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Abstract

Computing precise evidences, namely mini-
mal sets of sentences that support or refute a
given claim, rather than larger evidences is cru-
cial in fact verification (FV), since larger ev-
idences may contain conflicting pieces some
of which support the claim while the other
refute, thereby misleading FV. Despite being
important, precise evidences are rarely stud-
ied by existing methods for FV. It is challeng-
ing to find precise evidences due to a large
search space with lots of local optimums. In-
spired by the strong exploration ability of the
deep Q-learning network (DQN), we propose a
DQN-based approach to retrieval of precise ev-
idences. In addition, to tackle the label bias on
Q-values computed by DQN, we design a post-
processing strategy which seeks best thresh-
olds for determining the true labels of com-
puted evidences. Experimental results confirm
the effectiveness of DQN in computing pre-
cise evidences and demonstrate improvements
in achieving accurate claim verification.1

1 Introduction

With the growing false information, such as fake
news, political deception and online rumors, auto-
matic fact-checking systems have emerged to auto-
matically identify and filter this information. Fact
verification (FV) is a special fact-checking task
that aims to retrieve related evidences from a text
corpus to verify a textual claim.

Taking Figure 1 as example, an existing method
for FV first retrieves related documents from the
given corpus at stage 1 (namely the document re-
trieval stage), then finds key sentences from the
documents at stage 2 (namely the sentence selec-
tion stage), and finally treats the set of key sen-
tences as an evidence to verify the claim at stage

∗Corresponding author
1Source code and data are available at https://

github.com/sysulic/DQN-FV.

Figure 1: The pipeline for FV on FEVER. Underlined
words in blue italics given in evidence provide key in-
formation to determine the truthfulness of the claim.
“SUPPORTS” / “REFUTES” / “NOT ENOUGH INFO”
indicates that the evidence can support / refute / is in-
sufficient for supporting or refuting the claim. Both the
evidence and label are output by FV.

3 (namely the claim verification stage). As can be
seen in this example, it is desirable to retrieve an
evidence consisting of the first two sentences only,
since it does not contain unnecessary sentences to
determine the truthfulness of the claim and can alle-
viate human efforts to further validate the evidence.
More importantly, an evidence containing unneces-
sary sentences may involve conflicting pieces some
of which support the claim while the other refute
the claim. Thus, it is crucial to compute minimal
sets of sentences that can determine the truthfulness
of the claim. In this paper, we refer to a minimal set
of sentences that supports or refutes a given claim
as a precise evidence.

Existing methods for FV do not target the re-
trieval of precise evidences. Most existing stud-
ies (Thorne et al., 2018b; Nie et al., 2019; Zhou
et al., 2019; Liu et al., 2020; Zhong et al., 2020;
Ye et al., 2020; Subramanian and Lee, 2020; Wang
et al., 2020) formulate FV as a three-stage pipeline

https://github.com/sysulic/DQN-FV
https://github.com/sysulic/DQN-FV
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task as illustrated in Figure 1. This way makes
the retrieval of precise evidences extremely diffi-
cult since the sentence selection stage is required
to select a precise set of relevant sentences rather
than a fixed number of sentences as in existing
methods. To the best of our knowledge, TwoWin-
gOS (Yin and Roth, 2018) is the only method by
now which does not follow the three-stage pipeline.
Instead, it exploits a supervised training scheme
to train the last two stages jointly and is able to
compute precise evidences. However, it exhibits a
significantly worse performance than other state-of-
the-art methods for FV, especially in terms of the
recall of evidences. Therefore, there is still a need
for designing new methods to compute precise ev-
idences. These methods are expected to achieve
better performance than TwoWingOS.

It is challenging to compute precise evidences.
On one hand, the search space for precise evi-
dences is very large. For example, in the bench-
mark Fact Extraction and VERification (FEVER)
dataset (Thorne et al., 2018b) the average num-
ber of sentences for each claim input to the sen-
tence selection stage is 40, and an output evidence
has up to 5 sentences. Hence there are up to∑5

i=1C
i
40 = 760, 098 candidates in the search

space. On the other hand, greedy search of pre-
cise evidences easily falls into a local optimum. As
shown in our experiments (see Table 6), a greedy
search method does not perform well.

Inspired by the strong exploration ability of the
Deep Q-learning Network (DQN) (Mnih et al.,
2015), we develop a DQN-based approach to re-
trieval of precise evidences. In this approach, we
first employ DQN to compute candidate pairs of
precise evidences and their labels, and then use a
post-processing strategy to refine candidate pairs.
We notice that Q-values computed by DQN has
label bias due to two reasons. On one hand, the
label “NOT ENOUGH INFO” does not locate at
the same concept level as “SUPPORTS” or “RE-
FUTES”. On the other hand, there is not a fixed
range for Q-values, making Q-values hard to accu-
rately estimate. Thus, a post-processing strategy
is needed to tackle the label bias on Q-values. We
develop such a strategy to seek best thresholds in
determining the true labels of computed evidences.

Our experimental results on FEVER (Thorne
et al., 2018b) confirm that our DQN-based ap-
proach is effective in finding precise evidences.
More importantly, the approach is shown to outper-

form state-of-the-art methods for FV.

2 Related Work

2.1 Fact Extraction and Claim Verification

The FEVER 1.0 shared task (Thorne et al., 2018b)
aims to develop an automatic fact verification
system to determine the truthfulness of a tex-
tual claim by extracting related evidences from
Wikipedia. Thorne et al. (2018a) has formalized
this task, released a large-scale benchmark dataset
FEVER (Thorne et al., 2018b), and designed the
three-stage pipeline framework for FV, which con-
sists of the document retrieval stage, the sentence
selection stage and the claim verification stage.
Most existing methods follow this framework and
mainly focus on the last stage (Liu et al., 2020).
For the document retrieval stage, most methods
reuse the document retrieval component of top-
performing systems (Hanselowski et al., 2018;
Yoneda et al., 2018; Nie et al., 2019). For the sen-
tence selection stage, there are three approaches
commonly used, including keyword matching, su-
pervised classification, and sentence similarity scor-
ing (Thorne et al., 2018b). For the claim verifica-
tion stage, most recent studies formulate this task
as a graph reasoning task (Zhou et al., 2019; Liu
et al., 2020; Ye et al., 2020; Zhong et al., 2020;
Subramanian and Lee, 2020; Wang et al., 2020).
Different from most existing methods that focus on
claim verification, Yin and Roth (2018) proposed a
supervised training method named TwoWingOS to
jointly conduct sentence selection and claim verifi-
cation.

Nowadays pre-trained language models like
BERT (Devlin et al., 2019) have been widely used
in claim verification (Li et al., 2019; Zhou et al.,
2019; Soleimani et al., 2020). Following this way
we employed RoBERTa (Liu et al., 2019), an en-
hanced version of BERT, as the sentence encoder
in our DQN-based approach in experiments.

2.2 Deep Q-learning Network

Reinforcement learning (RL) is about an agent in-
teracting with the environment, objective to max-
imize the cumulative rewards of a sequence of
states and actions by adjusting its policies. Q-
Learning (Mnih et al., 2015) is a popular reinforce-
ment learning technique. It aims to approximate
the optimal value function Q∗(o, a) to measure the
expected long-term rewards for a given pair of state
o and action a. Deep Q-learning Network (DQN)



1032

(Mnih et al., 2015) is a combination of deep learn-
ing and Q-Learning. It typically uses the following
Equation (1) derived from the Bellman equation
(Cao and ZhiMin, 2019) to approximate the opti-
mal Q-value function:

Q(o(t), a(t)) = Eo(t+1) [r(t)+λmax
a′

Q(o(t+1), a′)],

(1)
where o(t), a(t), r(t) respectively denote the state,
action and reward at step t, and λ ∈ [0, 1] is a
discounted factor for future rewards.

3 Approach

3.1 Problem Setting
Given a set of candidate sentences S = {s1, s2,
. . .}, a claim c, a set of precise evidences E ⊂ 2S ,
and a true label y ∈ Y = {T,F,N} that deter-
mines whether every precise evidence supports or
refutes the claim, where T/F/N denotes “SUP-
PORTS”/“REFUTES”/“NOT ENOUGH INFO”,
we aim to train a model to predict a precise evi-
dence; more precisely, to train a model for retriev-
ing an evidence Ê ⊂ S and predicting a label
ŷ ∈ Y such that ŷ = y and Ê = E for some
E ∈ E . This goal is different from the goal tar-
geted by existing methods, which aim to retrieve
an evidence Ê ⊂ S and predict a label ŷ ∈ Y such
that ŷ = y and E ⊆ Ê for some E ∈ E .

We define the four ingredients of DQN namely
states, actions, transitions and rewards as follows:

• State. A state o is a tuple (c, Ê, ŷ) for c a
claim, Ê a set of sentences and ŷ a label.

• Action. An action a is a sentence in S.

• Transition. A transition at step t is a tuple
(o(t), a(t), o(t+1)), where o(t) = (c, Ê(t), ŷ),
o(t+1) = (c, Ê(t+1), ŷ) and Ê(t+1) = Ê(t) ∪
{a(t)}.

• Reward. The reward r for a transition
(o(t), a(t), o(t+1)) is defined as

r(t)=


1, ŷ=y∧(y=N∨∃E ∈ E :a(t)∈E)

−1, ŷ 6=y∧|Ê(t+1)|=K
0, otherwise

(2)
where the numberK is a hyper-parameter, and
|S| denotes the cardinality of a set S.

3.2 The DQN-based Model
The core of our proposed approach is the DQN-
based model, illustrated in Figure 2.

3.2.1 Sentence Encoding Module

We employ RoBERTa in this module to extract the
final hidden state of 〈s〉 as the sentence representa-
tion, where 〈s〉 and 〈/s〉 mentioned in the following
are the special classification tokens in RoBERTa.
Specifically, following KGAT (Liu et al., 2020),
we first concatenate the claim c, the document
title l, and a sentence s (resp. an action a) as
“〈s〉c〈/s〉l〈/s〉s〈/s〉” (resp. “〈s〉c〈/s〉l〈/s〉a〈/s〉”) and
then feed it into RoBERTa to obtain the sentence
representation hs ∈ Rd0 (resp. the action represen-
tation ha ∈ Rd0), where d0 is the dimension of the
representation. We also feed the claim “〈s〉c〈/s〉”
alone to obtain the claim representation hc ∈ Rd0 .

3.2.2 Evidence Encoding Module

This module is used to get an aggregated evidence
representation. It consists of two sub-modules.
Context sub-module. It is obvious that the sen-
tences in an evidence are always contextual depen-
dent, so we apply two different networks BiLSTM
(Nguyen et al., 2016) and Transformer (Vaswani
et al., 2017) for comparison. These two different
networks are widely used to encode contextual-
aware information of sequential text in the NLP
community. Formally, we either define

[h′
Ê0
, . . . ,h′

Ê|Ê|−1

] = BiLSTM(ha, HÊ) (3)

if the BiLSTM network is used, or define

[h′
Ê0
, . . . ,h′

Ê|Ê|−1

] = Transformer(ha, HÊ) (4)

if the Transformer is used, where HÊ = [hÊ0
, . . . ,

hÊ|Ê|−1
], hÊi

∈ Rd0 is the i-th sentence repre-

sentation in Ê, h′
Êi
∈ Rd1 is the corresponding

context-aware sentence representation in Ê, and d1
is the dimension of the representation.
Aggregation sub-module. This sub-module is
used to fuse the sentence representations in evi-
dences to obtain an aggregated evidence represen-
tation. We also apply two different networks in this
sub-module: Transformer and attention. Unlike
the Transformer with self-attention in the first sub-
module, the query in this sub-module is the claim
and the key/value is the context-aware sentence
representation from the first sub-module. For the
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Figure 2: The architecture of the DQN-based model. The input is a state and an action, and the output is the Q-
value of each label. The sentence encoding module is used to compute the sentence representation. The evidence
encoding module is used to compute the evidence representation. The value module is used to predict the Q-value
for each label.

attention network, we define

e =

|Ê|−1∑
i=0

αi · h′i (5)

αi =
exp(MLP([hc;h

′
i]))

|Ê|−1∑
j=0

exp(MLP([hc;h
′
j ]))

(6)

where e ∈ Rd1 is the aggregated evidence repre-
sentation, MLP(·) = Linear(ReLU(Linear(·))) is
a two-layer fully connected network using recti-
fied linear unit as the activation function, and [; ]
denotes the concatenation of two vectors.

3.2.3 Value Module
This module is used to obtain the Q-value vector
for all labels, simply written as Q(o, a; θ) for θ
denoting the set of learnable parameters, which is
formally defined as

Q(o, a; θ) = MLP([hcW; e]) (7)

where MLP(·) = Linear(ReLU(Linear(·))) is sim-
ilar to MLP(·) used in Equation (6) except that
different parameters in linear layers are used, W ∈
Rd0×d0 is a learnable matrix, and Q(o, a; θ) ∈ Rd2

for d2 the number of different labels.

3.3 Objective Function

Given a transition (o(t), a(t), o(t+1)) and its reward
r(t), we use the Double Deep Q-learning Network
(DDQN) (Mnih et al., 2015) technique to train our

model through the temporal difference error (Mnih
et al., 2015). This error δ is formally defined as

δ = Qŷ(o
(t), a(t); θ)− v(o(t+1), r(t)) (8)

where v(·) denotes the target value defined as

v(o, r) =

{
r, if |Ê|=K
r+λQ̂ŷ(o, a

∗; θ̂) otherwise
(9)

for a∗ = argmax
a∈S\Ê

Qŷ(o, a; θ).

In the above equation, Q̂(·; θ̂) is the target net-
work in DDQN, Qŷ denotes the Q-value of ŷ for
ŷ the predicted label in o, Ê is the predicted ev-
idence in o, and λ ∈ [0, 1] is a hyper-parameter
representing the discount factor.

We use the Huber loss to minimise δ:

L =
1

|B|
∑

((o(t),a(t),o(t+1)),r(t))∈B

L(δ) (10)

L(δ) =


1

2
δ2 if |δ| ≤ 1

|δ| − 1

2
otherwise

(11)

where B is a batch of transition-reward pairs.

3.4 Algorithms
3.4.1 Model Training
Algorithm 1 shows how to train the DQN-based
model. First, we initialize three replay memories,
the DQN-based model, and the target network in
Line 1-3. Then, in Line 9-17, we obtain the training
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Algorithm 1: Model training for DQN,
where the memory capacity M , the max-
imum evidence size K, the maximum num-
ber of epochs T and the reset interval C are
hyper-parameters.

1 initialize a replay memory with a capacity M for each
label: Rŷ = ∅, ∀ŷ ∈ {T,F,N}.

2 initialize DQN Q(o, a; θ) with random weights θ.
3 initialize the target network Q̂(o, a; θ̂) with θ̂ = θ.
4 for e = 1→ T do
5 shuffle the training set D.
6 foreach (c, y, E , S) ∈ D do
7 initialize one state for each label:

o
(0)
ŷ = (c, Ê(0), ŷ), ∀ŷ ∈ {T,F,N},

where Ê(0) = ∅.
8 for t = 0→ K − 1 do
9 foreach ŷ ∈ {T,F,N} do

10 if random() < ε-greedy then
11 a(t) =

random select(S \ Ê(t)),
where Ê(t) comes from o

(t)
ŷ .

12 else
13 a(t) =

argmax
a∈S\Ê(t)

Qŷ(o
(t)
ŷ , a; θ),

where Q(·) is defined in
Eq. (7) and Qŷ denotes the
Q-value of ŷ.

14 end
15 o

(t+1)
ŷ = (c, Ê(t+1), ŷ), where
Ê(t+1) = Ê(t) ∪ {a(t)} and
Ê(t) comes from o

(t)
ŷ .

16 calculate r(t) based on Eq. (2).
17 store ((o

(t)
ŷ , a(t), o

(t+1)
ŷ ), r(t))

into Ry .
18 end
19 sample a mini-batch of

transition-reward pairs from RT, RF,
RN and update Q(o, a; θ) based on
Eq. (8)–(11).

20 for every C steps reset the target
network Q̂(o, a; θ̂) by θ̂ = θ.

21 endfor
22 end
23 endfor
24 return Q(o, a; θ)

transition-reward pairs by letting the DQN-based
model interact with the environment in an ε-greedy
exploration-exploitation way (Mnih et al., 2015).
Finally, in Line 19, we sample a mini-batch of
transition-reward pairs to update the DQN-based
model, while in Line 20, for every C steps we reset
the target network to the DQN-based model.

3.4.2 Candidate Retrieval
Algorithm 2 shows how to retrieve a pair (candi-
date list, score list) for each label, where the can-

Algorithm 2: Candidate retrieval for a
claim c from a set S of sentences, where K
is the maximum evidence size.

1 initialize Êŷ = [], qŷ = [], ∀ŷ ∈ {T,F,N}.
2 initialize one state for each label:

o
(0)
ŷ = (c, Ê(0), ŷ),∀ŷ ∈ {T,F,N}, where
Ê(0) = ∅.

3 for t = 0→ K − 1 do
4 foreach ŷ ∈ {T,F,N} do
5 a(t) = argmax

a∈S\Ê(t)

Qŷ(o
(t)
ŷ , a; θ)

6 q(t) = Qŷ(o
(t)
ŷ , a(t))

7 o
(t+1)
ŷ = (c, Ê(t+1), ŷ), where
Ê(t+1) = Ê(t) ∪ {a(t)} and Ê(t) comes
from o

(t)
ŷ .

8 store Ê(t+1) into Êŷ and q(t) into qŷ .
9 end

10 endfor
11 return

{
(Êŷ, qŷ)

}
ŷ∈{T,F,N}

Algorithm 3: Making final prediction from{
(〈Ê(1)

ŷ , . . . ,Ê
(K)
ŷ 〉,〈q(0)ŷ , . . . ,q

(K−1)
ŷ 〉)

}
ŷ∈{T,F,N}

,

using thresholds αT, αF, αN for different
labels.

1 let ty = argmax
0≤t≤K−1

q(t)y ,∀y ∈ {T,F,N}.

2 let Ê = Ê
(tŷ+1)

ŷ , where ŷ = argmax
y∈{T,F}

q
(ty)
y .

3 if q(tN)
N > max{q(tT)T , q

(tF)
F } and

min
0≤t≤K−1

q
(t)
N − max

ŷ∈{T,F}
q
(tŷ)

ŷ > αN then

4 ŷ′ = N
5 else if q(tT)T > q

(tF)
F then

6 if q(tT)T − max
ŷ∈{F,N}

q
(tT)
ŷ > αT then ŷ′ = T ;

7 else ŷ′ = N ;
8 else
9 if q(tF)F − max

ŷ∈{T,N}
q
(tF)
ŷ > αF then ŷ′ = F ;

10 else ŷ′ = N ;
11 end
12 return (Ê, ŷ′)

didate list stores progressively enlarged sentence
sets, where each sentence set is a candidate of the
predicted evidence, and the score list stores the
strengths that the corresponding candidates support
the label. We enlarge the two-list pair for each label
through a greedy-search way (Line 3-10). Specifi-
cally, for each label, we first select the action with
the largest Q-value (Line 5), then update the state
by adding the chosen action into its predicted ev-
idence (Line 7), and finally add the evidence and
score into the corresponding list (Line 8).
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Algorithm 4: Searching for best thresholds,
where min qŷ is short for mint q

(t)
ŷ and

max qŷ for maxt q
(t)
ŷ , for all ŷ ∈ {T,F,N}.

1 construct V = {(qT, qF, qN, y)} from the
development set by Algorithm 2.

2 initialize Cŷ = Lŷ = L′ŷ = [], ∀ŷ ∈ {T,F,N}.
3 foreach (qT, qF, qN, y) ∈ V do
4 if max qN > max{max qT,max qF} then
5 v = min qN −max{max qT,max qF}
6 store v into LN and (v, y) into CN.
7 end
8 end
9 sort LN in ascending order.

10 calculate the medians of adjacent values in LN and
store them into L′N.

11 αN = argmax
α∈L′

N

∑
(v,y)∈CN

1((v > α ∧ y = N) ∨ (v ≤

α ∧ y 6= N))
12 foreach (qT, qF, qN, y) ∈ V do
13 if max qN ≤ max{max qT,max qF} or

min qN −max{max qT,max qF} ≤ αN then
14 tŷ = argmax

t
q
(t)
ŷ , ∀ŷ ∈ {T,F}

15 if q(tT)T > q
(tF)
F then

16 v = q
(tT)
T −max{q(tT)F , q

(tT)
N }

17 store v into LT and (v, y) into CT.
18 else
19 v = q

(tF)
F −max{q(tF)T , q

(tF)
N }

20 store v into LF and (v, y) into CF.
21 end
22 end
23 end
24 foreach ŷ ∈ {T,F} do
25 sort Lŷ in ascending order.
26 calculate the medians of adjacent values in Lŷ

and store them into L′ŷ .
27 αŷ = argmax

α∈L′
ŷ

∑
(v,y)∈Cŷ

1(v > α ∧ y =

ŷ)− 1(v > α ∧ y = N)
28 end
29 return (αT, αF, αN)

3.4.3 Final Prediction

Algorithm 3 shows how to compute the target
evidence-label pair from the (candidate list, score
list) pairs obtained by Algorithm 2, where the
thresholds are determined by Algorithm 4. In this
algorithm, we first use the condition given by Al-
gorithm 4 to predict N (Line 3), and then refine the
prediction of T (Line 6) and F (Line 9) in turn. In
Line 2, we focus on the evidences with the highest
score for T and F, while we ignore the evidence
for N, due to the following reasons: (1) there are
no supporting sentences in the evidence for N; (2)
we follow a strategy commonly used in existing
methods for FV, i.e., focusing only on the evidence
for T and F.

Split SUPPORTS REFUTES NEI

Train 80,035 29,775 35,639

Dev 6,666 6,666 6,666

Test 6,666 6,666 6,666

Table 1: Dataset statistics for FEVER

3.4.4 Threshold Searching
Algorithm 4 shows how to search for the best
thresholds (αT, αF, αN) to maximize the Label
Accuracy (LA) over the development set. We
first call Algorithm 2 to construct a set of tu-
ples (qT, qF, qN, y) from the development set, each
of which corresponds to a development instance,
where qT, qF and qN are respectively the output
score lists for the three labels T, F and N, and y is
the corresponding true label (Line 1). We then go
through the following two stages. The first stage
(Line 3-11) finds a threshold αN that can maximize
LA for label N, where maximizing LA is amount to
maximizing the difference between the number of
correctly and incorrectly predicted instances. The
second stage (Line 12-28) finds the thresholds αT
and αF that can maximize LA for label T and F,
respectively, where those instances that satisfy the
conditions for N are neglected (Line 13).

4 Experiments

4.1 Experimental setting
4.1.1 Dataset
Our experiments are conducted on the large-scale
benchmark dataset FEVER (Thorne et al., 2018a),
which consists of 185,455 annotated claims with a
set of 5,416,537 Wikipedia documents from the
June 2017 Wikipedia dump. All claims are la-
beled as “SUPPORTS”, “REFUTES”, or “NOT
ENOUGH INFO”. What’s more, each claim for
“SUPPORTS” and “REFUTES” is accompanied by
some evidences extracted from Wikipedia docu-
ments. The dataset partition is kept the same with
Thorne et al. (2018b) as shown in Table 1.

4.1.2 Evaluation Metrics
The task has five evaluation metrics: 1) FEVER, the
primary scoring metric that measures the accuracy
of claim verification with a requirement that the
predicted evidences fully covers the ground-true
evidences for SUPPORTS and REFUTES claims;
2) Label Accuracy (LA), the accuracy of claim
verification without considering the validity of the
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Method αT αF αN

T-T -1.23361155390739 -1.26671668887138 0.0153777748346328

T-A -0.0631487071514129 0.0747150778770446 -1.48811344802379

BiLSTM-T 0.184351719915866 -0.64785711467266 -0.465365642681717

BiLSTM-A -0.0904324240982532 -0.795884847640991 -0.403448916971683

Table 2: The thresholds determined by Algo-
rithm 4. T-T, T-A, BiLSTM-T, and BiLSTM-A de-
note the architectures of the evidence encoding mod-
ule, which are respectively Transformer-Transformer,
Transformer-Attention, BiLSTM-Transformer, and
BiLSTM-Attention.

predicted evidences; 3) Precision (Pre), the macro-
precision of the evidences for SUPPORTS and RE-
FUTES claims; 4) Recall, the macro-recall of the
evidences for SUPPORTS and REFUTES claims;
5) F1, the F1-score of the evidences for SUPPORTS
and REFUTES claims. We choose F1 as our main
metric because it can directly show the perfor-
mance of methods on retrieval of precise evidences.

4.1.3 Implementation Details
Document retrieval. The document retrieval stage
is kept the same as previous work (Hanselowski
et al., 2018; Zhou et al., 2019; Liu et al., 2020; Ye
et al., 2020). Given a claim, the method first utilizes
the constituency parser from AllenNLP (Gardner
et al., 2018) to extract potential entities from the
claim. Then it uses the entities as search queries
to find the relevant documents via the online Me-
diaWiki API2. The convinced articles are reserved
(Hanselowski et al., 2018).
Sentence selection and claim verification. We
implement our DQN-based model with PyTorch
and train it with the AdamW (Loshchilov and Hut-
ter, 2019) optimizer while keeping the sentence en-
coding module frozen and inheriting the RoBERTa
implementation from Wolf et al. (2020)3. Specif-
ically, the learning rate is 5e-6, the batch size is
128, the training epochs is 30, the iteration steps
(or largest evidence size, i.e., K) is 5, the discount
factor λ is 0.95, and the layer number of the con-
text sub-module is 3. Prioritized experience replay
memory (Schaul et al., 2016) with a capacity of
10,000 is used to store transitions. The target net-
work is reset when DQN is updated every 10 times.
The probability of ε-greedy policy starts at 0.9 and
decays exponentially towards 0.05, and the rate of
the decay is 1

2000 . Table 2 shows the thresholds

2https://www.mediawiki.org/wiki/API:
Main_page

3https://github.com/huggingface/
pytorch-transformers

αT, αF and αN computed by Algorithm 4. All ex-
periments were conducted on an NVIDIA GTX
2080ti 10GB GPU.

4.1.4 Baselines
We compare our method with the following base-
lines, including six methods that focus on claim
verification and one joint method TwoWingOS
(Yin and Roth, 2018). The six methods include:
(1) GEAR (Zhou et al., 2019) uses two kinds of
attentions to conduct reasoning and aggregation
in a graph model; (2) KGAT (Liu et al., 2020)
employes the Kernel Graph Attention Network to
capture fine-grained information over evidences
for more accurate claim verification; (3) DREAM
(Zhong et al., 2020) introduces semantic structures
for evidences obtained by semantic role labeling
in claim verification; (4) CorefBERT (Ye et al.,
2020) extends KGAT and can explicitly model
co-reference relationship in context; (5) HESM
(Subramanian and Lee, 2020) is a framework that
can encode and attend the claim and evidence sets
at different levels of hierarchy; (6) DGAT (Wang
et al., 2020) is a double graph attention network
that performs well in multi-domain datasets. The
join method TwoWingOS (Yin and Roth, 2018)
exploits a two-wing optimization strategy that opti-
mizes sentence selection and claim verification in
a jointly supervised training scheme.

4.2 Results and Analysis

As shown in Table 3, we implement four versions
of the evidence encoding module and evaluate them
on the DEV set and the blind TEST set. The
FEVER metric of the top six methods is calculated
with the imprecise evidences, so we introduce the
FEVER@5 metric for a fair comparison. We ana-
lyze our method from the following four aspects.
Comparison with the state-of-the-art methods.
Results in Table 3 show that all versions (except
BiLSTM-A) with post-processing significantly out-
perform the state-of-the-art methods on FEVER,
Pre, and F1, especially for T-A on F1, which shows
the superiority of our method in retrival of pre-
cise evidences. However, none of the four ver-
sions of our method can achieve the best result on
FEVER@5, LA, and Recall. The reason for low
recall is that the number of sentences in precise
evidences is less than that in imprecise evidences,
which means other methods have a higher proba-
bility to recall the ground-true evidences than ours.
Besides, the relatively low LA is caused by the

https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Main_page
https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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Method DEV TEST
FEVER@5 FEVER LA Pre Recall F1 FEVER@5 FEVER LA Pre Recall F1

GEAR 70.69 - 74.84 24.08 86.72 37.69 67.10 - 71.60 - - 36.87
KGAT 76.11 - 78.29 27.79 94.37 42.34 70.38 - 74.07 25.21 87.47 39.14
DREAM - - - 26.60 87.33 40.79 70.60 - 76.85 25.63 85.57 39.45
CorefBERT - - - - - - 71.80 - - - - 39.14
HESM 73.44 - 75.77 - - - 71.48 - 74.64 - - 52.78
DGAT - - - - - - 66.91 - 71.79 - - -

TwoWingOS - 56.16 78.90 47.73 53.81 50.59 - 54.33 75.99 44.68 49.91 47.15

Ours

T-T 72.83 71.55 78.18 50.42 81.82 62.39 70.16 68.91 75.74 48.76 79.91 60.56(w./o.) 72.90 70.00 74.87 70.43 68.23 73.13

T-A 73.32 72.79 78.35 54.75 79.92 64.98 70.81 70.28 76.14 52.24 77.93 62.55(w./o.) 73.29 72.60 78.12 70.82 70.18 76.00

BiLSTM-T 73.15 63.77 73.91 48.06 71.06 57.34 70.54 61.51 70.20 45.97 69.43 55.32(w./o.) 73.19 55.39 63.55 70.81 53.21 61.68

BiLSTM-A 72.99 70.88 77.79 35.50 76.54 48.50 70.11 68.21 75.53 33.76 74.50 46.46(w./o.) 73.20 65.65 71.21 70.55 63.38 69.32

Table 3: Performance on DEV set and blind TEST set of FEVER (%). FEVER@5 and FEVER are computed
based on imprecise and precise evidences, repectively. The result obtained with/without post-processing (namely
threshold searching and final prediction) is displayed in each architecture’s first/second row (“w.”/“o.”). We directly
output the evidence with the highest score in the candidate list and its corresponding label if post-processing is not
performed. Pre, Recall, and F1 keep unchanged because they are not affected by the post-processing. ‘-’ denotes
a missing value.

# T-T T-A BiLSTM-T BiLSTM-A KGAT

LA 78.18 78.35 73.91 77.79 78.29
LA* 82.82 82.48 84.93 83.95 79.08

Table 4: Comparison between our method and KGAT
on LA (%). LA and LA* are respectively evaluated on
the DEV set and its subset constructed by selecting the
samples where the ground-true evidences are success-
fully recalled.

Method Avg. Std.

Three-stage pipeline 4.00 0.07
Our method (T-A) 1.07 0.89

Table 5: Comparison of the number of unnecessary sen-
tences in predicted evidences.

low Recall of precise evidences. To further clarify
this point, we evaluate our method on a subset of
the DEV set where the ground-true evidences are
recalled successfully. Our method improves signif-
icantly the performance on this subset, as shown in
Table 4, which justifies our point of view. FEVER
is affected by the LA and Recall, thereby the low
FEVER@5 is also due to the low recall of precise
evidences. In addition, the results reported in Ta-
ble 5 show that our method can significantly reduce
the number of unnecessary sentences in a predicted
evidence.
Comparison between different versions. As
shown in Table 3, T-T and T-A perform respec-
tively better than BiLSTM-T and BiLSTM-A on
almost all metrics except that T-T is slightly worse

width FEVER@5 FEVER LA Pre Recall F1

1 60.73 54.91 72.69 52.76 58.57 55.51(w./o.) 50.09 46.55 53.00

2 60.74 54.94 72.69 52.84 58.66 55.59(w./o.) 50.09 46.53 53.00

3 60.70 54.96 72.69 52.84 58.67 55.60(w./o.) 50.10 46.54 53.00

4 60.67 54.95 72.69 52.81 58.66 55.58(w./o.) 50.09 46.54 53.00

5 60.68 54.95 72.69 52.84 58.68 55.61(w./o.) 50.09 46.54 53.00

Table 6: The beam-search result of KGAT on the DEV
set (%). The width (k) means to select the top-k results
at each search step. The result obtained with/without
post-processing (namely threshold searching and final
prediction) is displayed in each width’s first/second row
(“w.”/“o.”). We employed the KGAT source code re-
leased by Liu et al. (2020) to implement beam-search
for finding precise evidences and the evaluation data for
KGAT was kept the same as ours.

than BiLSTM-A on FEVER@5, which suggests
Transformer can encode better context-aware repre-
sentations than BiLSTM in our context sub-module.
Moreover, we find that T-A performs better than
T-T on almost all metrics except Recall and that
BiLSTM-A is worse than BiLSTM-T on Pre and
F1. This contrary result shows that the performance
of the aggregation sub-module is impacted by the
context sub-module. Thus, the choice between
Transformer and Attention should depend on the
context sub-module. Overall, T-A achieves the best
performance among all the four versions of our
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# label claim ground-true evidences predicted evidences
GEAR KGAT Our method (T-A)

1 F
Savages was exclusively

a German film.

(Savages(2012 film), 3) (Savages(2012 film), 3) (Savages(2012 film), 3) (Savages(2012 film), 3)
(Savages(band), 0) (Savages(2012 film), 6)

(Savages(2012 film), 6) (Savages(2012 film), 0)
(Savages(band), 2) (Savages(band), 5)
(Savages(band), 4) (Savages(band), 0)

2 T
Ed Gein murdered people

around Plainfield, Wisconsin.

(Ed Gein, 2) (Ed Gein, 1) (Ed Gein, 1) (Ed Gein, 2)
(Ed Gein, 1) (Ed Gein, 0) (Ed Gein, 2) (Ed Gein, 1)

(Ed Gein, 6) (Ed Gein, 0)
(Ed Gein, 2) (Ed Gein(band), 2)
(Ed Gein, 5) (Ed Gein, 4)

3 T
Marnie is a film that was

created in the United States.

(Marnie(film), 0) (Marnie(film), 0) (Marnie(film), 0) (Marnie(film), 0)
(Marnie, 0) (Marnie, 0) (Marnie(film), 5)

(Marnie(film), 2) (Marnie(film), 2)
(Marnie(film), 6) (Marnie(film), 6)

(Marnie(dis...tion), 12) (Marnie(film), 5)

4 F
First Motion Picture Unit

produced zero films.

(First ... Unit, 1) (First ... Unit, 0) (First ... Unit, 1) (First ... Unit, 1)
(First ... Unit, 4) (First ... Unit, 4) (First ... Unit, 4) (First ... Unit, 4)
(First ... Unit, 0) (First ... Unit, 1) (First ... Unit, 0) (First ... Unit, 0)

(Zero(2016 film), 0) (First ... Unit, 2) (First ... Unit, 2)
(First ... Unit, 8) (Zero(2016 film), 0)

Table 7: Cases in FEVER. We list the predicted evidences of GEAR, KGAT and our method. (title, i) de-
notes the i-th sentence in the corresponding wiki document. In predicted evidences, the sentences highlighted
in blue bold italics and underline are sentences in the target evidence while others in black are unnecessary ones.

proposed method.
Comparison on retrieval of precise evidences.
TwoWingOS is a supervised-learning method that
can also find precise evidences. Although it
achieves slightly better performance on LA than
ours, its F1 and other metrics are much worse, in-
dicating that it performs worse than our method
except for BiLSTM-A in retrieval of precise-
evidences. We also enhance KGAT to conduct
beam-search for finding precise evidences and re-
port the results in Table 6. The F1 score of KGAT
is always higher than TwoWingOS but is still lower
than our method except for BiLSTM-A.
Comparison between the methods with and
without post-processing. It can be seen from Ta-
ble 3 and Table 6 that, post-processing (namely
threshold searching and final prediction from can-
didates) consistently improves FEVER and LA. Al-
though with post-processing, our method (except
T-A) achieves slightly lower scores on FEVER@5,
KGAT still achieves significantly higher scores on
FEVER@5 as on other metrics. These results show
that post processing is very important in retrieval
of precise evidences.

4.3 Case Study

In Table 7 we provide some cases to demonstrate
the effectiveness of our method (T-A) in retriev-
ing precise evidences. In case#1 and case#2, our
method exactly finds ground-true evidences with-
out introducing any unnecessary sentence, while

GEAT and KGAT cannot. In case#3 and case#4,
our method generates less unnessary sentences in
prdicted evidents than GEAT and KGAT do.

5 Conclusion and Future Work

In this paper, we have proposed a novel DQN-based
approach to finding precise evidences for fact veri-
fication. It provides a method to solve the precise-
evidence problem by first employing a DQN to
compute some candidates and then introducing a
post-processing strategy to extract the target evi-
dence and its label from the candidates. Exper-
imental results show that the approach achieves
state-of-the-art performance in terms of retrieval
of precise evidences. Besides, to the best of our
knowledge, it is the first attempt to employ DQN
in the fact verification task.

Future work will incorporate external knowledge
into our approach to improve the retrieval recall.
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