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Abstract

Few-shot text classification aims to classify
inputs whose label has only a few examples.
Previous studies overlooked the semantic rel-
evance between label representations. There-
fore, they are easily confused by labels that are
semantically relevant. To address this problem,
we propose a method that generates distinct
label representations that embed information
specific to each label. Our method is widely
applicable to conventional few-shot classifica-
tion models. Experimental results show that
our method significantly improved the perfor-
mance of few-shot text classification across
models and datasets.

1 Introduction

Few-shot text classification (Ye and Ling, 2019;
Sun et al., 2019; Gao et al., 2019; Bao et al., 2020)
has been actively studied aiming to classify texts
whose labels have only a few examples. Such in-
frequent labels are pervasive in datasets in practice,
which are headaches for text classifiers because of
the lack of training examples. Snell et al. (2017)
showed that the conventional text classifiers are
annoyed by the over-fitting problem when the dis-
tribution of labels is skewed in a dataset.

Few-shot classification has two approaches:
metric-based and meta-learning based methods.
The metric-based methods conduct classification
based on distances estimated by a certain met-
ric, e.g., cosine similarity (Vinyals et al., 2016),
euclidean distance (Snell et al., 2017), convolu-
tional neural networks (Sung et al., 2018), and
graph neural networks (Satorras and Estrach, 2018).
Metric-based methods in natural language process-
ing focus on representation generation that are suit-
able for few-shot classification using the attention
mechanism with various granularity (Sun et al.,
2019), local and global matching of representa-
tions (Ye and Ling, 2019), and word co-occurrence

TECH
Apple confirms it slows down old iPhones as
their batteries age
Self-driving cars may be coming sooner than
you thought

BIZ
Apple apologizes for slowed iPhones, drops
price of battery replacements
Wall Street isn’t too worried about first self-
driving Tesla death

Table 1: Examples from Huffpost (BIZ: BUSINESS)

patterns in attention mechanisms (Bao et al., 2020).
In contrast, meta-larning based methods learn to
learn for achieving higher accuracy by learning
parameter generation (Finn et al., 2017), learning
rates and parameter updates (Li et al., 2017; An-
toniou et al., 2019), and parameter updates using
gradients (Andrychowicz et al., 2016; Ravi and
Larochelle, 2017; Li and Malik, 2017).

All of these previous studies overlooked the ef-
fects of the semantic relevance between label repre-
sentations, which confuses few-shot classifiers. As
a result, the classifiers tend to fail distinguishing
examples with semantically relevant labels. Table 1
shows examples with labels sampled from Huff-
post (Misra, 2018). The label pair of TECH and
BUSINESS is semantically relevant, for which the
classifiers are easily confused.

To address this problem, we propose a mecha-
nism that compares label representations to derive
distinctive representations. It learns semantic differ-
ences between labels and generates representations
that embed information specific to each label. Our
method can be easily applied to existing few-shot
classification models.

We evaluated our method using the standard
benchmarks of Huffpost and FewRel (Han et al.,
2018). Experimental results showed that our
method significantly improved the performance of
previous few-shot classifiers across models and
datasets, and achieved the state-of-the-art accuracy.
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2 Few-Shot Text Classification

This section describes the problem definition and a
general form of conventional few-shot classifiers.

2.1 Problem Definition

In few-shot text classification, sets of supports and
queries are given as input. A support set S con-
sists of pairs of text x and corresponding label
y: S = {(xi, yi)|i ∈ {1, 2, · · · , NK}}. N is
the number of label types in the support set and
K is the number of samples per label type. A
query set Q consists of M texts to be classified:
Q = {qj |j ∈ {1, 2, · · · ,M}}. Note that S and Q
have the same set of label types. A few-shot text
classifier aims to predict a label for each qj .

In few-shot classification, training and evalua-
tion are performed on a subset of a dataset called as
episode (Vinyals et al., 2016). A setting of N = n
and K = k is called as n-way k-shot classification.
A training episode is created by sampling k +m
examples with n types of labels from a training
set, and then by dividing them into support and
query sets, where m = M

n . An evaluation episode
is created in the same manner using an evaluation
set. Note that labels in the training and evaluation
episodes are exclusive, i.e., the classifier is required
to predict labels that it has not been exposed during
training. The performance of a model is measured
using the macro-averaged accuracy of all episodes.

2.2 General Form of Few-shot Text
Classification Models

A classification model first converts texts in the
support and query sets into vector representations.
We denote a subset Sl ⊂ S as Sl = {(xpl , y

p
l )|y

p
l =

l, p ∈ {1, 2, · · · ,K}} in which all texts have the
same label l. An encoder E(·) converts xpl and a
query qj to vectors, xpi ∈ Rd and qj ∈ Rd (d is the
dimension of representations), respectively:

xpl = E
(
xpl
)
, qj = E(qj). (1)

E(·) can be any text encoder, such as recurrent
neural networks (Yang et al., 2016), convolutional
neural networks (Kim, 2014), and pre-trained lan-
guage models like BERT (Devlin et al., 2019).

Second, the classification model generates a la-
bel representation for l. Let C(·) be the function
that generates the label representation l ∈ Rd:

l = C
(
x1
l ,x

2
l , · · · ,xKl

)
. (2)

C(·) is typically a pooling function, such as aver-
age pooling and max pooling.

Finally, the model calculates the similarity be-
tween qj and each label representation li (i ∈
{1, 2, · · · , N}) using a function R(·), and predicts
a label whose representation is most similar to that
of the query. The probability distribution of the
i-th label is computed as:

p(i|l1, · · · , lN , qj) =
eR(li,qj)∑
i e
R(li,qj)

. (3)

R(·) can be any metrics for estimating similarity.
In natural language processing, cosine similarity is
a standard choice.

As a loss function Lc, negative log-likelihood is
commonly used:

Lc = −
1

M

M∑
i=1

log p(yj), (4)

where yj is the gold-standard label of qj .

3 Proposed Method

Figure 1 shows the overview of our method. It adds
a mechanism for learning to generate distinctive
label representations into conventional few-shot
classification models by converting its training into
multi-task learning. Our method adds a difference
extractor (Section 3.1) and a loss function based
on mutual information (Section 3.2) to an arbitrary
few-shot classification model.

3.1 Difference Extractor
The difference extractor compares a set of N label
representations li obtained by Equation (2) with
each other and generates representations that re-
tains only the information specific to each label.
For doing so, a label representation should depend
on a query qj as classification is conducted based
on similarity between the query and labels as shown
in Equation (3) (Ye and Ling, 2019). Hence, we
model both the label and query representations si-
multaneously. Specifically, the label representa-
tions l1, · · · , lN and the query representation qj
are transformed as:

H = MultiHeadAttention(l1, · · · , lN , qj), (5)

l̂i = GELU(W1Hli + b1)W2 + b2, (6)

q̂j = GELU(W1Hqj + b1)W2 + b2, (7)

where MultiHeadAttention(·) is a self-attention
mechanism (Vaswani et al., 2017) that outputs
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Figure 1: Outline of our method: Components of red boxes are applied to conventional few-shot classifiers.

H ∈ Rd×(N+1) hidden representations. Hli ∈ Rd
is an output of the self-attention corresponds to
li, and similarly, Hqj ∈ Rd is that of qj . These
hidden representations are further transformed by
fully-connected layers with the activation function
of GELU(·) (Hendrycks et al., 2020).

3.2 Design of Loss Function
We assume that an ideal representation l̂i retaining
only information specific to an i-th label satisfies
that I(l̂i; l̂r) = 0 for all l̂r (i 6= r), where I(·)
computes mutual information (MI). That is, each
label representation is independent. Hence, we pro-
pose an MI-based loss function L̂, which constrains
such that a label representation l̂i contains only in-
formation specific to the i-th label by minimizing:

L̂ =
∑

1≤i,r≤N,i6=r
I(l̂i, l̂r). (8)

Because the exact value of Equation (8) is diffi-
cult to calculate in practice, we minimize its upper-
bound following Cheng et al. (2020):

Î(l̂i; l̂r) =

|Q|∑
j=1

Rj , (9)

Rj =

log pθ(l̂ji |l̂jr)− 1

|Q|

|Q|∑
j′=1

log pθ(l̂
j
i |l̂

j′
r )

 ,
where pθ(·) is a neural network which approxi-
mates the conditional probability p(l̂ji |l̂

j
r).

Finally, the overall loss function is:

L = Lc + αL̂, (10)

where α(> 0) balances the effect of L̂.

4 Experiment

We evaluated our method on different few-shot clas-
sification models using the standard benchmarks.

4.1 Benchmark Datasets

Following previous studies (Bao et al., 2020; Gao
et al., 2019; Ye and Ling, 2019; Sun et al., 2019),
we use Huffpost and FewRel as benchmarks.1 Fol-
lowing these previous studies, we evaluated the
performance of each model using 1, 000 episodes.
Because episode generation involves random sam-
pling from a dataset, we repeated this process for
10 times and computed the macro-averaged accu-
racy as the final score. The statistic significance
was measured using a bootstrap significance test.

Huffpost This dataset consists of titles extracted
from HuffPost2 articles. The task is a prediction of
a category of an article from its title. The training,
validation, and test sets contain 20, 5, and 16 types
of labels, respectively. The number of examples
per label is 900.

FewRel The task is a prediction of a relation be-
tween entities. The training, validation, and test
sets contain 65, 5, and 10 types of labels, respec-
tively. The number of examples per label is 700.

4.2 Compared Models and Training Settings

We applied our method on three few-shot clas-
sifiers to investigate its effects on different mod-
els. As the de-facto standard of metric-based and

1Downloaded from https://github.com/
YujiaBao/Distributional-Signatures

2https://www.huffpost.com/

https://github.com/YujiaBao/Distributional-Signatures
https://github.com/YujiaBao/Distributional-Signatures
https://www.huffpost.com/
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Huffpost FewRel

5-Way 10-Way 5-Way 10-Way

1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

ProtoNet 51.03 68.36 37.42 55.81 78.61 88.92 65.97 80.38
ProtoNet + DE 51.76 69.07 38.08 56.85 77.35 88.85 64.96 80.44

ProtoNet + DE + L̂ 52.34* 69.66* 38.83* 57.26* 79.52* 89.28* 68.08* 82.51*

MAML 51.10 65.23 37.37 51.74 68.94 76.49 58.07 65.01
MAML + DE 51.80 67.28 38.36 53.54 75.45 85.06 62.33 72.31

MAML + DE + L̂ 51.71 67.38 38.11 53.75* 75.99* 84.07 63.13* 70.99

MLMAN 47.07 57.80 33.86 43.79 73.61 82.75 60.28 71.48
MLMAN + DE 49.73 60.94 36.37 47.25 74.38 83.67 61.14 72.70

MLMAN + DE + L̂ 48.98 60.75 35.60 46.73 78.21* 86.43* 65.44* 76.43*

Bao et al. (2020) 42.12 62.97 - - 70.08 88.07 - -

Table 2: Experimental results (bold and * indicate significantly higher accuracies compared to each baseline model
and baseline + DE, respectively.)

meta-learning based models, we employed Pro-
toNet (Snell et al., 2017) and MAML (Finn et al.,
2017), respectively. Besides, we employed ML-
MAN (Ye and Ling, 2019), which is the state-of-
the-art few-shot classification model on FewRel.
We also compared to Bao et al. (2020), which
achieved the sate-of-the-art on HuffPost.

As the Encoder E(·) and pooling function C(·)
for each model, we used the BERT-base, uncased3

and average pooling, respectively, which showed
strong performance in various text classification
tasks (Devlin et al., 2019). We used PyTorch and
Huggingface Transformers (Wolf et al., 2020) for
implementation.4

We applied our difference extractor and MI-loss
function (denoted as “+ DE + L̂”) to ProtoNet,
MAML, and MLMAN. For the difference extractor,
we used 1-layer self-attention mechanism with 8-
heads. As an ablation study, we also compared our
method that only applies the difference extractor
(denoted as “+ DE”), which is trained only with
the classification loss (Equation (4)).

We trained all models with 5-way 1-shot setting.
We then tested the models on different ways and
shots. As an optimizer, we used Adam (Kingma
and Ba, 2015). A learning rate and α in Equa-
tion (10) were searched in ranges of [1e− 5, 3e−
5, 5e−5] and [1e−6, 1e−4, 1e−2, 1], respectively,
to maximise accuracy on the validation set.

3https://github.com/google-research/
bert

4Our code is available at https://github.com/
21335732529sky/difference_extractor

4.3 Overall Results

As Table 2 shows, our method significantly im-
proved all of the baseline models across datasets.5

For MAML and MLMAN, our difference extractor
always improved the performance of the original
models. By combination with the MI-loss, the per-
formance improved by from 0.61 up to 7.68 points.
In contrast, applying only the difference extractor
to ProtoNet, i.e., ProtoNet + DE, deteriorated its
original performance on FewRel dataset. These
results confirm that both the difference extractor
and MI-loss are crucial for ProtoNet. By using
both, ProtoNet + DE + L̂ consistently improved the
baseline by from 0.39 up to 2.13 points.

4.4 Impact of DE and MI-loss on Baselines

The experimental results confirmed that the com-
bination of our difference extractor and MI-loss
function consistently improved the few-shot clas-
sification models. In particular, MI loss is more
effective for a simpler model, i.e., ProtoNet. ML-
MAN has an internal mechanism for comparing
supports and queries, and MAML has a mechanism
for updating the model parameters to accurately
classify supports. These internal mechanisms allow
to learn label representations that boost classifica-
tion accuracy. Hence, the functionality of MI loss is
partly achieved by these internal mechanisms. On
the other hand, ProtoNet has the simplest architec-

5Note that the performance of ProtoNet was higher than
that in (Ye and Ling, 2019) and (Bao et al., 2020). This is
because we tuned the learning rate using the development set.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/21335732529sky/difference_extractor
https://github.com/21335732529sky/difference_extractor
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Huffpost FewRel

ProtoNet + DE + L̂ 1e− 4 1e− 4

MLMAN + DE + L̂ 1e− 4 1e− 2

MAML + DE + L̂ 1e− 6 1e− 4

Table 3: Weight of MI loss determined to maximise the
performance on the development set

ture as described in Section 2.2 without additional
mechanisms. Hence, both of the difference extrac-
tor and our loss function are crucial for ProtoNet.

Another factor affecting the performance of MI
loss is the number of labels in a datset. When the
number of labels is large, semantically relevant
labels more likely exist, where MI loss plays a
role. This assumption was empirically confirmed
by the fact that FewRel, where MI loss (DE + L̂)
outperformed DE for most cases, has 80 labels. On
the other hand, Huffpost has about half the number
of labels (i.e., 41 labels).

4.5 Impact of Hyperparameters

Table 3 shows the settings of α tuned on the devel-
opment set. Overall, the values of α on FewRel are
larger than those on Huffpost. Larger α values in-
crease the influence of MI loss on models, which is
effective on datasets with a large number of labels
like FewRel.

Figure 2 shows the accuracy measured on the
development set when varying α. The performance
tends to decrease when α is set too large. We sus-
pect that too large α forces models to extract differ-
ences irrelevant to the classification task. For exam-
ple, the second examples in Table 1 are about self-
driving cars, where only the BIZ example contains
named entities of Wall Street and Tesla. It
is a noticeable difference; however, unlikely be use-
ful for the classification task. Label representations
of such spurious distinctiveness may degrade the
classification performance.

5 Conclusion and Future Work

In this paper, we introduced a novel method shed-
ding light on semantic relations between labels.
Our method improved the classification accuracy
of representative few-shot classifiers on both Huff-
post and FewRel datasets, confirming the reason-
able applicability of the proposed method.

Technically, our method can be applied to other
classification problems that handle semantic labels,

10-6 10-4 10-2 100

α

0.48

0.50

0.52

D
ev

 a
cc

ur
ac

y

ProtoNet
MLMAN
MAML

Figure 2: Accuracy on the Huffpost development set
when varying α values

such as image and entity classifications. We will
conduct evaluation to see its effects on various
types of classifcations.
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Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. 2016.
Learning to Learn by Gradient Descent by Gradi-
ent Descent. In Proceedings of the 30th Conference
on Neural Information Processing Systems, pages
3981–3989.

Antreas Antoniou, Harrison Edwards, and Amos
Storkey. 2019. How to Train Your MAML. In
Proceedings of the 7th International Conference on
Learning Representations, pages 1–11.

Yujia Bao, Menghua Wu, Shiyu Chang, and Regina
Barzilay. 2020. Few-shot Text Classification with
Distributional Signatures. In Proceedings of the 8th
International Conference on Learning Representa-
tions, pages 1–24.

Pengyu Cheng, Martin Renqiang Min, Dinghan Shen,
Christopher Malon, Yizhe Zhang, Yitong Li, and
Lawrence Carin. 2020. Improving Disentangled
Text Representation Learning with Information-
Theoretic Guidance. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7530–7541.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4171–4186.

https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
https://openreview.net/forum?id=HJGven05Y7
https://openreview.net/forum?id=H1emfT4twB
https://openreview.net/forum?id=H1emfT4twB
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.18653/v1/2020.acl-main.673
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


836

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, pages
1126–1135.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun.
2019. Hybrid Attention-Based Prototypical Net-
works for Noisy Few-Shot Relation Classification.
In Proceedings of the 33rd AAAI Conference on Ar-
tificial Intelligence, pages 6407–6414.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. FewRel:
A Large-Scale Supervised Few-Shot Relation Clas-
sification Dataset with State-of-the-Art Evaluation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4803–4809.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song.
2020. Pretrained Transformers Improve Out-of-
Distribution Robustness. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2744–2751.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations, pages 1–15.

Ke Li and Jitendra Malik. 2017. Learning to Optimize.
In Proceedings of the 5th International Conference
on Learning Representations, pages 1–13.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li.
2017. Meta-SGD: Learning to Learn Quickly for
Few Shot Learning. arXiv:1707.09835, pages 1–11.

Rishabh Misra. 2018. News Category Dataset.

Sachin Ravi and Hugo Larochelle. 2017. Optimiza-
tion as a Model for Few-Shot Learning. In Proceed-
ings of the 5th International Conference on Learning
Representations, pages 1–11.

Victor Garcia Satorras and Joan Bruna Estrach. 2018.
Few-Shot Learning with Graph Neural Networks. In
Proceedings of the 6th International Conference on
Learning Representations, pages 1–13.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical Networks for Few-shot Learning. In
Proceedings of the 31st Conference on Neural Infor-
mation Processing Systems, pages 4077–4087.

Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao
Lv. 2019. Hierarchical Attention Prototypical Net-
works for Few-Shot Text Classification. In Proceed-
ings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 476–485.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip H. S. Torr, and Timothy M. Hospedales.
2018. Learning to Compare: Relation Network for
Few-Shot Learning. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1199–1208.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of the 31st Conference
on Neural Information Processing Systems, pages
5998–6008.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, ko-
ray kavukcuoglu, and Daan Wierstra. 2016. Match-
ing Networks for One Shot Learning. In Proceed-
ings of the 30th Conference on Neural Information
Processing Systems, pages 3630–3638.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-Art Natural Language Process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
Attention Networks for Document Classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Zhi-Xiu Ye and Zhen-Hua Ling. 2019. Multi-Level
Matching and Aggregation Network for Few-Shot
Relation Classification. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2872–2881.

http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1609/aaai.v33i01.33016407
https://doi.org/10.1609/aaai.v33i01.33016407
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/pdf?id=ry4Vrt5gl
http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1707.09835
https://doi.org/10.13140/RG.2.2.20331.18729
https://openreview.net/pdf?id=rJY0-Kcll
https://openreview.net/pdf?id=rJY0-Kcll
https://openreview.net/forum?id=BJj6qGbRW
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.18653/v1/D19-1045
https://doi.org/10.18653/v1/D19-1045
https://openaccess.thecvf.com/content_cvpr_2018/papers/Sung_Learning_to_Compare_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Sung_Learning_to_Compare_CVPR_2018_paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/P19-1277
https://doi.org/10.18653/v1/P19-1277
https://doi.org/10.18653/v1/P19-1277

