on challenging set. Bold represents the 

best model setting in the same PLM. 

 

Figure 2: Heatmap of importance of each token in 

correct answer for the db-l model and db-l-reg 

model. 

Original 

sample 

Premise: The man's voice projected 

clearly throughout the auditorium. 

Ask-for: cause 

Alt1: He greeted the audience. × 

Alt2: He spoke into the microphone. √ 

New 

sample 

Premise: The man's voice projected 

clearly throughout the auditorium. 

Ask-for: cause 

Alt1: Everyone heard him. × 

Alt2: He spoke into the microphone. √ 

Table 5 The case where DeBERTa is perturbed but 

regularized DeBERTa not. 
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Appendix  

A Implementation Details 

PLMs: We randomly split the training set 

(COPA-dev, or BCOPA) into training set and 

development set with a ratio of 9:1, and finetune 

our model up to 20 epochs by implementing an 

early-stopping strategy with a patience of 5 epochs 

and using AdamW optimizer. We run 20 different 

random seeds for each supervised model and report 

the mean of the non-degenerate runs for each 

model, which have higher than 80% of accuracy in 

the training set as in previous work (Niven and Kao, 

2019).  

CS: We reproduce the preprocessing of their 

work and achieve 70.8% accuracy, which is 

slightly lower than the reported accuracy of 71.4%.  

All parameters are learned from the 

development set by manual tuning. The best-

performing parameter is determined by the 

accuracy of the model in the development set. The 

final parameters in our experiments are shown in 

Table 6. 

B Construction Details of BCOPA-CE 

We asked five fluent English speakers who have 

background knowledge of NLP to create the new 

alternative with the specific guidelines. We 

instructed creators with requirements of sentence 

length, overlap rules, and expressions similar to 

Kavumba et al. (2019). 

C Human Evaluation on BCOPA-CE 

We have 1000 samples in BCOPA-CE set, which 

consist of. 500 samples whose answers are same 

with original COPA-test set (the left sample in the 

second column in Table 3, referred to as COPA-

CE-ori) and 500 samples whose answers are the 

choices that we generate (the right sample in the 

second column in Table 3, referred to as COPA-

CE-opp). To ensure the quality of generated dataset, 

we conduct a quality evaluation with two questions:  

 Q1: Are the instances in BCOPA-CE dataset 

comparable in difficulty to the COPA-test 

instances?  

 Q2: Is the new alternative we collect plausible 

for the opposite question type? 

We evaluate the accuracy of human on both 

COPA-CE-ori dataset and COPA-CE-opp dataset 

to answer the Q1 and evaluate the human 

performance on COPA-CE-opp set for Q2. The 

COPA-CE-opp set changes the question type and 

takes the generated event as gold answers, hence it 

can be evaluated for the plausibility of generated 

alternatives. We asked 9 people to make choices, 

each group of 3 people for one dataset. We 

determine the final choice by majority voting. The 

inter-annotator agreement is calculated by Fleiss’ 

Kappa. As is shown in Table 7, the BCOPA-CE set 

has comparable difficulty with COPA-test. The 

performance on COPA-CE-opp shows that the new 

alternatives we create are plausible. 

 
COPA-

test 
COPA-

CE-ori 
COPA-CE-

opp 
Accuracy 0.980  0.990  1.000  

Fleiss’ Kappa 0.919  0.893  0.890  

Table 7: Human evaluation result of generated 

dataset.  

Model LR BS WD WP 𝝀 

b-l 
1e-4 

32 0.01 0.1 
- 

b-l-aug 

b-l-reg 8e-5 0.01 

rb-l 
8e-6 

32 0.01 0.06 
- 

rb-l-aug 

rb-l-reg 1.2e-5 0.01 

alb 
1.1e-4 

48 0 0 
- 

alb-aug 

alb-reg 6e-5 0.01 

db-l 
5e-6 

32 0.01 0.06 
- 

db-l-aug 

db-l-reg 1e-5 0.01 

Table 6. The best Batch Size (BS), Learning Rate 

(LR), Warm up rate (WP)， and Weight Decay value 

(WD) we used in our experiments. 


