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Abstract

Spoken Language Understanding (SLU) sys-
tems parse speech into semantic structures like
dialog acts and slots. This involves the use
of an Automatic Speech Recognizer (ASR)
to transcribe speech into multiple text alterna-
tives (hypotheses). Transcription errors, com-
mon in ASRs, impact downstream SLU per-
formance negatively. Approaches to mitigate
such errors involve using richer information
from the ASR, either in form of N-best hy-
potheses or word-lattices. We hypothesize that
transformer models learn better with a sim-
pler utterance representation using the concate-
nation of the N-best ASR alternatives, where
each alternative is separated by a special delim-
iter [SEP]. In our work, we test our hypothe-
sis by using concatenated N-best ASR alterna-
tives as the input to transformer encoder mod-
els, namely BERT and XLM-RoBERTa, and
achieve performance equivalent to the prior
state-of-the-art model on DSTC2 dataset. We
also show that our approach significantly out-
performs the prior state-of-the-art when sub-
jected to the low data regime. Additionally,
this methodology is accessible to users of
third-party ASR APIs which do not provide
word-lattice information.

1 Introduction

Spoken Language Understanding (SLU) systems
are an integral part of Spoken Dialog Systems.
They parse spoken utterances into corresponding
semantic structures e.g. dialog acts. For this, a
spoken utterance is usually first transcribed into
text via an Automated Speech Recognition (ASR)
module. Often these ASR transcriptions are noisy
and erroneous. This can heavily impact the perfor-
mance of downstream tasks performed by the SLU
systems.

* The first three authors have equal contribution.

93

To counter the effects of ASR errors, SLU sys-
tems can utilise additional feature inputs from ASR.
A common approach is to use N-best hypotheses
where multiple ranked ASR hypotheses are used,
instead of only 1 ASR hypothesis. A few ASR sys-
tems also provide additional information like word-
lattices and word confusion networks. Word-lattice
information represents alternative word-sequences
that are likely for a particular utterance, while word
confusion networks are an alternative topology for
representing a lattice where the lattice has been
transformed into a linear graph. Additionally, di-
alog context can help in resolving ambiguities in
parses and reducing impact of ASR noise.

N-best hypotheses: Li et al. (2019) work with
1-best ASR hypothesis and exploits unsupervised
ASR error adaption method to map ASR hypothe-
ses and transcripts to a similar feature space. On the
other hand, Khan et al. (2015) uses multiple ASR
hypotheses to predict multiple semantic frames per
ASR choice and determine the true spoken dialog
system’s output using additional context. Word-
lattices: Ladhak et al. (2016) propose using recur-
rent neural networks (RNNs) to process weighted
lattices as input to SLU. Svec et al. (2015) presents
a method for converting word-based ASR lattices
into word-semantic (W-SE) which reduces the spar-
sity of the training data. Huang and Chen (2019)
provides an approach for adapting lattices with pre-
trained transformers. Word confusion networks
(WCN): Jagfeld and Vu (2017) proposes a tech-
nique to exploit word confusion networks (WCNs)
as training or testing units for slot filling. Ma-
sumura et al. (2018) models WCN as sequence
of bag-of-weighted-arcs and introduce a mecha-
nism that converts the bag-of-weighted-arcs into
a continuous representation to build a neural net-
work based spoken utterance classification. Liu
et al. (2020) proposes a BERT based SLU model
to encode WCNSs and the dialog context jointly to
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reduce ambiguity from ASR errors and improve
SLU performance with pre-trained models.

The motivation of this paper is to improve per-
formance on downstream SLU tasks by exploit-
ing transfer learning capabilities of the pre-trained
transformer models. Richer information repre-
sentations like word-lattices (Huang and Chen
(2019)) and word confusion networks (Liu et al.
(2020)) have been used with GPT and BERT re-
spectively. These representations are non-native to
Transformer models, that are pre-trained on plain
text sequences. We hypothesize that transformer
models will learn better with a simpler utterance
representation using concatenation of the N-best
ASR hypotheses, where each hypothesis is sepa-
rated by a special delimiter [SEP]. We test the effec-
tiveness of our approach on a dialog state tracking
dataset - DSTC2 (Henderson et al., 2014), which
is a standard benchmark for SLU.

Contributions: (i) Our proposed approach,
trained with a simple input representation, exceeds
the competitive baselines in terms of accuracy and
shows equivalent performance on the F1-score to
the prior state-of-the-art model. (ii) We signifi-
cantly outperform the prior state-of-the-art model
in the low data regime. We attribute this to the ef-
fective transfer learning from the pre-trained Trans-
former model. (iii) This approach is accessible to
users of third party ASR APIs unlike the methods
that use word-lattices and word confusion networks
which need deeper access to the ASR system.

2 N-Best ASR Transformer

N-Best ASR Transformer' works with a simple in-
put representation achieved by concatenating the
N-Best ASR hypotheses together with the dialog
context (system utterance). Pre-trained transformer
models, specifically BERT and XLMRoBERTa, are
used to encode the input representation. For out-
put layer, we use a semantic tuple classifier (STC)
to predict act-slot-value triplets. The following
sub-sections describe our approach in detail.

2.1 Input Representation

For representing the input we concatenate the last
system utterance .S (dialog context), and the user
utterance U. U is represented as concatenation of
the N-best> ASR hypotheses, separated by a special

'The code is available at https://github.com/Vernacular-
ai/N-Best-ASR-Transformer

2We use ASR transcriptions (N < 10) provided by DSTC2
dataset to perform our experiments. Our input structure can
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delimiter, [SEP]. The final representation is shown
in equation 1 below:

N
x; = [CLS] & TOK(S;) ® @5 (TOK(U7) & [SEP))
j=1
| )
Here, U refers to the 5" ASR hypothesis for the
ith sample, @ denotes the concatenation operator,
TOK(.) is the tokenizer, [CLS] and [SEP] are the

special tokens.

l[CLS]l Do you know your booking ID ? l[SEP]II knowI[SEP]l no l [SEP] l no l[SEP] lnowl [SEP] l

Figure 1: Input representation: The green boxes repre-
sents the last system utterances followed by ASR hy-
potheses of user utterances concatenated together with
a [SEP] token.

As represented in figure 2, we also pass segment
IDs along with the input to differentiate between
segment a (last system utterance) and segment b
(user utterance).

2.2 Transformer Encoder

The above mentioned input representation can be
easily used with any pre-trained transformer model.
For our experiments, we select BERT (Devlin et al.,
2019) and XLM-RoBERTa? (Conneau et al., 2020)
for their recent popularity in NLP research commu-
nity.

2.3 Output Representation

The final hidden state of the transformer encoder
corresponding to the special classification token
[CLS] is used as an aggregated input representa-
tion for the downstream classification task by a
semantic tuple classifier (STC) (Mairesse et al.,
2009). STC uses two classifiers to predict the act-
slot-value for a user utterance. A binary classi-
fier is used to predict the presence of each act-slot
pair, and a multi-class classifier is used to predict
the value corresponding to the predicted act-slot
pairs. We omit the latter classifier for the act-slot
pairs with no value (like goodbye, thankyou, re-
quest_food etc.).

support variable N during training and inference.
>The model name XLM-RoBERTa and XLM-R will be
used interchangeably throughout the paper.
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Figure 2: N-Best ASR Transformer: The input representation is encoded by a transformer model which forms an
input for a Semantic Tuple Classifier (STC). STC uses binary classifiers to predict the presence of act-slot pairs,
followed by a multi-class classifier that predicts the value for each act-slot pair.

3 Experimental Setup
3.1 Dataset

We perform our experiments on data released by the
Dialog State Tracking Challenge (DSTC2) (Hen-
derson et al., 2014). It includes pairs of utterances
and the corresponding set of act-slot-value triplets
for training (11,677 samples), development (3,934
samples), and testing (9,890 samples). The task in
the dataset is to parse the user utterances like “/
want a moderately priced restaurant.” into a cor-
responding semantic representation in the form of
“inform(pricerange=moderate)” triplet. For each
utterance, both the manual transcription and a max-
imum of 10-best ASR hypotheses are provided.
The utterances are annotated with multiple act-
slot-value triplets. For transcribing the utterances
DSTC?2 uses two ASRs - one with an artificially
degraded statistical acoustic model, and one which
is fully optimized for the domain. Training and
development sets include transcriptions from both
the ASRs. To utilise this dataset we first transform
it into the input format as discussed in section 2.1.

3.2 Baselines

We compare our approach with the following base-
lines:

* SLU2 (Williams, 2014): Two binary classi-
fiers (decision trees) are used with word n-
grams from the ASR N-best list and the word
confusion network. One predicts the presence
of that slot-value pair in the utterance and the
other estimate for each user dialog act.
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* CNN+LSTMw4 (Rojas-Barahona et al,
2016): A convolution neural network (CNN)
is trained with the N-best ASR hypotheses to
output the utterance representation. A long-
short term memory network (LSTM) with a
context window size of 4 outputs a context
representation. The models are jointly trained
to predict for the act-slot pair. Another model
with the same architecture is trained to predict
for the value corresponding to the predicted
act-slot pair.

* CNN (Zhao and Feng, 2018): Proposes CNN
based models for dialog act and slot-type pre-
diction using 1-best ASR hypothesis.

* Hierarchical Decoding (Zhao et al., 2019):
A neural-network based binary classifier is
used to predict the act and slot type. A hy-
brid of sequence-to-sequence model with at-
tention and pointer network is used to predict
the value corresponding to the detected act-
slot pair.1-Best ASR hypothesis was used for
both training and evaluation tasks.

* WCN-BERT + STC (Liu et al., 2020): Input
utterance is encoded using the Word Confu-
sion Network (WCN) using BERT by having
the same position ids for all words in the bin
of a lattice and modifying self-attention to
work with word probabilities. A semantic tu-
ple classifier uses a binary classifier to predict
the act-slot value, followed by a multi-class
classifier that predicts the value corresponding



to the act-slot tuple.
3.3 Experimental Settings

We perform hyper-parameter tuning on the vali-
dation set to get optimal values for dropout rate
0, learning rate [r, and the batch size b. Based
on the best Fl-score, the final selected parame-
ters were § = 0.3, [r = 3e-5 and b = 16. We set
the warm-up rate wr = 0.1, and L2 weight decay
L2 =0.01. We make use of Huggingface’s Trans-
formers library (Wolf et al., 2020) to fine-tune the
bert-base-uncased and xIm-roberta-base, which is
optimized over Huggingface’s BertAdam optimizer.
We trained the model on Nvidia T4 single GPU on
AWS EC2 g4dn.2xlarge instance for 50 epochs. We
apply early stopping and save the best-performing
model based on its performance on the validation
set.

4 Results

In this section, we compare the performance of our
approach with the baselines on the DSTC2 dataset.
To compare the transfer learning effectiveness of
pre-trained transformers with N-Best ASR BERT
(our approach) and the previous state-of-the-art
model WCN-BERT STC, we perform comparative
analysis in the low data regime. Additionally, we
perform an ablation study on N-Best ASR BERT
to see the impact of modeling dialog context (last
system utterance) with the user utterances.

4.1 Performance Evaluation

Model Fl-score Accuracy
SLU2 82.1 -
CNN+LSTM_w4 83.6 -
CNN 85.3 -
Hierarchical Decoding 86.9 -
WCN-BERT + STC 87.9 81.1
N-Best ASR XLM-R (Ours) 87.4 81.9
N-Best ASR BERT (Ours) 87.8 81.8

Table 1: Fl-scores (%) and utterance-level accuracy
(%) of baseline models and our proposed model on the
test set.

Since the task is a multi-label classification of act-
slot-value triplets, we report utterance level accu-
racy and F1-score. A prediction is correct if the set
of labels predicted for a sample exactly matches the
corresponding set of labels in the ground truth. As
shown in Table 1, we compare our models, N-Best
ASR BERT and N-Best ASR XLM-R, with base-
lines mentioned in section . Both of our proposed
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models, trained with concatenated N-Best ASR
hypotheses, outperform the competitive baselines
in terms of accuracy and show comparable perfor-
mance on Fl-score with WCN-BERT STC.

4.2 Performance in Low Data Regime

Train Data (%9 age) WOCN-BERT STC N-Best ASR BERT

5 78.5 83.9
10 80.3 85.5
20 84.4 86.7
50 85.9 87.7

Table 2: Fl-scores (%) for our proposed model N-Best
ASR BERT (ours) and WCN-BERT STC (previous state-
of-the-art.

To study the performance of model in the low data
regime, we randomly select p percentage of sam-
ples from the training set in a stratified fashion,
where p € {5, 10, 20, 50}. We pick our model
N-Best ASR BERT and WCN-BERT STC for this
study because both use BERT as the encoder model.
For both models, we perform experiments using
the same training, development, and testing splits.
From Table 2, we find that N-Best ASR BERT out-
performs WCN-BERT STC model significantly for
low data regime, especially when trained on 5%
and 10% of the training data. It shows that our ap-
proach effectively transfer learns from pre-trained
transformer’s knowledge. We believe this is due
to the structural similarity between our input rep-
resentation and the input BERT was pre-trained
on.

4.3 Significance of Dialog Context

Model Variation Fl-score Accuracy
without system utterance 86.5 80.2
N-Best ASR BERT with system utterance 87.8 81.8

Table 3: Fl-scores (%) and utterance-level accuracy
(%) of our model N-Best ASR BERT on the test set
when trained with and without system utterances.

Through this ablation study, we try to understand
the impact of dialog context on model’s perfor-
mance. For this, we train N-Best ASR BERT in the
following two settings:

* When input representation consists of only the
user utterance.

* When input representation consists of both the
last system utterance (dialog context) and the
user utterance as shown in figure 3.


sec:baseline

As presented in Table 3, we observe that mod-
eling the last system utterance helps in achieving
better F1 and utterance-level accuracy by the dif-
ference of 1.3% and 1.6% respectively.

Prediction

|

Input Sequence

‘[CLS] ‘ Hello welcome to ACL conference ‘[SEP] ‘ Hello ‘[SEP]‘ no ‘ [SEP]‘ Hello ‘ [SEP] ‘ Hello ‘ [SEP] ‘

negate

‘[CLS]‘ Are you interested in confirming the booking ? ‘[ssp]‘ Hello ‘[ssp]‘ no ‘ [SEP]‘ Hello ‘ [SEP] ‘

Figure 3: Significance of Dialog Context: The green
box depicts the dialog context that helps disambiguate
the very similar ASR hypotheses shown in purple
boxes.

It proves that dialog context helps in improving
the performance of downstream SLU tasks. Fig-
ure 3 represents one such example where having
dialog context in form of the last system utterance
helps disambiguate between the two similar user
utterances.

5 Conclusion

In this work, building on a simple input repre-
sentation, we propose N-Best ASR Transformer,
which outperforms all the competitive baselines
on utterance-level accuracy for the DSTC2 dataset.
However, the highlight of our work is in achieving
significantly higher performance in an extremely
low data regime. This approach is accessible to
users of third-party ASR APIs, unlike the methods
that use word-lattices and word confusion networks.
As future extensions to this work, we plan to :

Enable our proposed model to generalize to
out-of-vocabulary (OOV) slot values.

Evaluate our approach in a multi-lingual set-
ting.
Evaluate on different values N in N-best ASR.

Compare the performance of our approach
on ASRs with different Word Error Rates
(WERs).
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