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Abstract

Understanding the multi-scale visual informa-
tion in a video is essential for Video Question
Answering (VideoQA). Therefore, we propose
a novel Multi-Scale Progressive Attention Net-
work (MSPAN) to achieve relational reasoning
between cross-scale video information. We
construct clips of different lengths to represent
different scales of the video. Then, the clip-
level features are aggregated into node features
by using max-pool, and a graph is generated
for each scale of clips. For cross-scale feature
interaction, we design a message passing strat-
egy between adjacent scale graphs, i.e., top-
down scale interaction and bottom-up scale in-
teraction. Under the question’s guidance of
progressive attention, we realize the fusion of
all-scale video features. Experimental evalua-
tions on three benchmarks: TGIF-QA, MSVD-
QA and MSRVTT-QA show our method has
achieved state-of-the-art performance.

1 Introduction

Video Question Answering (VideoQA) is a popular
vision-language task, which focuses on predicting
the correct answer to a given natural language ques-
tion based on the corresponding video. VideoQA
task entails representing video features in both spa-
tial and temporal dimensions. Compared with the
visual features of a picture in Visual Question An-
swering, it requires a more complex attention.
Therefore, (Jang et al., 2017) employed appear-
ance features and motion features as video represen-
tation, and designed a dual-LSTM network based
on spatio-temporal attention to fuse visual and text
information. Next, memory networks are widely
used to capture long-term dependencies. For exam-
ple, (Cai et al., 2020) applied feature augmented
memory to strengthen the information augmenta-
tion of video and text. Complex relational reason-
ing is important for VideoQA task. Consequently,
a conditional relationship network (Le et al., 2020)
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Figure 1: Understanding the video and answering the
question require different levels of clips.

was designed in previous work, which can support
high-order relationships and multi-step reasoning.

Many methods complete this task from a certain
aspect, however, none of them have a fine-grained
understanding of video information. When looking
for the answer in a question-based video, the video
frames corresponding to different objects in the
question are of different lengths. As shown in Fig.
1, when asked “who is cleaning in a kitchen while
wearing gloves?”, we need to find the keywords
“cleaning”, “a kitchen” and “wearing gloves” from
different levels of clips. Previous methods searched
for the answer on the same level of clips in a video,
leading to insufficient or redundant information.

Firstly, we construct clips of different lengths
from the frame sequence, and regard the length of
a clip as its scale information. Then, multi-scale
graphs are generated separately for clips of differ-
ent scales. The nodes in the multi-scale graphs
indicate video features corresponding to different
clips. For implementing relational reasoning, the
nodes in each scale graph are first updated by using
graph convolution. Most importantly, under the
guidance of the question, progressive attention has
been utilized to enable the fusion of multi-scale
features during cross-scale graph interaction. In
detail, each graph is gradually updated in top-down
scale order, followed by updating each graph in
bottom-up scale order. Finally, node features of a
graph are fused with question embedding, and a
classifier is employed to find the answer.
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Figure 2: The model architecture of Multi-Scale Progressive Attention Network for VideoQA. Major contributions
focus on the construction of multi-scale graphs and the progressive attention for cross-scale feature interaction.

2 Method

An overview of the proposed MSPAN is shown in
Fig. 2. The input is a short video and a question
sentence, while the output is the produced answer.

2.1 Video and Question Representation

Video representation /N frames are uniformly
sampled to represent the video. Then we use the
pre-trained ResNet-152 (He et al., 2016) to extract
video appearance features for each frame. And,
we apply the 3D ResNet-152 (Hara et al., 2018)
pre-trained on Kinetics-700 (Carreira et al., 2019)
dataset to extract video motion features. Specifi-
cally, 16 frames around each frame are placed into
the 3D ResNet-152 to obtain the motion features
around this frame. Finally, we get a joint video rep-
resentation by concatenating appearance features
and motion features. By using a fully-connected
layer to reduce feature dimension, we obtain video
representation as V = {v; : i < N,v; € R?%8},
Question representation All words in ques-
tion are represented as 300-dimensional embed-
dings initialized with pre-trained GloVe vectors
(Pennington et al., 2014). And a 512-dimensional
question embedding is generated from the last hid-
den state of a three-layer BiLSTM, i.e., ¢ € R*'2.

2.2 Multi-Scale Graphs Generation

Each object in the video corresponds to a differ-
ent number of frames, but previous methods (Seo
et al., 2020; Lei et al., 2021) cannot treat various
levels of visual information separately. Therefore,
we construct clips of different lengths to express
the visual information in the video delicately, and

regard the length attribute as a scale.

We use max-pools of different kernel-sizes to
aggregate frame-level visual features, and kernel-
size is the scale attribute of these clips. In this way,
clip-level visual features are obtained, as follows:

P = {pool;|1 <i < K, kernel_size; =i} (1)
‘/;:Pi(vla’(}Qv"'?UN) (2)

Where K is the range of scales, and K < N. Thus,
we construct M; = N — ¢ + 1 clips at scale i:
V= {vi:1<j<M,vl e R} (3)
In order to reason the relationships between dif-
ferent objects in a video, we separately build a
graph for each scale. Each node in a graph rep-
resents the clip-level visual features. Only when
two nodes contain overlapping or adjacent frames,
an edge will be connected between them. Frame
interval of the j-th clip at scale 7 is [j,j + ¢ — 1],
so all edges in the K graphs can be expressed as:

Ei={(z,y)lr—i<y<ax+i} “4)

Finally, these multi-scale graphs constructed in this
paper can be denoted as G; = {V}, E; }.

2.3 Cross-Scale Feature Interaction

Before cross-scale feature interaction, the original
node features of K graphs are copied as V;° = V;.

Interaction at the same scale. For all nodes
with the same scale, we apply a two-layer graph
convolutional network (GCN) (Kipf and Welling,
2017) to perform relational reasoning over the K
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graphs. The process of graph convolution is repre-
sented as:

X1 = D2 AD 2 X,W, (5)

Where A is the input adjacency matrix, X; is the
node feature matrix of layer [, and W/ is the learn-
able weight matrix. The diagonal node degree ma-
trix D is used to normalize A. Due to the small
number of nodes in each graph, we decide to share
the weight matrix W; when K graphs are updated.

Interaction at top-down scale.  We realize
the interaction of adjacent scale graphs from small
scale to large scale. Therefore, visual information
is understood step by step from details to the whole
through the interaction of top-down scale. Guided
by the question, the nodes in graph G; are used to
update the nodes in graph G;41. Visual features at
different scales show hierarchical attention to the
question, so we call it progressive attention.

If the clip corresponding to node x in graph G;
has the same frames as the clip corresponding to
node y in graph G;, there will exist a directed
edge from z to y. Therefore, we can use the edge to
fuse the cross-scale features of these same frames.

Firstly, visual features and question embedding
are fused to capture the joint features of each node
in graph G;. Then, the process of message passing
from graph G; to graph G4 can be expressed as:

May = (Wrojth) @ (Warh) © (Wsq))"  (6)

Where ® is the outer product, ® is the hadamard
product. After receiving the delivery messages, the
attention weights of these messages are calculated:

Wy = soft max(mgy) @)
€Ny

Where N, is the set of all neighbor nodes in graph
(; through cross-scale edges. Consequently, all
the messages passed into node y are summed to
derive the update of node y, as follows:

Tt =Y wey - (Waeh) © (Wsg)) )
TENy
Vi = {ot ry < My, ot € R} (9)

)

When updating all nodes in graph G, we con-
sider the new features V' | and the original features
V% 1. Therefore, we use the residual connection to
preserve original information of the video:

Vigr = We[Vip1; Vil + Vi (10)

Where [;] is the concatenation operator. Above
W1 ~ Wg are learnable weights, and they are
shared in the update of graphs Gy ~ G g . To sum-
marize, the update of K — 1 graphs is a progressive
process from small scale to large scale, hence it is
referred to as top-down scale interaction.
Interaction at bottom-up scale. After an
overall understanding of the video, people can ac-
curately find all details related to the question at the
second time they watch the video. Therefore, we
achieve an understanding of the video from global
to local through bottom-up scale interaction. After
the previous interaction, we realize the interaction
of adjacent graphs from large scale to small scale.
Following the same method as top-down scale
interaction from Eq. 6 to Eq. 10, we apply graph
G; to update graph (G;_; in this interaction. But
the weights W7 ~ Wy are another group in the up-
date of graphs G _1 ~ (G1. After this interaction,
graph (71 can grasp the all-scale video features
related to the question by progressive attention.

2.4 Multimodal Fusion and Answer Decoder

After T iterations of cross-scale feature interaction,
we read out all the nodes in graph G;. Then, a
simple attention is used to aggregate the N nodes.
And, final multi-modal representation is given as:

wj = soft max(W7(ngj1) ® (Woq)) (11)

~ N

F=) j-vj (12)
j=1

F = ELU(WioF ® Wy1q +b) (13)

Where ELU is activation function, above W7 ~
W11 are learnable weights and b is learnable bias.
We can find the answer by applying a classifier
(two fully-connected layers) on multi-modal rep-
resentation F'. Multi-label classifier is applied to
open-ended tasks, and cross-entropy loss function
is used to train the model. Due to repetition count
is a regression task, we use the MSE loss function.
For the multi-choice task, each question corre-
sponds to R answer sentences. We first get the
embedding of each answer in the same way as the
question embedding. Then we use the multi-modal
fusion method in Eq. 11~13 to fuse the answer
embedding with node features. After using two
fully-connected layers, the answer scores {si}fil
have appeared. This model is trained by minimiz-
ing the hinge loss (Jang et al., 2017) of pairwise
comparisons between answer scores {s; } 2 .
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3 Experiments

3.1 Datasets

TGIF-QA (Jang et al., 2017) is a widely used large-
scale benchmark dataset for VideoQA. And four
task types are covered in this dataset: repeating
action (Action), repetition count (Count), video
frame QA (FrameQA) and state transition (Trans.).
MSVD-QA (Xu et al., 2017) and MSRVTT-QA
(Xu et al., 2016) are open-ended tasks which are
generated from video descriptions. In both datasets,
questions can be divided into 5 types according to
question words: what, who, how, when and where.

3.2 Implementation Details

We evenly sample N = 16 frames for each video in
the three datasets. The hyperparameters we set in
experiments are as follows: 7' = 3, K = 8. When
training the network, Adam is used with an initial
learning rate of 10~%. For TGIF-QA dataset, the
batch size is 64. While the batch size is set to 128
for both MSVD-QA and MSRVTT-QA datasets.

3.3 Results

We compare our MSPAN with the state-of-the-art
methods: PSAC (Li et al., 2019), HME (Fan et al.,
2019), FAM (Cai et al., 2020), LGCN (Huang et al.,
2020), HGA (Jiang and Han, 2020), QueST (Jiang
et al., 2020) and HCRN (Le et al., 2020).

Table 1: Comparison on TGIF-QA dataset.

Method | Action | Count | FrameQA | Trans.
PSAC | 70.4 | 4.27 55.7 76.9
HME 739 | 4.02 53.8 77.8
FAM 754 | 3.79 56.9 79.2
LGCN | 743 | 3.95 56.3 81.1
HGA 754 | 4.09 55.1 81.0

QueST | 759 | 4.19 59.7 81.0

HCRN | 75.0 | 3.82 559 81.4

MSPAN | 784 | 3.57 59.7 83.3

Results on TGIF-QA. As shown in Table 1,
our method outperforms the state-of-the-art meth-
ods by 2.5% and 1.9% of accuracy on Action and
Transition tasks. For the Count task, our method
also achieves the best Mean Square Error (MSE) of
3.57 among all methods. Due to QueST used multi-
dimension visual features containing more appear-
ance information, our method can only get the same
accuracy 59.7% as QueST on the FrameQA task.

Table 2: Comparison on MSVD-QA dataset.

Method | What | Who |How |When|Where| All

62.7%|33.9%2.8%|0.4% | 0.2% |100%
HME | 224 | 50.1 |73.0| 70.7 | 42.9 | 33.7
QueST | 24.5 | 52.9 [79.1| 72.4 | 50.0 | 36.1
HGA | 23.5 | 504 |83.0| 724 | 46.4 | 34.7
FAM | 23.1 | 51.6 [82.2|71.4 | 519 | 345
MSPAN| 31.0 | 53.8 |77.0| 72.4 | 53.6 | 40.3

Table 3: Comparison on MSRVTT-QA dataset.

Method | What | Who |How |When|Where| All
68.5%27.7%|2.5%| 1.0% | 0.3% |100%

HME | 26.5 | 43.6 |82.4| 76.0 | 28.6 | 33.0

QueST | 279 | 45.6 |83.0| 75.7 | 31.6 | 34.6
HGA | 29.2 | 45.7 |83.5| 75.2 | 34.0 | 355

FAM | 269 | 439 [82.8| 70.6 | 31.1 | 33.2

MSPAN| 319 | 47.2 |83.2|77.5| 384 | 37.8

All in all, our method makes sense of the multi-
scale information of the video, so that the effect on
tasks related to action recognition, temporal rela-
tionship and object count are very noticeable.

Results on MSVD-QA. As shown in Table 2,
our method improves the overall accuracy by 4.2%
compared to recent methods. We have achieved the
best accuracy on questions whose question words
are “What” , “Who”’, “When” and “Where”. Due
to a small proportion, the accuracy on the question
word “How” is lower than other methods.

Results on MSRVTT-QA. As shown in Table
3, our method achieves the best overall accuracy
of 37.8% . What’s more, Our method could obtain
excellent accuracy on different question words.

4 Ablation Studies

To explore the potential of our network, ablation
experiments are performed on TGIF-QA dataset.
Default hyperparameters are: 7' = 3 and K = 8.
We study the effectiveness of our network in the
next two aspects, as shown in Table 4 and Fig. 4.

4.1 Different Structures

Considering the interaction of cross-scale graphs,
three structures are designed, as shown in Fig. 3.
For the dense scale in Fig. 3 (a), we apply graphs
G1 ~ G to update each graph GG;. The other two
structures have been introduced in Sec 2.3, and we
will not use a graph to update itself for the three
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Table 4: Ablation experiments of four types: (1)Replac-

G Nt \/* ing max-pool with avg-pool. (2)Without GCN. (3)Dif-
\ / ferent structures in Fig. 3. (4)Different iterations 7.

v ry

\ / Parameters |Action|Count|FrameQA |Trans.
./I>' ./I>- ./I>- ./I>' Avg-pool 78.0 | 356 | 59.5 83.3
w/o GCN 775 | 3.64 59.1 82.7
(@ Dense Scale (0) Top-down Scale (© Bottom-up Scate Dense scale | 77.2 | 3.74 | 59.2 82.0
Figure 3: Three methods of cross-scale feature interac- Top-down scale | 78.1 ) 3.62 39.6 82.8
. L Bottom-up scale| 78.1 | 3.60 59.3 82.6
tion, where the dense connection is not adopted.
T=0 75.2 | 3.86 56.7 79.9
T=1 77.1 | 3.69 58.6 82.5
structures. The readout of top-down scale interac- T=2 77.7 | 3.61 59.7 82.9
tion is graph Gi, and the readout of bottom-up T=4 77.6 | 3.63 59.4 82.5
scale interaction is GG1. However, the readout of Full MSPAN | 78.4 | 3.57 59.7 83.3
dense scale interaction is all K graphs. Our net-
work is a combination of top-down scale interaction Action Count
and bottom-up scale interaction, but we will use 26 370
these two structures separately for comparison. z e
577 n >
4.2 Network structure g e i 360
When choosing the pooling function to aggregate — T o —
these frames in a clip, we find that max-pool is Frare0n e
more effective than avg-pool. In reverse gradient
propagation of max-pool, only the maximum of  _5°° >83<
features in the previous layer receive the gradient. g 59.0 g 82
So, max-pool facilitates the fusion of appearance < ss5 < o1
features and motion features in the previous layer. ,
Our experiments show that GCN is beneficial to S zoe o

the stable training of models. If there is no GCN,
the gradient will gradually disappear as the number
of interactions between the graphs increases. The
role of GCN is to re-recover the features of these
nodes which have lost their visual features.

As shown in Table 4, the performances of the
three structures in Fig. 3 are poorer than that of our
entire network. Due to dense connections between
all scale graphs, the dense scale interaction will
add much unnecessary computation, and make it
difficult to accurately find the visual information re-
lated to the question. Although both the top-down
scale interaction and the bottom-up scale interac-
tion can achieve good performance. However, the
combination of these two structures will obtain a
more detailed understanding of the video.

4.3 Hyperparameters 7" and K

As the number of iterations 7" increases, the model
will achieve better performance. But when T =
4, the effect of the model decreases, as shown in
Table 4. Because too many modules will produce
noise for answer generation. The improvement
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Figure 4: Ablation experiments for different scales K.

of models with the increase of K is very obvious,
and best performance is obtained when K = 8§, as
shown in Fig. 4. However, the larger K also means
that many multi-scale graphs, which will lead to
network instability.

5 Conclusion

We introduce a multi-scale learning method to
achieve a fine-grained understanding of the video.
Compared with existing spatio-temporal attention,
we use progressive attention to realize cross-scale
feature interaction. The top-down and bottom-up
structures we have designed are conducive to learn-
ing all-scale visual information of the video. For
longer videos, we plan to use dilated max-pools
with different strides to reduce the size of graphs.
In general, we consider the VideoQA task from the
perspective of multi-scale information interaction,
and the proposed network is instructive.
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