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Abstract

The importance of parameter selection in su-
pervised learning is well known. However,
due to the many parameter combinations, an
incomplete or an insufficient procedure is of-
ten applied. This situation may cause mislead-
ing or confusing conclusions. In this opinion
paper, through an intriguing example we point
out that the seriousness goes beyond what is
generally recognized. In the topic of multi-
label classification for medical code predic-
tion, one influential paper conducted a proper
parameter selection on a set, but when mov-
ing to a subset of frequently occurring labels,
the authors used the same parameters without
a separate tuning. The set of frequent labels
became a popular benchmark in subsequent
studies, which kept pushing the state of the
art. However, we discovered that most of the
results in these studies cannot surpass the ap-
proach in the original paper if a parameter tun-
ing had been conducted at the time. Thus it is
unclear how much progress the subsequent de-
velopments have actually brought. The lesson
clearly indicates that without enough attention
on parameter selection, the research progress
in our field can be uncertain or even illusive.

1 Introduction

The importance of parameter selection in super-
vised learning is well known. While parameter
tuning has been a common practice in machine
learning and natural language processing applica-
tions, the process remains challenging due to the
huge number of parameter combinations. The re-
cent trend of applying complicated neural networks
makes the situation more acute. In many situations,
an incomplete or an insufficient procedure for pa-
rameter selection is applied, so misleading or con-
fusing conclusions sometimes occur. In this opin-
ion paper, we present a very intriguing example
showing that, without enough attention on parame-
ter selection, the research progress in our field can
be uncertain or even illusive.

825

In the topic of multi-label classification for med-
ical code prediction, Mullenbach et al. (2018) is an
early work applying deep learning. The evaluation
was conducted on MIMIC-IIT and MIMIC-II (John-
son et al., 2016), which may be the most widely
used open medical records. For MIMIC-III, be-
sides using all 8,922 labels, they follow Shi et al.
(2017) to check the 50 most frequently occurring
labels. We refer to these two sets respectively as

MIMIC-III-full and MIMIC-III-50.

We will specifically investigate MIMIC-III-50.
Based on Mullenbach et al. (2018), many subse-
quent works made improvements to push the state
of the art. Examples include (Wang et al., 2018;
Sadoughi et al., 2018; Xie et al., 2019; Tsai et al.,
2019; Cao et al., 2020a,b; Ji et al., 2020; Teng
et al., 2020; Chen, 2020; Vu et al., 2020; Dong
et al., 2021).

For the data set MIMIC-III-full, Mullenbach
et al. (2018) tuned parameters to find the model that
achieves the best validation performance. However,
when moving to check the set MIMIC-III-50, they
applied the same parameters without a separate
tuning. We will show that this decision had a pro-
found effect. Many works directly copied values
from Mullenbach et al. (2018) for comparison and
presented superior results. However, as demon-
strated in this paper, if parameters for MIMIC-III-
50 had been separately tuned, the approach in Mul-
lenbach et al. (2018) easily surpasses most subse-
quent developments. The results fully indicate that
parameter selection is more important than what is
generally recognized.

This paper is organized as follows. In Section
2, we analyze past results. The main investigation
is in Section 3, while Section 4 provides some
discussion. Some implementation details are in
the appendix. Code and supplementary materials
can be found at http://www.csie.ntu.edu.tw/

~cjlin/papers/parameter_selection.

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 825-830
August 1-6, 2021. ©2021 Association for Computational Linguistics


http://www.csie.ntu.edu.tw/~cjlin/papers/parameter_selection
http://www.csie.ntu.edu.tw/~cjlin/papers/parameter_selection

Table 1: Experimental results from Mullenbach et al.
(2018). Macro-F1 and Micro-F1 are Macro-averaged
and Micro-averaged F1 values, respectively. P@n is
the precision at n, the fraction of the n highest-scored
labels that are truly associated with the test instance.

(a) MIMIC-III-full: 8,922 labels

Macro-F1 Micro-F1 P@8

CNN 0.042 0.419 0.581

CAML 0.088 0.539 0.709
(b) MIMIC-III-50: 50 labels.

Macro-F1 Micro-F1 P@5

CNN 0.576 0.625 0.620

CAML 0.532 0.614 0.609

2 Analysis of Works that Compared with
Mullenbach et al. (2018)

The task considered in Mullenbach et al. (2018) is
to predict the associated ICD (International Clas-
sification of Diseases) codes of each medical doc-
ument. Here an ICD code is referred to as a label.
The neural network considered is

document — word embeddings 0
—convolution — attention — linear layer,

where the convolutional operation was based on
Kim (2014). A focus in Mullenbach et al. (2018)
was on the use of attention, so they detailedly com-
pared the two settings'

CNN: (1) without attention,
CAML: (1).

For the data set MIMIC-III-full, CAML, which
includes an attention layer, was shown to be signifi-
cantly better than CNN on all criteria; see Table 1a.
However, for MIMIC-III-50, the subset of the 50
most frequent labels, the authors reported in Table
1b that CAML is not better than CNN.

The paper (Mullenbach et al., 2018) has been
highly influential. By exactly using their training,
validation, and test sets for experiments, many sub-
sequent studies have proposed new and better ap-
proaches; see references listed in Section 1. Most
of them copied the CNN and CAML results from
(Mullenbach et al., 2018) as the baseline for com-
parison. Table 2 summarizes their superior results
on MIMIC-I1I-50.>

! After convolution, each word is still associated with a
short vector and attention is a way to obtain a single vector
for the whole document. For CNN where attention is not used,
Mullenbach et al. (2018) followed Kim (2014) to select the

While using the same MIMIC-III-50 set, these
subsequent studies differ from Mullenbach et al.
(2018) in various ways. They proposed sophisti-
cated networks and may incorporate additional in-
formation (e.g., label description, knowledge graph
of words, etc.). Further, they may change settings
not considered as parameters for tuning in Mullen-
bach et al. (2018). For example, Mullenbach et al.
(2018) truncated each document to have at most
2,500 tokens, but Vu et al. (2020) used 4,000.

3 Investigation

We investigate the performance of the CNN and
CAML approaches in Mullenbach et al. (2018) for
the set MIMIC-III-50. Some implementation de-
tails are left in supplementary materials.

3.1 Parameter Selection in Mullenbach et al.
(2018)

Mullenbach et al. (2018) conducted parameter tun-

ing on a validation set of MIMIC-III-full. By con-

sidering parameter ranges shown in Table 3, they

applied Bayesian optimization (Snoek et al., 2012)

to choose parameters achieving the highest pre-

cision@8 on the validation set; see the selected
values in Table 3 and the definition of precision in

Table 1. However, the following settings are fixed

instead of being treated as parameters for tuning.

e Each document is truncated to have at most
2,500 tokens. Word embeddings are from the
CBOW method (Mikolov et al., 2013) with the
embedding size 100.

e The stochastic gradient method Adam imple-
mented in PyTorch is used with its default set-
ting. However, the batch size is fixed to be 16
and the learning rate is considered as a parame-
ter. Binary cross-entropy loss is considered.

e The Adam method is terminated if the preci-
sion@8 does not improve for 10 epochs. The
model achieving the highest validation prei-
sion@8 is used to predict the test set for ob-
taining results in Table 1a.

Interestingly, for the 50-label subset of MIMIC-
III, Mullenbach et al. (2018) did not conduct a
parameter-selection procedure. Instead, a decision
was to use the same parameters selected for the

maximal value across all words.

2 We exclude papers that used the same MIMIC-III-50
set but did not list values in Mullenbach et al. (2018) for
comparison. Anyway, results in these papers are not better
than what we obtained in Section 3.
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Table 2: MIMIC-III-50 results from past works that have directly listed values in Mullenbach et al. (2018) for
comparison. For Macro-F1, please see a note on its definition in the appendix.

‘ Macro-F1 Micro-F1 P@5 Code Notes

Baseline considered

CNN (Mullenbach et al., 2018) 0.576 0.625 0.620 Y

CAML (Mullenbach et al., 2018) 0.532 0.614 0.609 Y

New network architectures

MVC-LDA (Sadoughi et al., 2018) 0.597 0.668 0.644 N multi-view convolutional
layers

DACNM (Cao et al., 2020b) 0.579 0.641 0.616 N dilated convolution

BERT-Large (Chen, 2020) 0.531 0.605 - N BERT model

MultiResCNN (Li and Yu, 2020) 0.606 0.670 0.641 Y multi-filter convolution and
residual convolution

DCAN (Ji et al., 2020) 0.615 0.671 0.642 Y dilated convolution, resid-
ual connections

G-Coder without additional informa- - 0.670 0.637 N multiple convolutional lay-

tion (Teng et al., 2020) ers

LAAT (Vu et al., 2020) 0.666 0.715 0.675 Y LSTM before attention

New network architectures + additional information (e.g., label description, label co-occurrence, label
embeddings, knowledge graph, adversarial learning, etc.)

LEAM (Wang et al., 2018) 0.540
MVC-RLDA (Sadoughi et al., 2018) 0.615
MSATT-KG (Xie et al., 2019) 0.638
HyperCore (Cao et al., 2020a) 0.609

G-Coder with additional information -
(Teng et al., 2020)

0.619 0.612 Y label embeddings used

0.674 0.641 N label description used

0.684 0.644 N knowledge graph

0.663 0.632 N label co-occurrence and hi-
erarchy used

0.692 0.653 N knowledge graph, adversar-

ial learning

Results of our investigation in Section 3 are listed below for comparison (values averaged from Table 4)

CNN
CAML

0.606
0.635

0.659
0.684 0.651

0634 Y . .
v parameter selection applied

Table 3: Parameter ranges considered in Mullenbach
et al. (2018) and the values used.

Parameter Range Values used
CNN CAML
d.: # filters 50-500 500 50
k: filter size 2-10 4 10
q: dropout prob. | 0.2-0.8 0.2 0.2
7n: learning rate |0.0003, 0.0001,/0.003 0.0001
0.003, 0.001

full-label set. Further they switch to present preci-
sion@5 instead of precision @8 because on average
each instance is now associated with fewer labels.

The decision of not separately tuning parame-
ters for MIMIC-III-50, as we will see, has a pro-
found effect. In fact, because in Table 1b CAML is
slightly worse than CNN, Mullenbach et al. (2018)
have suspected that a parameter tuning may be

needed. They stated that “we hypothesize that this’
is because the relatively large value of k = 10 for
CAML leads to a larger network that is more suited
to larger datasets; tuning CAML’s hyperparameters
on this dataset would be expected to improve per-
formance on all metrics.” However, it seems no
subsequent works tried to tune parameters of CNN
or CAML on MIMIC-III-50.

3.2 Reproducing Results in Mullenbach et al.

To ensure the correctness of our implementation,
first we reproduce the results in Mullenbach et al.
(2018) by considering the following two programs.
e The public code by Mullenbach et al. (2018) at
github.com/jamesmullenbach/caml-mimic.
e Our implementation of CNN/CAML by fol-
lowing the description in Mullenbach et al.
(2018). The code is part of our development

3Here “this” means that CAML is not better than CNN.
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Table 4: MIMIC-III-50 results after parameter selection. We consider three random seeds, where 1,337 was used
in Mullenbach et al. (2018). Under each seed, we select the five models achieving the best validation precision@5,

use them to predict the test set, and report mean/variance.

Seed Macro-F1 Micro-F1 P@5

1337 | 0.608 £ 0.006 0.659 4+ 0.005 0.634 £ 0.002

CNN 1331 | 0.601 £ 0.013 0.660 &= 0.007 0.634 + 0.003
42 | 0.608 £ 0.007 0.658 +0.006 0.633 £ 0.003

1337 | 0.640 £ 0.004 0.686 4+ 0.004 0.650 £ 0.002

CAML 1331 | 0.631 +0.004 0.682 +0.003 0.651 4 0.001
42 | 0.634 £0.009 0.684 +0.004 0.651 £ 0.002

on a general multi-label text classification pack-
age LibMultiLabel.#
Parameters and the random seed used in Mullen-
bach et al. (2018) are considered; see Table 3.
After some tweaks, on one GPU machine both
programs give exactly the same results in the fol-
lowing table

‘ Macro-F1 Micro-F1 P@5
CNN 0.585 0.626 0.617
CAML 0.532 0.610 0.609

Values are very close to those in Table 1b. The
small difference might be due to that our GPUs or
PyTorch versions are not the same as theirs.

We conclude that results in Mullenbach et al.
(2018) are reproducible.

3.3 Parameter Selection for MIMIC-III-50

We apply the parameter-selection procedure in Mul-
lenbach et al. (2018) for MIMIC-III-full to MIMIC-
II1-50; see details in Section 3.1. A difference is
that, because training MIMIC-III-50 is faster than
MIMIC-III-full, instead of using Bayesian opti-
mization, we directly check a grid of parameters
that are roughly within the ranges given in Table 3.
Specifically, we consider

d. = 50, 150, 250, 350, 450, 550
k=24,6,8,10
q=0.2,0.4,0.6,0.8

Because Mullenbach et al. (2018) switched to re-
port test precision@5 for MIMIC-III-50, for vali-
dation we also use precision@5.

To see the effect of random seeds, besides the
one used in Mullenbach et al. (2018), we checked
two other seeds 1,331 and 42, selected solely be-
cause they are the lucky numbers of an author.

*nttps://github.com/ASUS-AICS/
LibMultiLabel

3.4 Results and Analysis

Table 4 shows CNN/CAML results after parameter

selection and we have the following observations.

e Both CNN and CAML achieve better results
than those reported in Table 1b by Mullenbach
et al. (2018). The improvement of CAML is so
significant that it becomes better than CNN.

e From details in supplementary materials, for
some parameters (e.g., d. and ¢ for CAML),
the selected values are very different from those
used by Mullenbach et al. (2018). Thus param-
eters selected for MIMIC-III-full are not trans-
ferable to MIMIC-III-50 and a separate tuning
is essential.

e Results are not sensitive to the random seeds.’

e A comparison with Table 2 shows that most
subsequent developments cannot surpass our
CAML results. Some are even inferior to CNN,
which is the baseline of all these studies.

e We checked if subsequent developments con-
ducted parameter selection. A summary is in the
supplementary materials.

Based on our results, how much progress past

works have made is therefore unclear.

4 Discussion and Conclusions

The intention of this paper is to provide construc-
tive critiques of past works rather than place blame
on their authors. For the many parameter com-
binations, it is extremely difficult to check them.
However, what our investigation showed is that
if resources or time are available, more attention
should be paid to the parameter selection. For Mul-
lenbach et al. (2018), as they have done a com-
prehensive selection on a super-set MIMIC-III-full,
the same procedure on the simpler MIMIC-III-50 is

SCNN is slight more sensitive to seeds than CAML. More
investigation is needed.
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entirely feasible. The decision of not doing so leads
to a weak baseline in the subsequent developments.

In conclusion, besides proposing new techniques
such as sophisticated networks, more attention
should be placed on the parameter selection. In
the future this helps to ensure that strong baselines
are utilized to check the progress.
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Experimental Details

Before a stochastic gradient step on a batch of data,
Mullenbach et al. (2018) pad sequences with zeros


https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-demos.33
https://doi.org/10.18653/v1/2020.acl-demos.33
https://web.stanford.edu/class/cs224n/reports/custom/report25.pdf
https://web.stanford.edu/class/cs224n/reports/custom/report25.pdf
https://doi.org/10.1016/j.jbi.2021.103728
https://doi.org/10.1016/j.jbi.2021.103728
https://doi.org/10.1016/j.jbi.2021.103728
https://doi.org/10.1016/j.jbi.2021.103728
https://doi.org/10.18653/v1/2020.clinicalnlp-1.8
https://doi.org/10.18653/v1/2020.clinicalnlp-1.8
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.1609/aaai.v34i05.6331
https://doi.org/10.1609/aaai.v34i05.6331
https://doi.org/10.1609/aaai.v34i05.6331
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.5555/2999792.2999959
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/N18-1100
http://arxiv.org/abs/1911.03347
http://arxiv.org/abs/1911.03347
http://arxiv.org/abs/1811.01468
http://arxiv.org/abs/1811.01468
http://arxiv.org/abs/1811.01468
http://arxiv.org/abs/1711.04075
http://arxiv.org/abs/1711.04075
https://doi.org/10.5555/2999325.2999464
https://doi.org/10.5555/2999325.2999464
https://doi.org/10.3389/fbioe.2020.00867
https://doi.org/10.3389/fbioe.2020.00867
https://doi.org/10.18653/v1/D19-6206
https://doi.org/10.18653/v1/D19-6206
https://doi.org/10.18653/v1/D19-6206
https://doi.org/10.24963/ijcai.2020/461
https://doi.org/10.24963/ijcai.2020/461
https://doi.org/10.18653/v1/P18-1216
https://doi.org/10.18653/v1/P18-1216
https://doi.org/10.1145/3357384.3357897
https://doi.org/10.1145/3357384.3357897
https://doi.org/10.1145/3357384.3357897

so that all documents in this batch have the same
number of tokens. Thus results of the forward oper-
ation depend on the batch size. This setting causes
issues in validation because a result independent
of the batch size is needed. Further, for many ap-
plications one instance appears at a time in the
prediction stage. Thus we follow Mullenbach et al.
(2018) to use

batch size = 1

in validation and prediction.

After the convolutional layer, Mullenbach et al.
(2018) consider the tanh activation function. For
both convolutional and linear layers, a bias term is
included.

Before the training process, Mullenbach et al.
(2018) sort the data according to their lengths.
In the stochastic gradient procedure, data are not
reshuffled. Therefore, instances considered in each
batch are the same across epochs. While this set-
ting is less used in other works, we follow suit to
ensure the reproducibility of their results.

In the stochastic gradient procedure, we follow
(Mullenbach et al., 2018) to set 200 as the maximal
number of epochs. This setting is different from the
default 100 epochs in the software LibMultiLabel
employed for our experiments. In most situations,
the program does not reach the maximal number of
epochs. Instead, it terminates after the validation
P@5 does not improve in 10 epochs. This criterion
also follows from Mullenbach et al. (2018).

All models were trained on one NVIDIA Tesla
P40 GPU compatible with the CUDA 10.2 platform
and cuDNN 7.6. Note that results may slightly vary
if experiments are run on different architectures.

B A Note on Macro-F1

Mullenbach et al. (2018) report macro-F1 defined
as

F1 value of macro-precision and macro-recall,

where macro-precision and macro-recall are respec-
tively the mean of precision and recall over all
classes. This definition is different from the macro-
F1 used in most other works. Specifically, F1 val-
ues are obtained for each class first and their mean
is considered as Macro-F1; see the discussion of
the Macro-F1 definitions in Opitz and Burst (2021).
Because works mentioned in Table 2 may not in-
dicate if they use the same Macro-F1 formula as
Mullenbach et al. (2018), readers should exercise
caution in interpreting Macro-F1 results in Table 2.

However, based on Micro-F1 and P@5 results the
main point of this paper still stands.
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