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Abstract

In Neural Machine Translation (and, more gen-
erally, conditional language modeling), the
generation of a target token is influenced by
two types of context: the source and the pre-
fix of the target sequence. While many at-
tempts to understand the internal workings of
NMT models have been made, none of them
explicitly evaluates relative source and target
contributions to a generation decision. We ar-
gue that this relative contribution can be evalu-
ated by adopting a variant of Layerwise Rele-
vance Propagation (LRP). Its underlying ‘con-
servation principle’ makes relevance propaga-
tion unique: differently from other methods, it
evaluates not an abstract quantity reflecting to-
ken importance, but the proportion of each to-
ken’s influence. We extend LRP to the Trans-
former and conduct an analysis of NMT mod-
els which explicitly evaluates the source and
target relative contributions to the generation
process. We analyze changes in these contribu-
tions when conditioning on different types of
prefixes, when varying the training objective
or the amount of training data, and during the
training process. We find that models trained
with more data tend to rely on source informa-
tion more and to have more sharp token contri-
butions; the training process is non-monotonic
with several stages of different nature.'

1 Introduction

With the success of neural approaches to natu-
ral language processing, analysis of NLP models
has become an important and active topic of re-
search. In NMT, approaches to analysis include
probing for linguistic structure (Belinkov et al.,
2017; Conneau et al., 2018), evaluating via con-
trastive translation pairs (Sennrich, 2017; Burlot
and Yvon, 2017; Rios Gonzales et al., 2017; Tang

'We release the code at https://github.com/
lena-voita/the-story—-of-heads.

sennrich@cl.uzh.ch

ititov@inf.ed.ac.uk

et al., 2018), inspecting model components, such
as attention (Ghader and Monz, 2017; Voita et al.,
2018; Tang et al., 2018; Raganato and Tiedemann,
2018; Voita et al., 2019) or neurons (Dalvi et al.,
2019; Bau et al., 2019), among others.
Unfortunately, although a lot of work on model
analysis has been done, a question of how the
NMT predictions are formed remains largely open.
Namely, the generation of a target token is defined
by two types of context, source and target, but there
is no method which explicitly evaluates the rela-
tive contribution of source and target to a given
prediction. The ability to measure this relative
contribution is important for model understanding
since previous work showed that NMT models of-
ten fail to effectively control information flow from
source and target contexts. For example, adding
context gates to dynamically control the influence
of source and target leads to improvement for both
RNN (Tu et al., 2017; Wang et al., 2018) and Trans-
fomer (Li et al., 2020) models. A more popular
example is a model’s tendency to generate hallu-
cinations (fluent but inadequate translations); it is
usually attributed to the inappropriately strong in-
fluence of target context. Several works observed
that, when hallucinating, a model fails to properly
use source: it produces a deficient attention matrix,
where almost all the probability mass is concen-
trated on uninformative source tokens (EOS and
punctuation) (Lee et al., 2018; Berard et al., 2019).
We argue that a natural way to estimate how
the source and target contexts contribute to gen-
eration is to apply Layerwise Relevance Propaga-
tion (LRP) (Bach et al., 2015) to NMT models.
LRP redistributes the information used for a predic-
tion between all input elements keeping the total
contribution constant. This ‘conservation principle’
makes relevance propagation unique: differently
from other methods estimating influence of individ-
ual tokens (Alvarez-Melis and Jaakkola, 2017; He
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et al., 2019a; Ma et al., 2018), LRP evaluates not
an abstract quantity reflecting a token importance,
but the proportion of each token’s influence.

We extend one of the LRP variants to the Trans-
former and conduct the first analysis of NMT mod-
els which explicitly evaluates the source and tar-
get relative contributions to the generation process.
We analyze changes in these contributions when
conditioning on different types of prefixes (refer-
ence, generated by a model or random translations),
when varying training objective or the amount of
training data, and during the training process. We
show that models suffering from exposure bias are
more prone to over-relying on target history (and
hence to hallucinating) than the ones where the
exposure bias is mitigated. When comparing mod-
els trained with different amount of data, we find
that extra training data teaches a model to rely on
source information more heavily and to be more
confident in the choice of important tokens. When
analyzing the training process, we find that changes
in training are non-monotonic and form several dis-
tinct stages (e.g., stages changing direction from
decreasing influence of source to increasing).

Our key contributions are as follows:

* we show how to use LRP to evaluate the rela-
tive contribution of source and target to NMT
predictions;

* we analyze how the contribution of source and
target changes when conditioning on different
types of prefixes: reference, generated by a
model or random translations;

* by looking at the contributions when condi-
tioning on random prefixes, we observe that
models suffering from exposure bias are more
prone to over-relying on target history (and
hence to hallucinating);

* we find that (i) with more data, models rely on
source information more and have more sharp
token contributions, (ii) the training process
is non-monotonic with several distinct stages.

2 Layer-wise Relevance Propagation

Layer-wise relevance propagation is a framework
which decomposes the prediction of a deep neural
network computed over an instance, e.g. an image
or sentence, into relevance scores for single input
dimensions of the sample such as subpixels of an
image or neurons of input token embeddings. The

original LRP version was developed for computer
vision models (Bach et al., 2015) and is not directly
applicable to the Transformer (e.g., to the attention
layers). In this section, we explain the general idea
behind LRP, specify which of the existing LRP
variants we use, and show how to extend LRP to
the NMT Transformer model.?

2.1 General Idea: Conservation Principle

In its general form, LRP assumes that the model
can be decomposed into several layers of compu-
tation. The first layer are the inputs (for example,
the pixels of an image or tokens of a sentence), the
last layer is the real-valued prediction output of
the model f. The [-th layer is modeled as a vector
z®) = (xl(-l)) O with dimensionality V' (I). Layer-
wise relevance propagatlon assumes that we have a
relevance score RZ(ZH) for each dimension xElH)
of the vector z at layer [ + 1. The idea is to find a
relevance score Rgl) for each dimension :I:Z(l) of the
previous layer [ such that the following holds:

S REV=S"RI = =S"RM. ()

This equation represents a conservation prin-
ciple, which LRP exploits to back-propagate the
prediction. Intuitively, this means that the total
contribution of neurons at each layer is constant.

2.2 Redistribution Rules
(H1)

Assume that we know the relevance R, of a neu-
ron j at network layer {41 for the prediction f(x).
Then we would like to decompose this relevance
into messages Rl(f’_ljl) sent from the neuron j at
layer [ 4 1 to each of its input neurons ¢ at layer [.

For the conservation principle to hold, these mes-
(LI+1)
14<—]

sages R; have to satisfy the constraint:

l+1 Z Rzi_l;l-l ) (2)

Then we can define the relevance of a neuron 7 at
layer [ by summing all messages from neurons at

layer (I + 1):
Z RTY. 3)

Equations (2) and (3) define the propagation of rele-
vance from layer /41 to layer /. The only thing that
is missing is specific formulas for computing the

ZPrevious work applying one of the LRP variants to
NMT (Ding et al., 2017; Voita et al., 2019) do not describe
extensions beyond the original LRP rules (Bach et al., 2015).
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(L,1+1)

messages R;” ;. Usually, the message R;
has the following structure:

Rz(f’—l;rl) = l+1 ZUU =1. “4)

(1,1+1)
Z(—]

Several versions of LRP satisfying equation (4)
(and, therefore, the conservation principle) have
been introduced: LRP-¢, LRP-af and LRP-
v (Bach et al., 2015; Binder et al., 2016; Montavon
et al., 2019). We use LRP-a3 (Bach et al., 2015;
Binder et al., 2016), which defines relevances at
each step in such a way that they are positive.

Rule for relevance propagation: the ag3-rule.
Let us consider the simplest case of linear layers
with non-linear activation functions, namely

) (+1)_
Zij = T; Wij, Zj =§ zij + b, x;

i

9(%),

@

where w;; is a weight connecting the neuron x,

(I4+1)

to neuron x; ', b; is a bias term, and g is a non-

linear activation function. Let

+ _ + ot
z; = zij—l—bj,

=> 2 b7,
(2 (2
where 7 = max(0,0) and O~ = min(0,0).
Then the a5-rule (Bach et al., 2015; Binder et al.,
2016) is given by the equation

+ —

z. Z..
(aw) ®)

J J

where a4+ = 1. Note that all terms in the brackets
are always positive: negative signs of z; and z;;
cancel out when evaluating the ratio.

This propagation method allows to control man-
ually the importance of positive and negative evi-
dence by choosing different « and /3. For example,
a,f = % treats positive and negative contributions
as equally important, while & = 1, § = 0 consid-
ers only positive contributions. In our experiments,
both versions lead to the same observations.

Note that (5) is directly applicable to all layers
for which there exist functions g; and h;; such that

(l+1 (Zhw (l ) ©6)

These layers include linear, convolutional and max-
pooling operations. Additionally, pointwise mono-
tonic activation functions g; (e.g., ReLU) are ig-
nored by LRP (Bach et al., 2015).

R _ pl+D)

1] J

Propagating relevance through attention layers.
For the structures that do not fit the form (6), the
weighting v;; can be obtained by performing a first

order Taylor expansion of a neuron 2! (Bach
et al., 2015; Binder et al., 2016).
For attention layers in the Transformer, we ex-

tend the approach by Binder et al. (2016). Namely,

let 2\ = f@®), f2) = fla1,...,z).
Then by Taylor expansion at some point £ =
(Z1,...,2p), we get
() N0
f( + Z axl L xz )7
]
2= (@) ~ (2 +Z 2V —g,).
J &’UZ

7/%]

Elements of the sum can be assigned to incom-
ing neurons, and the zero-order term can be redis-
tributed equally between them. This leads to the
following decomposition:

1 0
iy = 3 1(8) + 5L (a

N -z,

We use the zero vector in place of &. Equation (7),
along with the standard redistribution rules (5), de-
fines relevance propagation for complex non-linear
layers. In the Transformer, we apply equation (7)
to the softmax operations in the attention layers;
all other operations inside the attention layers are
linear functions, and the rule (5) can be used.

2.3 LREP for Conditional Language Models

Given a source sequence = (x1,...,zg) and a
target sequence y = (y1, ..., yr), standard autore-
gressive NMT models (or, in a more broad sense,
conditional language models) are trained to predict
words in the target sequence, word by word. For-
mally, at each generation step such models predict
p(y¢|x1.5,y1:4—1) relying on both source tokens
x1.s and already generated target tokens ¥j.t—1.
Using LRP, we evaluate relative contribution of all
tokens, source and target, to the current prediction.

Propagating through decoder and encoder. At
first glance, it can be unclear how to apply a layer-
wise method to a not completely layered architec-
ture (such as encoder-decoder). This, however, is
rather straightforward and is done in two steps:

1. total relevance is propagated through the de-
coder. Since the decoder uses representations

1128



from the final encoder layer, part of the rele-
vance ‘leaks’ to the encoder; this happens at
each decoder layer;

2. relevance leaked to the encoder is propagated
through the encoder layers.

The total contribution of neurons in each decoder
layer is not preserved (part of the relevance leaks
to the encoder), but the total contribution of all
tokens — across the source and the target prefix —
remains equal to the model prediction.

We evaluate relevance of input neurons to the
top-1 logit predicted by a model. Then token rele-
vance (or its contribution) is the sum of relevances
of its neurons.

Notation. Without loss of generality, we can as-
sume that the total relevance for each prediction
equals 1.3 Let us denote by R¢(;) and R¢(y;) the
contribution of source token x; and target token y;
to the prediction at generation step ¢, respectively.
Then source and target contributions are defined as

t—1
Ri(source) = > Ry(x;), Re(target) = > Ry(y;).
i J=1

Note that V¢ R;(source)+Ry(target) =1;
Ri(source) = 1, Ry(target) = 0O,
Vj >t Rt(yj):()-

and

3 Experimental setting

Model. We follow the setup of Transformer base
model (Vaswani et al., 2017) with the standard
training setting. More details on hyperparameters
and the optimizer can be found in the appendix.

Data. We use random subsets of the WMT14 En-
Fr dataset of different size: 1m, 2.5m, 5m, 10m,
20m, 30m sentence pairs. In Sections 4 and 7,
we report results for the model trained on the 1m
subset. In Section 6, we show how the results
depend on the amount of training data.

Evaluating LRP. The o5-LRP we use requires
choosing values for @ and 8, o« + 8 = 1. We
tried treating positive and negative contributions
as equally important (« = 8 = %), or considering
only positive contributions (a« = 1, § = 0). The
observed patterns in behavior were the same for
these two versions. In the main text, we use a = 1;

in the appendix, we provide results for « = 8 = %

3More formally, if we evaluate relevance for top-1 logit
predicted by a model, then the total relevance is equal to the
value of this logit. However, the conservation principle allows
us to assume that this logit is equal to 1 and to consider relative
contributions.
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Figure 1: (a) contribution of the whole source at each
generation step; (b) total contribution of source tokens
at each position to the whole target sentence.

Reporting results. All presented results are av-
eraged over an evaluation dataset of 1000 sentence
pairs. In each evaluation dataset, all examples have
the same number of tokens in the source, as well as
in the target (e.g., 20 source and 23 target tokens;
the exact number for each experiment is clear from
the results).*

4 Getting Acquainted

In this section, we explain general patterns in model
behavior and illustrate the usage of LRP by evaluat-
ing different statistics within a single model. Later,
we will show how these results change when vary-
ing the amount of training data (Section 6) and
during model training (Section 7).

4.1 Changes in contributions

Here we evaluate changes in the source contri-
bution during generation, and in contributions of
source tokens at different positions to entire output.

Source — target(k). For each generation
step t, we evaluate total contribution of source
R (source). Note that this is equivalent to evaluat-
ing total contribution of prefix since Ry (prefix) =
1 — Ry (source) (Section 2.3).

Results are shown in Figure 1(a).> We see that,
during the generation process, the influence of
source decreases (or, equivalently, the influence
of the prefix increases). This is expected: with
a longer prefix, the model has less uncertainty in
deciding which source tokens to use, but needs to
control more for fluency. There is also a large drop
of source influence for the last token: apparently, to

*Note that we have to fix the number of tokens in the source
and target to get reliable comparisons. We choose sentences of
length 20 and 23 because these are among the most frequent
sentence lengths in the dataset. We also looked at sentences
with 16, 25, 29 tokens — observed patterns were the same.

3Since the first token is always generated solely relying on
the source, we plot starting from the second token.
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Figure 2: For each generation step, the figure shows
entropy of (a) source, (b) target contributions.

generate the EOS token, the model relies on prefix
much more than when generating other tokens.

Source(k) — target. Now we want to under-
stand if there is a tendency to use source tokens
at certain positions more than tokens at the oth-
ers. For each source token position k, we evaluate
its total contribution to the whole target sequence.
To eliminate the effect of decreasing source influ-
ence during generation, at each step ¢ we normalize
source contributions R;(xy) over the total contribu-
tion of source at this step R¢(source). Formally, for

T
the k-th token we evaluate > Ry(zy)/R¢(source).
t=1
For convenience, we multiply the result by %: this
makes the average total contribution of each token
equal to 1.

Figure 1(b) shows that, on average, source to-
kens at earlier positions influence translations more
than tokens at later ones. This may be because the
alignment between English and French languages
is roughly monotonic. We leave for future work
investigating the changes in this behavior for lan-
guage pairs with more complex alignment (e.g.,
English-Japanese).

4.2 Entropy of contributions

Now let us look at how ‘sharp’ contributions of
source or target tokens are at different genera-
tion steps. For each step ¢, we evaluate entropy
of (normalized) source or target contributions:
{Ra () /Ro(source)} L or {Ri(y;)/Re(target)ti_).
Entropy of source contributions. Figure 2(a)
shows that during generation, entropy increases
until approximately 2/3 of the translation is gener-
ated, then decreases when generating the remaining
part. Interestingly, for the last punctuation mark
and the EOS token, entropy of source contributions
is very high: the decision to complete the sentence

source — target(k)

b 2.98
\’\\\\/ -
1 2
\ €
U

Entropy of source contributions

Iy
w

o
©
=

o
o
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o
[
[
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o
[ee]
-

Prefix \ Prefix
0.82 reference 2.95 « reference
0.81 model model
2 5 10 15 20 23 1 5 10 15 20 23
target token position target token position
(@ (b)
source — target(k) Entropy of source contributions
0.925 Prefix et eteesey o
0.900. % « reference 2.991 ~

o Y + random

entropy

Prefix
o reference
random

5 1 15 20 23 1 5 10 15 20 23
target token position target token position

© (d)

Figure 3: (a, ¢) contribution of source, (b, d) entropy of
source contributions.

requires broader context.

Entropy of target contributions. Figure 2(b)
shows that entropy of target contributions is higher
for longer prefixes. This means that the model does
use longer contexts in a non-trivial way.

4.3 Reference, Model and Random Prefixes

Let us now look at how model behavior changes
when feeding different types of prefixes: prefixes
of reference translations, translations generated by
the model, and random sentences in the target lan-
guage.® As in previous experiments, we evaluate
relevance for top-1 logit predicted by the model.

Reference vs model prefixes. When feeding
model-generated prefixes, the model uses source
more (Figure 3(a)) and has more focused source
contributions (lower entropy in Figure 3(b)) than
when generating the reference. This may be
because model-generated translations are ‘eas-
ier’ than references. For example, beam search
translations contain fewer rare tokens (Burlot and
Yvon, 2018; Ott et al., 2018), are simpler syntacti-
cally (Burlot and Yvon, 2018) and, according to the
fuzzy reordering score (Talbot et al., 2011), model
translations have significantly less reordering com-
pared to the real parallel sentences (Zhou et al.,
2020). As we see from our experiments, these sim-
pler model-generated prefixes allow for the model

®Random prefixes come from the same evaluation set, but
with shuffled target sentences.
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to rely on the source more and to be more confident
when choosing relevant source tokens.

Reference vs random prefixes. Results for ran-
dom sentence prefixes are given in Figures 3c, 3d.
The reaction to random prefixes helps us study the
self-recovery ability of NMT models. Previous
work has found that models can fall into a hallucina-
tion mode where “the decoder ignores context from
the encoder and samples from its language mode”
(Koehn and Knowles, 2017; Lee et al., 2018). In
contrast, He et al. (2019b) found that a language
model is able to recover from artificially distorted
history input and generate reasonable samples.

Our results show evidence for both. At the be-
ginning of the generation process, the model tends
to rely more on the source context when given a
random prefix compared to the reference prefix,
indicating a self-recovery mode. However, when
the prefix becomes longer, the model choice shifts
towards ignoring the source and relying more on
the target: Figure 3c shows a large drop of source
influence for later positions. Figure 3d also shows
that with a random prefix, the entropy of source
contributions is high and is roughly constant.

5 Exposure Bias and Source
Contributions

The results in the previous section agree with some
observations made in previous work studying self-
recovery and hallucinations. In this section, we
illustrate more explicitly how our methodology can
be used to shed light on the effects of exposure bias
and training objectives.

Wang and Sennrich (2020) empirically link the
hallucination mode to exposure bias (Ranzato et al.,
2016), i.e. the mismatch between the gold history
seen at training time, and the (potentially erro-
neous) model-generated prefixes at test time. The
authors hypothesize that exposure bias leads to
an over-reliance on target history, and show that
Minimum Risk Training (MRT), which does not
suffer from exposure bias, reduces hallucinations.
However, they did not directly measure this over-
reliance on target history. Our method is able to di-
rectly test whether there is indeed an over-reliance
on the target history with MLE-trained models, and
more robust inclusion of source context with MRT.
We also consider a simpler heuristic, word dropout,
which we hypothesize to have a similar effect.

source — target(k) Entropy of source contributions

2.98 e /

2.961 ¢ //’P\\\\(
| Model
baseline 2.94; * baseline
wd, source wd, source
MRT 2.92) « MRT

0.750 wd, target wd, target
2 5 10 15 20 23 1 5 10 15 2023
target token position target token position

(a) b)

Figure 4: Contribution of source (a) and entropy of
source (b) with model-generated prefixes.

0.850

Model

source contribution
e o o
~ © ©
~ o N
w o w
entropy

Minimum Risk Training (Shen et al., 2016) is
a sentence-level objective that inherently avoids ex-
posure bias. It minimises the expected loss (‘risk’)
with respect to the posterior distribution:

RO =D > Pz, 0)AFy),

(z,y) GV (=)

where ) (z) is a set of candidate translations for z,
A(g,y) is the discrepancy between the model pre-
diction gy and the gold translation y (e.g., a nega-
tive smoothed sentence-level BLEU). More details
on the method can be found in Shen et al. (2016)
or Edunov et al. (2018); training details for our
models are in the appendix.

Word Dropout is a simple data augmentation
technique. During training, it replaces some of the
tokens with a special token (e.g., UNK) or a ran-
dom token (in our experiments, we replace 10% of
the tokens with random). When used on the target
side, it may serve as the simplest way to alleviate
exposure bias: it exposes a model to something
other than gold prefixes. This is not true when used
on the source side, but for analysis, we consider
both variants.

5.1 Experiments

We consider two types of prefixes: model-
generated and random. Random prefixes are our
main interest here. We feed prefixes that are flu-
ent but unrelated to the source and look whether
a model is likely to fall into a language modeling
regime, i.e., to what extent it ignores the source.
For model-generated prefixes, we do not expect to
see large differences in contributions: this mode is
‘easy’ for the model and the source contributions
are high (see Section 4.3). The results are shown
in Figures 4 and 5.

Model-generated prefixes. MRT causes more
prominent changes in contributions (Figure 4). We
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Figure 5: Contribution of source (a) and entropy of
source (b) with random prefixes.

2.988 ¢
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see the largest difference in the beginning and the
end of the generation process, which may be ex-
pected when comparing models trained with token-
level and sequence-level objectives. The direction
of change, i.e. decreasing influence of source, is
rather unexpected; we leave a detailed investigation
of this behavior to future work. For word dropout,
changes in the amount of contributions are less no-
ticeable; we see, however, that target-side word
dropout makes the model more confident in the
choice of relevant source tokens (Figure 4b).

Random prefixes. We see that, among all mod-
els, the MRT model has the highest influence of
source (Figure 5a) and the most focused source
contributions (Figure 5b). This agrees with our
expectations: by construction, MRT removes ex-
posure bias completely. Therefore, it is confused
by random prefixes less than other models. Ad-
ditionally, this also links to Wang and Sennrich
(2020) who showed that MRT reduces hallucina-
tions. When using word dropout, both its variants
also increase the influence of source, but to a much
lesser extent (Figure 5a). As expected, since target-
side word dropout slightly reduces exposure bias
(in contrast to source-side word dropout), it leads
to a larger increase of source influence.

Experiments in this section highlight that the
methodology we propose can be applied to study
exposure bias, robustness, and hallucinations, both
in machine translation and more broadly for other
language generation tasks. In this work, however,
we want to illustrate more broadly the potential of
this approach. In the following, we will compare
models trained with varying amounts of data and
will look into the training process.

6 Data Amount

In this section, we show how the results from Sec-
tion 4 change when increasing the amount of train-

source — target(k) Entropy of source contributions

Data
amount

®
N

e 1m
e 2.5m
5m
10m
® 20m
e 30m

@
>
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@
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w
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=

25 28 1 5 10 15 20 25 30
target token position

2 5 10 15 20
target token position

(@) (b)

Figure 6: (a) source contribution, (b) entropy of source
contributions. The arrows show the direction of change
when increasing data amount. (For clarity, in (a) the
last two positions (punct. and EOS) are not shown).

ing data. The observed patterns are the same when
evaluating on datasets with reference translations
or the ones generated by the corresponding model
(in each case, all sentences in the evaluation dataset
have the same length). In the main text, we show
figures for references.

More data — higher source contribution.
Figure 6(a) shows the source contribution at each
generation step. We can see that, generally, mod-
els trained with more data rely on source more
heavily. Surprisingly, this increase is not spread
evenly across positions: at approximately 80% of
the target length, models trained with more data use
source more, but at the last positions, they switch
to more actively using the prefix.

More data —> more focused contributions.
Figure 6(b) shows that at each generation step, en-
tropy of source contributions decreases with more
data. This means that with more training data, the
model becomes more confident in the choice of
important tokens. In the appendix, we show that
this is also the case for target contributions.

7 Training Stages

Now we turn to analyzing the training process of an
NMT model. Specifically, we look at the changes
in how the predictions are formed: changes in the
amount of source/target contributions and in the
entropy of these contributions. Our findings are
summarized in Figure 7. In the following, we ex-
plain them in more detail. In Section 7.1, we draw
connections between our training stages (shown
in Figure 7) and the ones found in previous work
focused on validating the lottery ticket hypothesis.

Contributions converge early. First, we eval-
uate how fast the contributions converge, i.e.,
how quickly a model understands which tokens
are the most important for prediction. For
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<4k <12k <50k
Convergence of contributions Source contributions
< 0.047 § i 3 :
% & | 508601 1
s = :
Eoos- [ 2 b
© | = 0.855{ ! 1
c 1 =4 Ly
0021 4 S i
2 \ © 0.8501 i1
L Y o 1 {
Soo1 & @ A e i
=2 S o845 4
a i K \:‘..
*0.00 - | s s | L i | |
0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
number of batches number of batches
(@ (b)

Entropy of source contributions Entropy of target contributions
3.26 T T 1 |

] 3!

325 i

1}
:
3.24 H
>~ ¢
o
o323 #
z *
|

G322 Jumpandnet

LA P 2.30 ‘%‘
i
3.20 i’! :
0 10k 20k 30k 40k 50k 0
number of batches

10k 20k 30k 40k 50k
number of batches

(c) (d)

Figure 8: Training process: (a) convergence of contributions, (b) source contribution, (c-d) entropy of source and
target contributions. The model trained on 1m subsample of WMT 14 En-Fr dataset. The results are averaged over

target positions and evaluation examples.

this, at each generation step ¢ we evaluate the
KL divergence in token influence distributions
(Rt(.’Ijl), ey Rt(.’I}S), Rt(yl)y ey Rt(yt—l)) from
the final converged model to the model in train-
ing. Figure 8(a) shows that contributions converge
early. After approximately 12k batches, the model
is very close to its final state in the choice of tokens
to rely on for a prediction.

Changes in training are not monotonic. Fig-
ures 8(b-d) show how the amount of source con-
tribution and the entropy of source and target con-
tributions change in training. We see that all three
figures have the same distinct stages (shown with
vertical lines). First, source influence decreases,
and both source and target contributions become
more focused. In this stage, most of the change hap-
pens (Figure 8(a)). In the second stage, the model
also undergoes substantial change, but all processes
change their direction: source influence increases
and the model learns to rely on broader context
(entropy is increasing). Finally, in the third stage,
the direction of changes remains the same, but very
little is going on — the model slowly converges.
These three stages correspond to the first three
stages shown in Figure 7; at this point, the model
trained on 1m sentence pairs converges. With more
data (e.g., 20m sentence pairs), we further observed
the next stage (the last one in Figure 7), where the
entropy of both source and target contributions is
decreasing again. However, this last stage is much

slower than the third, and the final state does not
differ much from the end of the third stage.

Early positions change more. Figures 9(a-b)
show how source contributions and their entropy
changes for each target position. We see that earlier
positions are the ones that change most actively: at
these positions, we see the largest decrease at the
first stage and the largest following increase at the
subsequent stages. If we look at how accuracy for
each position changes in training (Figure 10), we
see that at the end of the first stage, early tokens
have the highest accuracy.’ This is not surprising:
one could expect early positions to train faster be-
cause they are observed more frequently in training.
Previously such intuition motivated the usage of
sentence length as one of the criteria for curriculum
learning (e.g., Kocmi and Bojar (2017)).

7.1 Relation to Previous Work

Interestingly, our stages in Figure 7 agree with the
ones found by Frankle et al. (2020) for ResNet-20
trained on CIFAR-10 when investigating, among
other things, the lottery ticket hypothesis (Frankle
and Carbin, 2019). Their stages were defined based
on the changes in gradient magnitude, in the weight
space, in the performance, and in the effectiveness
of rewinding in search of the ‘winning’ subnetwork
(for more details on the lottery ticket hypothesis

7 Accuracy is the proportion of cases where the correct
token is the most probable choice.
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Figure 9: Changes in training for each target position;
each line corresponds to a model state. The arrows
show the direction of change when the training pro-
gresses. In the figures, all stages are shown, but the
stages of interest are highlighted more prominently.
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Figure 10: Accuracy change for each target position;
each line corresponds to a model state. In the figures,
all stages are shown, but the stages of interest are high-
lighted more prominently.

and the rewinding, see the work by Frankle et al.
(2019)). Comparing the stages by Frankle et al.
(2020) with ours, we see that (1) their relative sizes
in the corresponding timelines match well, (2) the
rewinding starts to be effective at the third stage;
for our model, this is when the contributions have
almost converged. In future work, it would be
interesting to further investigate this relation.

8 Additional Related Work

To estimate the influence of source to an NMT pre-
diction, Ma et al. (2018) trained an NMT model
with an auxiliary second decoder where the en-
coder context vector was masked. Then the source
influence was measured as the KL divergence be-
tween predictions of the two decoders. However,
the ability of an auxiliary decoder to generate simi-
lar distribution is not equivalent to the main model

not using source. More recently, as a measure of
individual token importance, He et al. (2019a) used
Integrated Gradients (Sundararajan et al., 2017).

In machine translation, LRP was previously used
for visualization (Ding et al., 2017) and to find the
most important attention heads in the Transformer’s
encoder (Voita et al., 2019). Similar to our work,
Voita et al. (2019) evaluated LRP on average over
a dataset (and not for a single prediction) to extract
patterns in model behaviour. Both works used the
more popular e-LRP, while for our analysis, the oS-
LRP was more suitable (Section 2). For language
modeling, Calvillo and Crocker (2018) use LRP to
evaluate relevance of neurons in RNNs for a small
synthetic setting.

9 Conclusions

We show how to use LRP to evaluate the relative
contributions of source and target to NMT predic-
tions. We illustrate the potential of this approach
by analyzing changes in these contributions when
conditioning on different types of prefixes (refer-
ences, model predictions or random translations),
when varying training objectives or the amount
of training data, and during the training process.
Some of our findings are: (1) models trained with
more data rely on source information more and
have more sharp token contributions; (2) the train-
ing process is non-monotonic with several distinct
stages. These stages agree with the ones found
in previous work focused on validating the lottery
ticket hypothesis, which suggests future investi-
gation of this connection. Additionally, we show
that models suffering from exposure bias are more
prone to over-relying on target history (and hence
to hallucinating) than the ones where the exposure
bias is mitigated. In future work, our methodology
can be used to measure the effects of different and
novel training regimes on the balance of source and
target contributions.
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A Experimental setup

A.1 Data preprocessing

We use random subsets of the WMTI14 En-
Fr dataset: http://www.statmt.org/wmt14/
translation-task.html. Sentences were en-
coded using byte-pair encoding (Sennrich et al.,
2016), with source and target vocabularies of about
32000 tokens. Translation pairs were batched to-
gether by approximate sequence length. Each train-
ing batch contained a set of translation pairs con-
taining approximately 160008 source tokens for 1m
subsample and 32000 for larger datasets.

A.2 Model parameters

We follow the setup of Transformer base
model (Vaswani et al., 2017). More precisely, the
number of layers in the encoder and in the decoder
is N = 6. We employ h = 8 parallel attention lay-
ers, or heads. The dimensionality of input and out-
put is d,,ode; = 512, and the inner-layer of a feed-
forward networks has dimensionality dy; = 2048.

We use regularization as described in (Vaswani
etal., 2017).

A.3 Optimizer

The optimizer we use is the same as in (Vaswani
et al., 2017). We use the Adam optimizer (Kingma
and Ba, 2015) with 8 = 0.9, 5o = 0.98 and
e = 1077, We vary the learning rate over the
course of training, according to the formula:
lrate = scale - min(step_numfo'g’,
step_num - warmup_steps_1'5)
We use warmup_steps = 16000, scale = 4.

We train models till convergence and average 5
latest checkpoints. Approximate number of train-
ing batches are: 57k for 1m dataset, 220k for 2.5m
dataset and 600k for the rest.

B Minimum Risk Training

B.1 Background

Minimum Risk Training (MRT) minimises the ex-
pected loss (‘risk’) with respect to the posterior
distribution:

RO = > P(ilz,0)AFy),
(zy) geY(x)

8This can be reached by using several of GPUs or by accu-
mulating the gradients for several batches and then making an
update.

where )(x) is a set of all possible candidate trans-
lations for x, A(g,y) is the discrepancy between
the model prediction 4 and the gold translation y.

Since the search space )(z) is exponential, in
practice it is common to use only a subset of
the full space. Formally, instead of )(x) we use
S(x) € Y(z), where S(x) is obtained by sampling
several translations. The probabilities P(g|x, )
are replaced with the P, which is renormalized
over the subset S:

P(ylz,0)*

>, P(yl|x,0)
y'e€S(z)

P(jlz,0,a) =

The hyperparameter « is used to control the
sharpness of the distribution.

B.2 Experimental setting

To choose the setting, we mostly relied on previ-
ous work (Shen et al., 2016; Edunov et al., 2018).
Model is pre-trained with the token-level objective
MLE and then fine-tuned with MRT; the fine-tuning
stage is approximately one epoch.

Candidate translations. The translations are
sampled using standard random sampling without
temperature. Following Shen et al. (2016), we take
the large number of candidates; specifically, we use
50 translations and add a reference to the subset.
While Edunov et al. (2018) report that adding the
reference to the set of candidates hurts quality, in
preliminary experiments we found that this was not
the case for our setting.

Measure of discrepancy. The measure of dis-
crepancy, A(7,y), is a negative smoothed sentence-
level BLEU.

Batch size. On average, the number of examples
(where an example is a translation pair along with
all candidates) is the same as in training of the
baseline models. This is achieved by accumulating
gradients for several steps and making an update.

Other parameters. Following (Wang and Sen-
nrich, 2020), we set a = 0.005 and the learning
rate to 0.00001.

C Additional results
C.1 Data Amount

When varying the amount of data, Figure 11 shows
changes in the influence of source tokens at differ-
ent positions to the whole output, Figure 12 — in
the entropy of target contributions.
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Figure 11: Contribution of source token at each posi-
tion to the whole target. The arrows show the direction
of change when increasing the amount of data.
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Figure 12: For each generation step, the figure shows
entropy of target contributions. The arrows show the di-
rection of change when increasing the amount of data.

C.2 Training Stages

Figure 13 shows how influence of source tokens
at different positions to the whole output changes
during training.

stage 1

stages 2, 3

Batches

1 5 10 15 20 25 1 5 10 15 20 25
source token position source token position

Figure 13: Changes in training: contribution of source
token at each position to the whole target. Each line
corresponds to a model state. The arrows show the di-
rection of change when the training progresses. In the
figures, all stages are shown, but the stages of interest
are highlighted more prominently.

D All results for LRP with o = 3 = %

Here we present all results from the main text eval-
vated witha = 3 = % in the redistribution rules of
af-LRP.

D.1 Getting Acquainted

Figures 14 and 15.
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Figure 14: (a) contribution of the whole source at each
generation step; (b) total contribution of source tokens
at each position to the whole target sentence; (c-d) for
each generation step, entropy of (c) source, (d) target
contributions.
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Figure 15: For each generation step, the figure shows
(a)-(b) contribution of source, (c)-(d) entropy of source
contributions.

D.2 Data Amount
Figures 16 and 17.

D.3 Training stages
Figures 18, 19 and 20.
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Figure 16: (a) contribution of the whole source at each
generation step (for clarity, the last two positions (punc-
tuation mark and the EOS token) are not shown.); (b)
contribution of source token at each position to the
whole target. The arrows show the direction of change
when increasing the amount of data.
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Figure 17: For each generation step, the figure shows
entropy of (a) source, (b) target contributions. The ar-
rows show the direction of change when increasing the
amount of data.
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Figure 18: Training process: (a) convergence of contri-
butions, (b) source contribution, (c-d) entropy of source
and target contributions. The model trained on 1m sub-
sample of WMT14 En-Fr dataset. The results are aver-
aged over target positions and evaluation examples.
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Figure 19: Changes in training for each target posi-
tion; each line corresponds to a model state. The ar-
rows show the direction of change when the training
progresses. In the figures, all stages are shown, but the
stages of interest are highlighted more prominently.

stages 2, 3

Batches
o 1k

o o o
N
~

1 5 10 15 17 1 5 10 15 17
source token position source token position
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Figure 20: Changes in training: contribution of source
token at each position to the whole target. Each line
corresponds to a model state. The arrows show the di-
rection of change when the training progresses. In the
figures, all stages are shown, but the stages of interest
are highlighted more prominently.
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