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Abstract

Mechanisms for encoding positional informa-
tion are central for transformer-based language
models. In this paper, we analyze the po-
sition embeddings of existing language mod-
els, finding strong evidence of translation in-
variance, both for the embeddings themselves
and for their effect on self-attention. The de-
gree of translation invariance increases dur-
ing training and correlates positively with
model performance. Our findings lead us
to propose translation-invariant self-attention
(TISA), which accounts for the relative posi-
tion between tokens in an interpretable fashion
without needing conventional position embed-
dings. Our proposal has several theoretical ad-
vantages over existing position-representation
approaches. Experiments show that it im-
proves on regular ALBERT on GLUE tasks,
while only adding orders of magnitude less po-
sitional parameters.

1 Introduction

The recent introduction of transformer-based lan-
guage models by Vaswani et al. (2017) has set
new benchmarks in language processing tasks such
as machine translation (Lample et al., 2018; Gu
et al., 2018; Edunov et al., 2018), question answer-
ing (Yamada et al., 2020), and information extrac-
tion (Wadden et al., 2019; Lin et al., 2020). How-
ever, because of the non-sequential and position-
independent nature of the internal components of
transformers, additional mechanisms are needed to
enable models to take word order into account.

Liu et al. (2020) identified three important crite-
ria for ideal position encoding: Approaches should
be inductive, meaning that they can handle se-
quences and linguistic dependencies of arbitrary
length, data-driven, meaning that positional depen-
dencies are learned from data, and efficient in terms
of the number of trainable parameters. Separately,

Shaw et al. (2018) argued for translation-invariant
positional dependencies that depend on the relative
distances between words rather than their absolute
positions in the current text fragment. It is also im-
portant that approaches be parallelizable, and ide-
ally also interpretable. Unfortunately, none of the
existing approaches for modeling positional depen-
dencies satisfy all these criteria, as shown in Table
1 and in Sec. 2. This is true even for recent years’
state-of-the-art models such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ALBERT (Lan
et al., 2020), and ELECTRA (Clark et al., 2020),
which require many positional parameters but still
cannot handle arbitrary-length sequences.

This paper makes two main contributions: First,
in Sec. 3, we analyze the learned position embed-
dings in major transformer-based language models.
Second, in Sec. 4, we leverage our findings to pro-
pose a new positional-dependence mechanism that
satisfies all desiderata enumerated above. Experi-
ments verify that this mechanism can be used along-
side conventional position embeddings to improve
downstream performance. Our code is available.

2 Background

Transformer-based language models (Vaswani
et al., 2017) have significantly improved model-
ing accuracy over previous state-of-the-art models
like ELMo (Peters et al., 2018). However, the non-
sequential nature of transformers created a need for
other mechanisms to inject positional information
into the architecture. This is now an area of active
research, which the rest of this section will review.

The original paper by Vaswani et al. (2017) pro-
posed summing each token embedding with a posi-
tion embedding, and then used the resulting embed-
ding as the input into the first layer of the model.
BERT (Devlin et al., 2019) reached improved per-
formance training data-driven d-dimensional em-

https://github.com/ulmewennberg/tisa
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Induct- Data- Parameter Translation Parallel Interpret-
Method ive? driven? efficient? invariant? -izable? able?

Sinusoidal position embedding (Vaswani et al., 2017) 3 7 3 7 3 7
Absolute position embedding (Devlin et al., 2019) 7 3 7 7 3 7
Relative position embedding (Shaw et al., 2018) 7 3 3 3 7 7
T5 (Raffel et al., 2020) 7 3 3 3 3 3
Flow-based (Liu et al., 2020) 3 3 3 7 7 7
Synthesizer (Tay et al., 2020) 7 3 3 7 3 7
Untied positional scoring (Ke et al., 2021) 7 3 7 7 3 7
Rotary position embedding (Su et al., 2021) 3 7 3 3 3 7

Translation-invariant self-attention (proposed) 3 3 3 3 3 3

Table 1: Characteristics of position-representation approaches for different language-modeling architectures.

beddings for each position in text snippets of at
most n tokens. A family of models have tweaked
the BERT recipe to improve performance, includ-
ing RoBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2020), where the latter has layers share the
same parameters to achieve a more compact model.

All these recent data-driven approaches are re-
stricted to fixed max sequence lengths of n tokens
or less (typically n = 512). Longformer (Beltagy
et al., 2020) showed modeling improvements by
increasing n to 4096, suggesting that the cap on
sequence length limits performance. However, the
Longformer approach also increased the number
of positional parameters 8-fold, as the number of
parameters scales linearly with n; cf. Table 2.

Clark et al. (2019) and Htut et al. (2019) ana-
lyzed BERT attention, finding some attention heads
to be strongly biased to local context, such as the
previous or the next token. Wang and Chen (2020)
found that even simple concepts such as word-order
and relative distance can be hard to extract from
absolute position embeddings. Shaw et al. (2018)
independently proposed using relative position em-
beddings that depend on the signed distance be-
tween words instead of their absolute position, mak-
ing local attention easier to learn. They reached
improved BLEU scores in machine translation, but
their approach (and refinements by Huang et al.
(2019)) are hard to parallelize, which is unattrac-
tive in a world driven by parallel computing. Zeng
et al. (2020) used relative attention in speech syn-
thesis, letting each query interact with separate
matrix transformations for each key vector, depend-
ing on their relative-distance offset. Raffel et al.
(2020) directly model position-to-position interac-
tions, by splitting relative-distance offsets into q
bins. These relative-attention approaches all facili-
tate processing sequences of arbitrary length, but
can only resolve linguistic dependencies up to a
fixed predefined maximum distance.

Tay et al. (2020) directly predicted both word
and position contributions to the attention matrix
without depending on token-to-token interactions.
However, the approach is not inductive, as the size
of the attention matrix is a fixed hyperparameter.

Liu et al. (2020) used sinusoidal functions with
learnable parameters as position embeddings. They
obtain compact yet flexible models, but use a neural
ODE, which is computationally unappealing.

Ke et al. (2021) showed that self-attention works
better if word and position embeddings are untied
to reside in separate vector spaces, but their pro-
posal is neither inductive nor parameter-efficient.

Su et al. (2021) propose rotating each embed-
ding in the self-attention mechanism based on its
absolute position, thereby inducing translational
invariance, as the inner product of two vectors is
conserved under rotations of the coordinate system.
These rotations are, however, not learned.

The different position-representation approaches
are summarized in Table 1. None of them satisfy
all design criteria. In this article, we analyze the po-
sition embeddings in transformer models, leading
us to propose a new positional-scoring mechanism
that combines all desirable properties (final row).

3 Analysis of Existing Language Models

In this section, we introspect selected high-profile
language models to gain insight into how they have
learned to account for the effect of position.

3.1 Analysis of Learned Position Embeddings
First, we stack the position embeddings in the ma-
trix EP ∈ Rn×d, and inspect the symmetric matrix
P = EPE

T
P ∈ Rn×n, where Pi,j represents the

inner product between the ith and jth embedding
vectors. If inner products are translation invariant,
Pi,j will only depend on the difference between the
indices, j − i, giving a Toeplitz matrix, a matrix
where each diagonal is constant.
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Figure 1: Heatmaps visualizing the matrix P = EPE
T
P of position-embedding inner products for different models.

The greater the inner product between the embeddings, the brighter the color. See appendix Figs. 4, 5 for more.

Fig. 1 visualizes the P -matrices for the position
embeddings in a number of prominent transformer
models, listed from oldest to newest, which also
is in order of increasing performance. We note
that a clear Toeplitz structure emerges from left
to right. Translation invariance is also seen when
plotting position-embedding cosine similarities, as
done by Wang and Chen (2020) for transformer-
based language models and by Dosovitskiy et al.
(2020) for 2D transformers modeling image data.

In Fig. 2 we further study how the degree of
Toeplitzness (quantified by R2, the amount of the
variance among matrix elements Pi,j explained by
the best-fitting Toeplitz matrix) changes for differ-
ent ALBERT models. With longer training time
(i.e., going from ALBERT v1 to v2), Toeplitzness
increases, as the arrows show. This is associated
with improved mean dev-set score. Such evolution
is also observed in Wang and Chen (2020, Fig. 8).

3.2 Translation Invariance in Self-Attention
Next, we analyze how this translation invariance is
reflected in self-attention. Recall that Vaswani et al.
(2017) self-attention can be written as

att(Q,K, V ) = softmax
(
QKT
√
dk

)
V , (1)

and define position embeddings EP , word em-
beddings EW , and query and key transformation
weight matrices WQ and WK . By taking

QKT = (EW + EP )WQW
T
K(EW + EP )T (2)

and replacing each row of EW by the average word
embedding across the entire vocabulary, we obtain
a matrix we call F̂P that quantifies the average ef-
fect ofEP on the softmax in Eq. (1). Plots of the re-
sulting F̂P for all 12 ALBERT-base attention heads
in the first layer are in appendix Fig. 8. Importantly,
these matrices also exhibit Toeplitz structure. Fig.
3 graphs sections through the main diagonal for

selected heads, showing peaks at short relative dis-
tances, echoing Clark et al. (2019) and Htut et al.
(2019). In summary, we conclude that position en-
codings, and their effect on softmax attention, have
an approximately translation-invariant structure in
successful transformer-based language models.

4 Proposed Self-Attention Mechanism

We now introduce our proposal for parameterizing
the positional contribution to self-attention in an ef-
ficient and translation-invariant manner, optionally
removing the position embeddings entirely.

4.1 Leveraging Translation Invariance for
Improved Inductive Bias

Our starting point is the derivation of Ke et al.
(2021). They expand QKT while ignoring cross
terms, yielding

QKT ≈ EWWQW
T
KE

T
W + EPWQW

T
KE

T
P , (3)

an approximation they support by theory and em-
pirical evidence. They then “untie” the effects of
words and positions by using different W -matrices
for the two terms in Eq. (3). We agree with sepa-
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Figure 2: Scatterplot of the degree of Toeplitzness of
P for different ALBERT models (v1→v2) against av-
erage performance numbers (from Lan et al.’s GitHub)
over SST-2, MNLI, RACE, and SQuAD 1.1 and 2.0.

https://github.com/google-research/albert
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Figure 3: Positional responses of select attention heads.
Left: Sections (F̂P )i,j through F̂P of ALBERT base
v2, varying j for 5 different i, keeping j = i centered.
The sections are similar regardless of i since F̂P is
close to Toeplitz. Colors distinguish different heads.
Right: TISA scoring functions, attending to similar po-
sitions as heads on the left. Larger plots in Figs. 6, 7.

rating these effects, but also see a chance to reduce
the number of parameters.

Concretely, we propose to add a second term
FP ∈ Rn×n, a Toeplitz matrix, inside the parenthe-
ses of Eq. (1). FP can either a) supplement or b)
replace the effect of position embeddings on atten-
tion in our proposed model. For case a), we simply
add FP to the existing expression inside the soft-
max, while for case b) a term

√
dkFP is inserted in

place of the term EPWQW
T
KE

T
P in Eq. (3). This

produces two new self-attention equations:

att=

softmax
(
QKT
√
dk

+FP

)
V a)

softmax
(
QWKT

W√
dk

+FP

)
VW b)

(4)

where the inputs QW , KW , and VW (defined by
QW = EWWQ, and similarly forKW and VW ) do
not depend on the position embeddings EP . Case
a) is not as interpretable as TISA alone (case b),
since the resulting models have two terms, EP and
FP , that share the task of modeling positional infor-
mation. Our two proposals apply to any sequence
model with a self-attention that follows Eq. (1),
where the criteria in Table 1 are desirable.

4.2 Positional Scoring Function

Next, we propose to parameterize the Toeplitz ma-
trix FP using a positional scoring function fθ(·)
on the integers Z, such that (FP )i,j =fθ(j − i). fθ
defines FP -matrices of any size n. The value of
fθ(j−i) directly models the positional contribution
for how the token at position i attends to position
j. We call this translation-invariant self-attention,
or TISA. TISA is inductive and can be simplified
down to arbitrarily few trainable parameters.

Let k = j − i. Based on our findings for F̂P
in Sec. 3, we seek a parametric family {fθ} that
allows both localized and global attention, without
diverging as |k| → ∞. We here study one family

Standard Ke et al. (2021) TISA

General formula nd nd + 2d2 3SHL

Longformer 3,145,728 4,325,376 2,160
BERT/RoBERTa 393,216 1,572,864 2,160
ALBERT 65,536 98,304 2,160

Table 2: Number of positional parameters for base mod-
els of different language-model architectures and dif-
ferent positional information processing methods, with
max sequence length n ∈ (512, 4096), position em-
beddings of dimension d ∈ (128, 768), S = 5 kernels,
H=12 attention heads, and L=12 layers with distinct
TISA positional scoring functions. Parameter sharing
gives ALBERT lower numbers. TISA can be used
alone or added to the counts in other columns.

that satisfies the criteria: the radial-basis functions

fθ (k) =
∑S

s=1
as exp

(
− |bs| (k − cs)2

)
. (5)

Their trainable parameters are θ = {as, bs, cs}Ss=1,
i.e., 3 trainable parameters per kernel s. Since these
kernels are continuous functions (in contrast to the
discrete bins of Raffel et al. (2020)), predictions
change smoothly with distance, which seems intu-
itively meaningful for good generalization.

Lin et al. (2019) found that word-order informa-
tion in BERTs position embeddings gets increas-
ingly washed out from layer 4 onward. As sug-
gested by Dehghani et al. (2019) and Lan et al.
(2020), we inject positional information into each
of the H heads at all L layers, resulting in one
learned function fθ(h,l) for each head and layer.
The total number of positional parameters of TISA
is then 3SHL. As seen in Table 2, this is several
orders of magnitude less than the embeddings in
prominent language models.

The inductivity and localized nature of TISA
suggests the possibility to rapidly pre-train models
on shorter text excerpts (small n), scaling up to
longer n later in training and/or at application time,
similar to the two-stage training scheme used by
Devlin et al. (2019), but without risking the under-
training artifacts visible for BERT at n > 128 in
Figs. 1 and 4. However, we have not conducted any
experiments on the performance of this option.

5 Experiments

The main goal of our experiments is to illustrate
that TISA can be added to models to improve their
performance (Table 3a), while adding a minuscule
amount of extra parameters. We also investigate
the performance of models without position em-
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Task Baseline S=1 3 5 ∆ ∆%

SST-2 92.9 93.3 93.1 93.1 0.4 6.5%
MNLI 83.8 84.1 84.4 84.8 1.0 5.9%
QQP 88.2 88.0 88.3 88.3 0.1 1.2%
STS-B 90.3 90.4 90.0 90.4 0.1 1.5%
CoLA 57.2 57.0 56.5 58.5 1.3 2.9%
MRPC 89.6 90.1 89.0 90.1 0.5 5.3%
QNLI 91.6 91.7 91.4 91.6 0.1 0.4%
RTE 72.9 71.1 73.6 73.6 0.7 2.7%

(a) ALBERT base v2 models with position embeddings

Task Baseline S=1 3 5 ∆ ∆%

SST-2 85.1 85.9 85.8 86.0 0.9 6.2%
MNLI 78.8 80.9 81.4 81.6 2.8 13.4%
QQP 86.3 86.2 86.5 86.8 0.5 3.4%
STS-B 89.0 89.0 89.1 89.1 0.1 0.3%
MRPC 82.8 83.1 83.3 83.1 0.5 3.3%
QNLI 86.6 87.2 87.4 87.7 1.1 7.8%
RTE 62.1 61.7 62.5 62.8 0.7 1.9%

(b) ALBERT base v2 models without position embeddings

Table 3: GLUE task dev-set performance (median over
5 runs) with TISA (S kernels) and without (baseline).
∆ is the maximum performance increase in a row and
∆% is the corresponding relative error reduction rate.

beddings (Table 3b), comparing TISA to a bag-
of-words baseline (S = 0). All experiments use
pretrained ALBERT base v2 implemented in Hug-
gingface (Wolf et al., 2020). Kernel parameters
θ(h) for the functions in Eq. (5) were initialized
by regression to the F̂P profiles of the pretrained
model, (see Appendix C for details); example plots
of resulting scoring functions are provided in Fig.
3. We then benchmark each configuration with and
without TISA for 5 runs on GLUE tasks (Wang
et al., 2018), using jiant (Phang et al., 2020) and
standard dataset splits to evaluate performance.

Our results in Table 3a show relative error reduc-
tions between 0.4 and 6.5% when combining TISA
and conventional position embeddings. These
gains are relatively stable regardless of S. We also
note that Lan et al. (2020) report 92.9 on SST-2 and
84.6 on MNLI, meaning that our contribution leads
to between 1.3 and 2.8% relative error reductions
over their scores. The best performing architecture
(S=5), gives improvements over the baseline on 7
of the 8 tasks considered and on average increases
the median F1 score by 0.4 points. All these gains
have been realized using a very small number of
added parameters, and without pre-training on any
data after adding TISA to the architecture. The
only joint training happens on the training data of
each particular GLUE task.

Results for TISA alone, in Table 3b, are not as

strong. This could be because these models are
derived from an ALBERT model pretrained using
conventional position embeddings, since we did
not have the computational resources to tune from-
scratch pretraining of TISA-only language models.

Figs. 3 and 6 plot scoring functions of different
attention heads from the initialization described
in Appendix C. Similar patterns arose consistently
and rapidly in preliminary experiments on pretrain-
ing TISA-only models from scratch. The plots
show heads specializing in different linguistic as-
pects, such as the previous or next token, or multi-
ple tokens to either side, with other heads showing
little or no positional dependence. This mirrors the
visualizations of ALBERT base attention heads in
Figs. 3, 6, 7, 8 and the findings of Htut et al. (2019)
and Clark et al. (2019) on BERT, but TISA makes
this directly visible in an interpretable model, with-
out having to probe correlations in a black box.

Interestingly, the ALBERT baseline on STS-B
in Table 3a is only 1.3 points ahead of the bag-
of-words baseline in Table 3b. This agrees with
experiments shuffling the order of words (Pham
et al., 2020; Sinha et al., 2021) finding that modern
language models tend to focus mainly on higher-
order word co-occurrences, rather than word order,
and suggests that word-order information is under-
utilized in state-of-the-art language models.

6 Conclusion

We have analyzed state-of-the-art transformer-
based language models, finding that translation-
invariant behavior emerges during training. Based
on this we proposed TISA, the first positional infor-
mation processing method to simultaneously sat-
isfy the six key design criteria in Table 1. Exper-
iments demonstrate competitive downstream per-
formance. The method is applicable also to trans-
former models outside language modeling, such as
modeling time series in speech or motion synthe-
sis, or to describe dependencies between pixels in
computer vision.
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A Visualizing EPE
T
P for Additional

Language Models

Fig. 1 shows the inner product between different
position embeddings for the models BERT base
uncased, RoBERTa base, ALBERT base v1 as well
as ALBERT xxlarge v2. Leveraging our analysis
findings of translation invariance in the matrix of
EPE

T
P in these pretrained networks, we investigate

the generality of this phenomenon by visualizing
the same matrix for additional existing large lan-
guage models. We find that similar Toeplitz pat-
terns emerge for all investigated networks.

B Coefficient of Determination R2

The coefficient of determination, R2, is a widely
used concept in statistics that measures what frac-
tion of the variance in a dependent variable that can
be explained by an independent variable. Denoting
the Residual Sum of Squares, RSS, and Total Sum
of Squares, TSS, we have that

R2 = 1− RSS
TSS , (6)

where R2 = 0 means that the dependent variable
is not at all explained, and R2 = 1 means that
the variance is fully explained by the independent
variable.

Applied to a matrix, A ∈ Rn×n, to determine its
degree of Toeplitzness, we get RSS by finding the
Toeplitz matrix, AT ∈ Rn×n, that minimizes the
following expression:

RSS = minAT

n∑
i=1

n∑
j=1

(A−AT )2i,j (7)

Furthermore, we can compute TSS as:

TSS =
n∑
i=1

n∑
j=1

Ai,j −
 1

n2

n∑
i=1

n∑
j=1

Ai,j

2

(8)

C Extracting ALBERT positional scores

In order to extract out the positional contributions
to the attention scores from ALBERT, we disentan-
gle the positional and word-content contributions
from equation (3), and remove any dependencies
on the text sequence through EW . We exchange
EW ≈ EW , with the average word embedding

over the entire vocabulary, which we call EW .

FP ≈
1√
dk

(EWWQW
T
KE

T
P+ (9)

+ EPWQW
T
KE

T
W + EPWQW

T
KE

T
P ) (10)

≈ 1√
dk

(EWWQW
T
KE

T
P+ (11)

+ EPWQW
T
KE

T
W

+ EPWQW
T
KE

T
P ) (12)

This way, we can disentangle and extract the posi-
tional contributions from the ALBERT model.

Initialization of Position-Aware Self-Attention
Using this trick, we initialize FP with formula (12).
Since FP is only generating the positional scores,
which are independent of context, it allows for train-
ing a separate positional scorer neural network to
predict the positional contributions in the ALBERT
model. Updating only 2,160 parameters (see Ta-
ble 2) significantly reduces the computational load.
This pretraining initialization scheme converges in
less than 20 seconds on a CPU.

Removing Position Embeddings When remov-
ing the effect of position embeddings, we calculate
the average position embedding and exchange all
position embeddings for it. This reduces the varia-
tion between position embeddings, while conserv-
ing the average value of the original input vectors
EW +EP .

Extracted Attention Score Contributions
Leveraging our analysis findings of translation
invariance in large language models, we visualize
the scoring functions as a function of relative
distance offset between tokens. Fig. 3 shows the
implied scoring functions for 4 attention heads for
5 different absolute positions. Figs. 6, 7 show all
12 attention heads of ALBERT base v2 with TISA.

D Number of Positional Parameters of
Language Models

In the paper, define positional parameters as those
modeling only positional dependencies. In most
BERT-like models, these are the position embed-
dings only (typically n×d parameters). Ke et al.
(2021) propose to separate position and content
embeddings, yielding more expressive models with
separate parts of the network for processing sepa-
rate information sources. In doing so, they intro-
duce two weight matrices specific to positional in-
formation processing, UQ∈Rd×d and UK ∈Rd×d,
totaling nd+2d2 positional parameters.
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Figure 4: Visualizations of the inner-product matrix P = EPE
T
P ∈ Rn×n for different BERT, ELECTRA, and

RoBERTa models. We see that ELECTRA and RoBERTa models show much stronger signs of translational invari-
ance than their BERT counterparts. Most BERT models follow the pattern noted by Wang and Chen (2020), where
the Toeplitz structure is much more pronounced for the first 128 × 128 submatrix, reflecting how these models
mostly were trained on 128-token sequences, and only scaled up to n = 512 for the last 10% of training (Devlin
et al., 2019). Position embeddings 385 through 512 of the BERT cased models show a uniform color, suggesting
that these embeddings are almost completely untrained.
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Figure 5: Visualizations of the inner-product matrix P = EPE
T
P ∈ Rn×n for different ALBERT models (Lan

et al., 2020). We plot both v1 and v2 to show the progression towards increased Toeplitzness during training.

Hyperparameter Selection We performed a
manual hyperparameter search starting from the
hyperparameters that the Lan et al. (2020) re-

port in https://github.com/google-research/
albert/blob/master/run_glue.sh. Our hyper-
parameter config files can be found with our code.

https://github.com/google-research/albert/blob/master/run_glue.sh
https://github.com/google-research/albert/blob/master/run_glue.sh
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Figure 6: Positional responses of all attention heads. Sections through F̂P of ALBERT base v2, aligned to the
main diagonal, (left) show similar profiles as the corresponding TISA scoring functions (right). Vertical axes differ
due to 1) the scaling factor

√
dk and 2) softmax being invariant to vertical offset.
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Figure 7: Rows from the positional attention matrices F̂P for all ALBERT base v2 attention heads, centered on
the main diagonal. Note that the vertical scale generally differs between plots. The plots are essentially aligned
sections through the matrices in Fig. 8, but zoomed in to show details over short relative distances since this is
where the main peak(s) are located, and the highest values are by far the most influential on softmax attention.

E Reproducibility

Experiments were run on a GeForce RTX
2080 machine with 8 GPU-cores. Each down-
stream experiment took about 2 hours to run.

Datasets and code can be downloaded from
https://github.com/nyu-mll/jiant/blob/

master/guides/tasks/supported_tasks.md

and https://github.com/ulmewennberg/tisa.

https://github.com/nyu-mll/jiant/blob/master/guides/tasks/supported_tasks.md
https://github.com/nyu-mll/jiant/blob/master/guides/tasks/supported_tasks.md
https://github.com/ulmewennberg/tisa
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Figure 8: Values extracted from the positional attention matrices for all ALBERT base v2 first-layer attention heads.
Some heads are seen to be sensitive to position, while others are not. Note that these visualizations deliberately use
a different color scheme from other (red) matrices, to emphasize the fact that the matrices visualized here represent
a different phenomenon and are not inner products.


