Robust Knowledge Graph Completion with Stacked Convolutions and a
Student Re-Ranking Network

Justin Lovelace!
Jill Fain Lehman*

Denis Newman-Griffis?
Carolyn Penstein Rosé!

Shikhar Vashishth?*

Language Technologies Institute, Carnegie Mellon University, USA
?Department of Biomedical Informatics, University of Pittsburgh, USA
SMicrosoft Research,

“Human-Computer Interaction Institute, Carnegie Mellon University, USA

{jlovelac, jfl, cpa3}@cs.cmu.edu,dnewmangriffis@pitt.edu

t-svashishth@microsoft.com

Abstract

Knowledge Graph (KG) completion research
usually focuses on densely connected bench-
mark datasets that are not representative of
real KGs. We curate two KG datasets that
include biomedical and encyclopedic knowl-
edge and use an existing commonsense KG
dataset to explore KG completion in the more
realistic setting where dense connectivity is
not guaranteed. We develop a deep convolu-
tional network that utilizes textual entity rep-
resentations and demonstrate that our model
outperforms recent KG completion methods
in this challenging setting. We find that our
model’s performance improvements stem pri-
marily from its robustness to sparsity. We then
distill the knowledge from the convolutional
network into a student network that re-ranks
promising candidate entities. This re-ranking
stage leads to further improvements in perfor-
mance and demonstrates the effectiveness of
entity re-ranking for KG completion.'

1 Introduction

Knowledge graphs (KGs) have been shown to be
useful for a wide range of NLP tasks, such as ques-
tion answering (Bordes et al., 2014a,b), dialog sys-
tems (Ma et al., 2015), relation extraction (Mintz
et al., 2009; Vashishth et al., 2018), and recom-
mender systems (Zhang et al., 2016). However,
because scaling the collection of facts to provide
coverage for all the true relations that hold between
entities is difficult, most existing KGs are incom-
plete (Dong et al., 2014), limiting their utility for
downstream applications. Because of this problem,
KG completion (KGC) has come to be a widely
studied task (Yang et al., 2015; Trouillon et al.,
2016; Shang et al., 2018; Dettmers et al., 2018;

* Work performed while at Carnegie Mellon University.
'nttps://github.com/justinlovelace/
robust-kg-completion

Sun et al., 2019; Balazevic et al., 2019; Malaviya
et al., 2020; Vashishth et al., 2020a).

The increased interest in KGC has led to the
curation of a number of benchmark datasets such as
FBI15K (Bordes et al., 2013), WN18 (Bordes et al.,
2013), FB15k-237 (Toutanova and Chen, 2015),
and YAGO3-10 (Rebele et al., 2016) that have been
the focus of most of the work in this area. However,
these benchmark datasets are often curated in such
a way as to produce densely connected networks
that simplify the task and are not representative
of real KGs. For instance, FB15K includes only
entities with at least 100 links in Freebase, while
YAGO3-10 is limited to only include entities in
YAGO3 (Rebele et al., 2016) that have at least 10
relations.

Real KGs are not as uniformly dense as these
benchmark datasets and have many sparsely con-
nected entities (Pujara et al., 2017). This can pose
a challenge to typical KGC methods that learn en-
tity representations solely from the knowledge that
already exists in the graph.

Textual entity identifiers can be used to develop
entity embeddings that are more robust to sparsity
(Malaviya et al., 2020). It has also been shown
that textual triplet representations can be used with
BERT for triplet classification (Yao et al., 2019).
Such an approach can be extended to the more
common ranking paradigm through the exhaustive
evaluation of candidate triples, but that does not
scale to large KG datasets.

In our work, we found that existing neural KGC
models lack the complexity to effectively fit the
training data when used with the pre-trained tex-
tual embeddings that are necessary for representing
sparsely connected entities. We develop an ex-
pressive deep convolutional model that utilizes tex-
tual entity representations more effectively and im-
proves sparse KGC. We also develop a student re-
ranking model that is trained using knowledge dis-

1016

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 1016-1029
August 1-6, 2021. ©2021 Association for Computational Linguistics

https://github.com/justinlovelace/robust-kg-completion
https://github.com/justinlovelace/robust-kg-completion

tilled from our original ranking model and demon-
strate that the re-ranking procedure is particularly
effective for sparsely connected entities. Through
these innovations, we develop a KGC pipeline that
is more robust to the realities of real KGs. Our
contributions can be summarized as follows.

* We develop a deep convolutional architecture that
utilizes textual embeddings more effectively than
existing neural KGC models and significantly
improves performance for sparse KGC.

* We develop a re-ranking procedure that distills
knowledge from our ranking model into a stu-
dent network that re-ranks promising candidate
entities.

* We curate two sparse KG datasets containing
biomedical and encyclopedic knowledge to study
KGC in the setting where dense connectivity is
not guaranteed. We release the encyclopedic
dataset and the code to derive the biomedical
dataset to encourage future work.

2 Related Work

Knowledge Graph Completion: KGC mod-
els typically learn entity and relation embeddings
based on known facts (Nickel et al., 2011; Bordes
et al., 2013; Yang et al., 2015) and use the learned
embeddings to score potential candidate triples. Re-
cent work includes both non-neural (Nickel et al.,
2016; Trouillon et al., 2016; Liu et al., 2017; Sun
et al., 2019) and neural (Socher et al., 2013; Dong
et al., 2014; Dettmers et al., 2018; Vashishth et al.,
2020b) approaches for embedding KGs. However,
most of them only demonstrate their efficacy on
artificially dense benchmark datasets. Pujara et al.
(2017) show that the performance of such methods
varies drastically with sparse, unreliable data. We
compare our proposed method against the existing
approaches in a realistic setting where the KG is
not uniformly dense.

Prior work has effectively utilized entity names
or descriptions to aid KGC (Socher et al., 2013;
Ruobing Xie, 2016; Xiao et al., 2016). In more
recent work, Malaviya et al. (2020) explore the
problem of KGC using commonsense KGs, which
are much sparser than standard benchmark datasets.
They adapt an existing KGC model to utilize BERT
(Devlin et al., 2019) embeddings. In this paper,
we develop a deep convoluational architecture that
is more effective than adapting existing shallow
models which we find to be underpowerered for
large KG datasets.

Yao et al. (2019) developed a triplet classifica-
tion model by directly fine-tuning BERT with tex-
tual entity representations and reported strong clas-
sification results. They also adapted their triplet
classification model to the ranking paradigm by
exhaustively evaluating all possible triples for a
given query, (e1,r, 7). However, the ranking per-
formance was not competitive’, and such an ap-
proach is not scalable to large KG datasets like
those explored in this work. Exhaustively applying
BERT to compute all rankings for the test set for
our largest dataset would take over two months. In
our re-ranking setting, we reduce the number of
triples that need to be evaluated by over 7700, re-
ducing the evaluation time to less than 15 minutes.

BERT as a Knowledge Base: Recent work
(Petroni et al., 2019; Jiang et al., 2020; Rogers
et al., 2020) has utilized the masked-language-
modeling (MLM) objective to probe the knowl-
edge contained within pre-trained models using
fill-in-the-blank prompts (e.g. “Dante was born
in [MASK]”). This body of work has found that
pre-trained language models such as BERT capture
some of the relational knowledge contained within
their pre-training corpora. This motivates us to uti-
lize these models to develop entity representations
that are well-suited for KGC.

Re-Ranking: Wang et al. (2011) introduced cas-
cade re-ranking for document retrieval. This ap-
proach applies inexpensive models to develop an
initial ranking and utilizes expensive models to
improve the ranking of the top-k candidates. Re-
ranking has since been successfully applied across
many retrieval tasks (Matsubara et al., 2020; Pei
et al., 2019; Nogueira and Cho, 2019). Despite
re-ranking’s widespread success, recent KGC work
utilizes a single ranking model. We develop an
entity re-ranking procedure and demonstrate the
effectiveness of the re-ranking paradigm for KGC.

Knowledge Distillation: Knowledge distilla-
tion is a popular technique that is often used for
model compression where a large, high-capacity
teacher is used to train a simpler student network
(Hinton et al., 2015). However, knowledge distilla-
tion has since been shown to be useful for improv-
ing model performance beyond the original setting
of model compression. Li et al. (2017) demon-
strated that knowledge distillation improved image
classification performance in a setting with noisy

Their reported Hits@ 10 for FB15K-237 was .420 which
is lower than all of the models evaluated in this work.

1017

Dataset #Nodes #Rels # Train # Valid # Test

FB15k-237 14,451 237 272,115 17,535 20,466
SNOMED CT Core 77,316 140 502,224 71,778 143,486
CN-100K 78,088 34 100,000 1,200 1,200
FB15k-237-Sparse 14,451 237 18,506 17,535 20,466

Table 1: Dataset statistics

Knowledge Graph Density

1.00

W SNOMED-CT Core M FB15K-237 FB15K-237-Sparse M CN-100K

0.75

0.50

0.25

Percentage of Entities

[0,1) [1.2) [2.3) [35) [510) [10,25) [;5,50) [50,100) 100+

Node In-Degree

Figure 1: In-degrees of entities in the training KGs (in-
cluding inverse relations)

labels. The incompleteness of KGs leads to noisy
training labels which motivates us to use knowl-
edge distillation to train a student re-ranking model
that is more robust to the label noise.

3 Datasets

We examine KGC in the realistic setting where KGs
have many sparsely connected entities. We utilize a
commonsense KG dataset that has been used in past
work and curate two additional sparse KG datasets
containing biomedical and encyclopedic knowl-
edge. We release the encyclopedic dataset and
the code to derive the biomedical dataset to encour-
age future work in this challenging setting. The
summary statistics for all datasets are presented in
Table 1 and we visualize the connectivity of the
datasets in Figure 1.

3.1 SNOMED CT Core

For constructing SNOMED CT Core, we use the
knowledge graph defined by SNOMED CT (Don-
nelly, 2006), which is contained within the Unified
Medical Language System (UMLS) (Bodenreider,
2004). SNOMED CT is well-maintained and is
one of the most comprehensive knowledge bases
contained within the UMLS (Jiménez-Ruiz et al.,
2011; Jiang and Chute, 2009). We first extract the
UMLS? concepts found in the CORE Problem List
Subset of the SNOMED CT knowledge base. This
subset is intended to contain the concepts most
useful for documenting clinical information. We

3We work with the 2020AA release of the UMLS.

then expand the graph to include all concepts that
are directly linked to those in the CORE Problem
List Subset according to the relations defined by
the SNOMED CT KG. Our final KG consists of
this set of concepts and the SNOMED CT relations
connecting them. Importantly, we do not filter out
rare entities from the KG, as is commonly done
during the curation of benchmark datasets.

To avoid leaking data from inverse, or otherwise
informative, relations, we divide the facts into train-
ing, validation, and testing sets based on unordered
tuples of entities {e1, e2} so that all relations be-
tween any two entities are confined to a single split.
Unlike some other KG datasets that filter out in-
verse relations, we divide our dataset in such a way
that this is not necessary; our dataset already in-
cludes inverse relations, and they do not need to
be manually added for training and evaluation as is
standard practice (Dettmers et al., 2018; Malaviya
et al., 2020).

Because we represent entities using textual de-
scriptions in this work, we also mine the enti-
ties’ preferred concept names (e.g. “Traumatic
hematoma of left kidney”) from the UMLS.

3.2 FB15k-237-Sparse

The FB15k-237 (Toutanova and Chen, 2015)
dataset contains encyclopedic knowledge about the
world, e.g. (Barack Obama, placeOfBirth, Hon-
olulu). Although the dataset is very densely con-
nected, that density is artificial. FB15K (Bordes
et al., 2013), the precursor to FB15k-237, was cu-
rated to only include entities with at least 100 links
in Freebase (Bollacker et al., 2008).

The dense connectivity of FB15k-237 does al-
low us to to ablate the effect of this density. We
utilize the FB15k-237 dataset and also develop a
new dataset, denoted FB15k-237-Sparse, by ran-
domly downsampling the facts in the training set of
FB15k-237 to match the average in-degree of the
ConceptNet-100K dataset. We use this to directly
evaluate the effect of increased sparsity.

For the FB15k-237 dataset, we use the textual
identifiers released by Ruobing Xie (2016). They
released both entity names (e.g. “Jason Frederick
Kidd”) as well as brief textual descriptions (e.g.
“Jason Frederick Kidd is a retired American profes-
sional basketball player...”) for most entities. We
utilize the textual descriptions when available.

1018

Precompute

Bottleneck Convolutions xN

‘ Heart attack |
i Lung infection |

e @

Tuberculosis

..0.0...

Entity Embeddings

o \—/ Isoniazid }
>

Pooling + l
Projection CLS] [treated_by] Turberculosis
1D CNN D ety Y] Turber
~ ‘/\ é (00000000 [SEP] [treated_by] Isoniazid [SEP)
Entity Names treated._by) |
tuberculosis :
Candidate . ® E bl
i RelatlonEmbeddlngs Ranking > nsembple

ok /

candidates

Rifampim
Ethambutol Ethambutol

Rifampim

Isoniazid

Final Ranking

Initial Ranking

Figure 2: We utilize BERT to precompute entity embeddings. We then stack the precomputed entity embedding
with a learned relation embedding and project them to a two-dimensional spatial feature map, upon which we
apply a sequence of two-dimensional convolutions. The final feature map is then average pooled and projected to
a query vector, which is used to rank candidate entities. We extract promising candidates and train a re-ranking
model utilizing knowledge distilled from the original ranking model. The final candidate ranking is generated by

ensembling the ranking and re-ranking models.

3.3 ConceptNet-100K

ConceptNet (Speer and Havasi, 2013) is a KG that
contains commonsense knowledge about the world
such as the fact (go to dentist, motivatedBy, pre-
vent tooth decay). We utilize ConceptNet-100k
(CN-100K) (Li et al., 2016) which consists of the
Open Mind Common Sense entries in the Con-
ceptNet dataset. This KG is much sparser than
benchmark datasets like FB15k-237, which makes
it well-suited for our purpose. We use the train-
ing, validation, and testing splits of Malaviya et al.
(2020) to allow for direct comparison. We also use
the textual descriptions released by Malaviya et al.
(2020) to represent the KG entities.

4 Methods

We provide an overview of our model architecture
in Figure 2. We first extract feature representations
from BERT (Devlin et al., 2019) to develop textual
entity embeddings. Motivated by our observation
that existing neural KG architectures are under-
powered in our setting, we develop a deep con-
volutional network utilizing architectural innova-
tions from deep convolutional vision models. Our
model’s design improves its ability to fit complex
relationships in the training data which leads to
downstream performance improvements.

Finally, we distill our ranking model’s knowl-
edge into a student re-ranking network that adjusts
the rankings of promising candidates. In doing so,
we demonstrate the effectiveness of the re-ranking

paradigm for KGC and develop a KGC pipeline
with greater robustness to the sparsity of real KGs.

4.1 Entity Ranking

We follow the standard formulation for KGC.
We represent a KG as a set of entity-relation-
entity facts (e1,r, e2). Given an incomplete fact,
(e1,7,7), our model computes a score for all candi-
date entities e; that exist in the graph. An effective
KGC model should assign greater scores to correct
entities than incorrect ones. We follow recent work
(Dettmers et al., 2018; Malaviya et al., 2020) and
consider both forward and inverse relations (e.g.
treats and treated_by) in this work. For the datasets
that do not already include inverse relations, we
introduce an inverse fact, (ea, 7, e1), for every
fact, (e1,r, e2), in the dataset.

4.1.1 Textual Entity Representations

We utilize BERT (Devlin et al., 2019) to develop
entity embeddings that are invariant to the connec-
tivity of the KG. We follow the work of Malaviya
et al. (2020) and adapt BERT to each KG’s naming
style by fine-tuning BERT using the MLM objec-
tive with the set of entity identifiers in the KG.

For CN-100K and FB15k-237, we utilize the
BERT-base uncased model. For SNOMED CT
Core KG, we utilize PubMedBERT (Gu et al.,
2020) which is better suited for the biomedical
terminology in the UMLS.

We apply BERT to the textual entity identifiers
and mean-pool across the token representations

1019

from all BERT layers to obtain a summary feature
vector for the concept name. We fix these embed-
dings during training because we must compute
scores for a large number of potential candidate
entities for each training example. This makes fine-
tuning BERT prohibitively expensive.

4.1.2 Deep Convolutional Architecture

Inspired by the success of deep convolutional mod-
els in computer vision (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2015; He et al., 2016;
Huang et al., 2019, 2017), we develop a knowl-
edge base completion model based on the seminal
ResNet architecture (He et al., 2016) that is suffi-
ciently expressive to model complex interactions
between the BERT feature space and the relation
embeddings.

Given an incomplete triple (e;,7;,7), we be-
gin by stacking the precomputed entity embedding
e € R'*? with the learned relation embedding of
the same dimension r € R'*? to produce a feature
vector of length d with two channels q € R?*?. We
then apply a one-dimensional convolution with a
kernel of width 1 along the length of the feature vec-
tor to project each position ¢ to a two-dimensional
spatial feature map x; € R/*/ where the con-
volution has f x f filters. Thus the convolution
produces a two-dimensional spatial feature map
X € R/*/*4 with d channels, representing the
incomplete query triple (e;, 7}, 7).

The spatial feature map, X € R/*/*4 is anal-
ogous to a square image with a side length of f
and d channels, allowing for the straightforward
application of deep convolutional models such as
ResNet. We apply a sequence of 3NV bottleneck
blocks to the spatial feature map where NN is a hy-
perparameter that controls the depth of the network.
A bottleneck block consists of three consecutive
convolutions: a 1 x 1 convolution, a 3 X 3 convo-
Iution, and then another 1 x 1 convolution. The
first 1 x 1 convolution reduces the feature map di-
mensionality by a factor of 4 and then the second
1 x 1 convolution restores the feature map dimen-
sionality. This design reduces the dimensionality
of the expensive 3 x 3 convolutions and allows us
to increase the depth of our model without dramat-
ically increasing its parameterization. We double
the feature dimensionality of the bottleneck blocks
after N and 2N blocks so the dimensionality of
the final feature map produced by the sequence of
convolutions is 4d.

We add residual connections to each bottleneck

block which improves training for deep networks
(He et al., 2016). If we let F(X) represent the
application of the bottleneck convolutions, then the
output of the bottleneck block is Y = F(X) + X.
We apply batch normalization followed by a ReLU
nonlinearity (Nair and Hinton, 2010) before each
convolutional layer (He et al., 2016) .

We utilize circular padding (Wang et al., 2018;
Vashishth et al., 2020a) with the 3 x 3 convolutions
to maintain the spatial size of the feature map and
use a stride of 1 for all convolutions. For the bottle-
neck blocks that double the dimensionality of the
feature map, we utilize a projection shortcut for the
residual connection (He et al., 2016).

4.1.3 Entity Scoring

Given an incomplete fact (e;, r;,?), our convolu-
tional architecture produces a feature map X €
R *F*4d We average pool this feature representa-
tion over the spatial dimension which produces a
summary feature vector X € R4, We then apply a
fully connected layer followed by a PReL.U nonlin-
earity (He et al., 2015) to project the feature vector
back to the original embedding dimensionality d.
We denote this final vector &€ and compute scores
for candidate entities using the dot product with
candidate entity embeddings. The scores can be
efficiently computed for all entities simultaneously
using a matrix-vector product with the embedding
matrix y = &ET where E € R™*¢ stores the
embeddings for all m entities in the KG.

4.14 Training

Adopting the terminology used by Ruffinelli et al.
(2020), we utilize a 1vsAll training strategy with
the binary cross-entropy loss function. We treat
every fact in our dataset, (e;, Tj,€x), as a training
sample where (e;, r;,?) is the input to the model.
We compute scores for all entities as described pre-
viously and apply a sigmoid operator to induce a
probability for each entity. We treat all entities
other than ey, as negative candidates and then com-
pute the binary cross-entropy loss.

We train our model using the Adam optimizer
(Kingma and Ba, 2015) with decoupled weight de-
cay regularization (Loshchilov and Hutter, 2019)
and label smoothing. We train our models for
a maximum of 200 epochs and terminate train-
ing early if the validation Mean Reciprocal Rank
(MRR) has not improved for 20 epochs. We trained
all of the models used in this work using a single
NVIDIA GeForce GTX 1080 Ti.

1020

4.2 Entity Re-Ranking
4.2.1 Re-Ranking Network

We use our convolutional network to extract the
top-k entities for every unique training query and
then train a re-ranking network to rank these enti-
ties. We design our student re-ranking network as a
triplet classification model that utilizes the full can-
didate fact, (e;, 7, ex), instead of an incomplete
fact, (e;, r;, 7). This allows the network to model
interactions between all elements of the triple. The
re-ranking setting also enables us to directly fine-
tune BERT which often improves performance (Pe-
ters et al., 2019).

We introduce relation tokens* for each re-
lation in the knowledge graph and construct
the textual input by prepending the head and
tail entities with the relation token and then
concatenating the two sequences. Thus the
triple (“head name”, r;, “tail name”) would be
represented as “[CLS] [REL_i] head name

[SEP] [REL_i] tail name [SEP]”. We
use a learned linear combination of the [CLS]
embedding from each layer as the final feature rep-
resentation for the prediction.

4.2.2 Knowledge Distillation

A sufficiently performant ranking model can pro-
vide an informative prior that can be used to
smooth the noisy training labels and improve our
re-ranking model. For each training query i, we
normalize the logits produced by our teacher rank-
ing model, fr(x;), for the k candidate triples,

J1(X:)0:k» as
Sik:(i+1)k = softmax(fr(x;)ox/T)

where T’ is the temperature (Hinton et al., 2015).

Our training objective for our student model,
fs(x;), is a weighted average of the binary cross
entropy loss, L., using the teacher’s normalized
logits, s, and the noisy training labels, y.

EKD(yivxi) = Aﬁbce(sia fS(xZ))
+ ()\ — 1)£bce(yia fS(-Tz))
= Lpce((A— D)yi + Asi, fs(z;))

*We use relation tokens instead of free-text relation repre-
sentations because the relation identifiers for our datasets are
not all well-formed using natural language, and the different
styles would introduce a confounding factor that would com-
plicate our evaluation. Utilizing appropriate free-text relation
identifiers may improve performance, but we leave that to
future work.

We select A € {.25,.5,.75, 1} to optimize the bal-
ance between the two objectives using validation
performance.

4.2.3 Training

For our experiments, we extract the top kK = 10
candidates produced by our ranking model for ev-
ery query in the training set. We train our student
network using the Adam optimizer (Kingma and
Ba, 2015) with decoupled weight decay regulariza-
tion (Loshchilov and Hutter, 2019). We fine-tune
BERT for a maximum of 10 epochs and terminate
training early if the Mean Reciprocal Rank (MRR)
on validation data has not improved for 3 epochs.

4.2.4 Student-Teacher Ensemble

For every query, we apply our re-ranking network
to the top k = 10 triples and compute the final rank-
ing using an ensemble of the teacher and student
networks. The final ranking are computed with

~

Sik:(i+1)k = cv(softmax(fs(Xir:(i+1)x)))
+ (1 — a)(softmax(fr(x;)o:x)))

where 0 < a < 1 controls the impact of the student
re-ranker. The cost of computing 8;.(; 1) 18 negli-
gible, so we sweep over [0, 1] in increments of .01
and select the « that achieves the best validation
MRR.

5 Experiments

5.1 Baselines

We utilize the same representative selection of KG
models from Malaviya et al. (2020) as baselines:
DistMult (Yang et al., 2015), ComplEx (Trouillon
et al., 2016) ConvE (Dettmers et al., 2018), and
ConvTransE (Shang et al., 2018). This is not an
exhaustive selection of all recent KG methods, but
a recent replication study by Ruffinelli et al. (2020)
found that the baselines that we use are competitive
with the state-of-the-art and often outperform more
recent models when trained appropriately.

We develop additional baselines by adapting
the shallow convolutional KGC models to use
BERT embeddings to evaluate the benefits of uti-
lizing our proposed convolutional architecture in-
stead of simply repurposing existing KGC mod-
els. We refer to these models as BERT-ConvE
and BERT-ConvTransE. Malaviya et al. (2020)
used BERT embeddings in conjunction with Con-
vTransE for commonsense KGC, but their model
was prohibitively large to reproduce. We refer to

1021

SNOMED CT Core CN-100K

MR MRR H@l H@3 H@0 MR MRR H@l HE@3 H@I0
DistMult [é] 5146 .293 226 .318 426 — .090 .045 .098 174
ComplEx [é] 3903 .302 224 332 456 — 114 074 125 .190
ConvE [&] 3739 271 191 .303 429 — .209 140 229 .340
ConvTransE [é&] 3585 .290 213 321 442 — 187 079 .239 .390
BERT-ConvE 414 .383 277 430 591 260 .453 332 521 .691
BERT-ConvTransE 514 .373 273 417 .568 276 .458 340 520 .675
BERT-Large-ConvTransE [&] - - - - - — 523 410 585 .735
BERT-DeepConv 265 .479 374 532 .685 161 .540 418 610 772
BERT-ResNet 265 .492* 389 .544 691 169 .550" .426 .628 .769
+ Re-ranking 265 5621 482 608 .691 170 377 216 .437 .769

+ Knowledge Distillation (KD) 265 566" 487 614 .691 169 .528 .402 .603 .769

+ Ranking Ensemble (RE) 264 576" 503 619 .691 169 .555 1438 .623 .769

+ KD and RE 264 577" 501 623 .691 169 569" 452 647 .769

FB15k-237 FB15k-237-Sparse

MR MRR H@l H@3 HE@I0 MR MRR H@l H@3 H@I0

DistMult [é] - .343 — — 531 3061 .136 .092 .146 .223
ComplEx [#)] - .348 — — .536 3333 .132 .091 .143 216
ConvE [#)] - .339 — — 521 2263 .156 106 .165 .258
ConvTransE [$)] - .33 24 .37 .51 2285 .153 103 .161 .255
BERT-ConvE 193 .305 224 .330 .465 408 .190 128 200 315
BERT-ConvTransE 211 .296 218 321 .449 390 .188 127 199 .310
BERT-DeepConv 190 .327 246 .354 .488 422 .188 127 197 314
BERT-ResNet 186 .346" 262 .379 .bl14 413 .191* 128 .201 317
+ Re-ranking 187 .304 212 .329 514 413 .190 128 .200 317

+ Knowledge Distillation (KD) 187 .310 220 .334 514 413 197t 135 209 317

+ Ranking Ensemble (RE) 186 .354" 270 .387 514 413 199t 137 210 317

+ KD and RE 186 .353" 269 .386 514 413 198t 136 211 317

Table 2: Comparison of KGC results across all datasets. We indicate statistical significance for: (1) Improvements
of deep convolutional BERT models over both shallow convolutional BERT models with an underline (p < 0.005);
(2) Improvements of BERT-ResNet over BERT-DeepConv with a * (p < 0.05); (3) Improvements of the re-ranking
configurations over the original rankings with a t (p < 0.005). [&] indicates that CN-100K results are from
Malaviya et al. (2020). [#)] indicates that FB15k-237 results are from Ruffinelli et al. (2020). [$] indicates that
FB15k-237 results are from Shang et al. (2018). Dashes indicate that the metric was not reported by the prior work.

their model as BERT-Large-ConvTransE and com-
pare directly against their reported results.

We also develop a deep convolutional baseline,
termed BERT-DeepConv, to evaluate the effect of
the architectural innovations used in our model.
BERT-DeepConv transforms the input embeddings
to a spatial feature map like our proposed model,
but it then applies a stack of 3 x 3 convolutions
instead of a sequence of bottleneck blocks with
residual connections. We select hyperparameters
(detailed in the Appendix) for all of our BERT
baselines so that they have a comparable number
of trainable parameters to our proposed model. We
discuss the size of these models in detail in in Sec-
tion 6.4.

To evaluate the impact of our re-ranking stage,
we ablate the use of knowledge distillation and en-
sembling. Thus we conduct experiments where our

re-ranker uses only knowledge distillation, uses
only ensembling, and uses neither. This means that
in the most naive setting, we train the re-ranker
using the hard training labels and re-rank the can-
didates using only the re-ranker.

5.2 Evaluation

We report standard ranking metrics: Mean Rank
(MR), Mean Reciprocal Rank (MRR), Hits at 1
(H@1), Hits at 3 (H@3), and Hits at 10 (H@10).
We follow past work and use the filtered setting
(Bordes et al., 2013), removing all positive entities
other than the target entity before calculating the
target entity’s rank.

We utilize paired bootstrap significance testing
(Berg-Kirkpatrick et al., 2012) with the MRR to val-
idate the statistical significance of improvements.
To account for the large number of comparisons

1022

being performed, we apply the Holm—Bonferroni
method (Holm, 1979) to correct for multiple hy-
pothesis testing. We define families for the three
primary hypotheses that we tested with our exper-
iments. They are as follows: (1) The deep con-
volutional BERT models outperform the shallow
convolutional BERT models. (2) BERT-ResNet
improves upon our BERT-DeepConv baseline. (3)
The re-ranking procedure improves the original
rankings.

This selection has the benefit of allowing for a
more granular analysis of each conclusion while
significantly reducing the number of hypotheses.
The first family includes all pairwise comparisons
between the two deep convolutional models and
the two shallow convolutional models. The second
family involves all comparisons between BERT-
ResNet and BERT-DeepConv. The third family
includes comparisons between all re-ranking con-
figurations and the original rankings. We note that
the p-value for each family bounds the strict condi-
tion that we report any spurious finding within the
family.

6 Results and Discussion

6.1 Ranking Performance

We report results across all of our datasets in Table
2. Our ranking model, BERT-ResNet, outperforms
the previously published models and our baselines
across all of the sparse datasets. We find that for all
sparse datasets, the models that use free text entity
representations outperform the models that learn
the entity embeddings during training. Among
the models utilizing textual information, the deep
convolutional methods generally outperform the
adaptations of existing neural KG models. BERT-
ResNet outperforms BERT-DeepConv across all
datasets, demonstrating that the architectural inno-
vations do improve downstream performance.

On the full FB15k-237 dataset, our proposed
model is able to achieve competitive results com-
pared to strong baselines. However, the focus of
this work is not to achieve state-of-the-art perfor-
mance on densely connected benchmark datasets
such as FB15k-237. These results do, however,
allow us to observe the outsized impact of sparsity
on models that do not utilize textual information.

6.2 Re-Ranking Performance

Re-ranking entities without knowledge distillation
or ensembling leads to poor results, degrading the

MRR across most datasets. We note that the per-
formance of our re-ranking model could be limited
by our use of a pointwise loss function. Further ex-
ploration of pairwise or listwise learning learning-
to-rank methods is a promising direction for future
exploration that could lead to further improvements
Guo et al. (2020).

The inclusion of either knowledge distillation
or ensembling improves performance. Ensembling
is particularly important, achieving a statistically
significant improvement over the initial rankings
across most datasets. Our final setting using both
knowledge distillation and ensembling is the only
setting to achieve a statistically significant improve-
ment across all four datasets, although using both
does not consistently improve performance over
ensembling alone.

A plausible explanation for this is that knowl-
edge distillation improves performance by reduc-
ing the divergence between the re-ranker and the
teacher, but ensembling can already achieve a sim-
ilar effect by simply increasing the weight of the
teacher in the final prediction. We observe that
the weight of the teacher is reduced across all four
datasets when knowledge distillation is used which
would be consistent with this explanation. Knowl-
edge distillation has also been shown to be use-
ful in situations with noisy labels (Li et al., 2017)
which may explain why it was particularly effective
for our sparsest dataset, CN-100K, where training
with the hard labels led to particularly poor perfor-
mance.

6.3 Effect of Re-Ranking

We bin test examples by the in-degree of the tail
nodes and compute the MRR within these bins
for our model before and after re-ranking. We
report this breakdown for the SNOMED CT Core
dataset in Figure 3. Our re-ranking stage improves
performance uniformly across all levels of sparsity,
but it is particularly useful for entities that are rarely
seen during training. This is also consistent with
the comparatively smaller topline improvement for
the densely connected FB15k-237 dataset.

6.4 Model Capacity

We report the number of trainable parameters for
the models that use textual representations along
with the train and test set MRR for SNOMED CT
Core in Table 3. We observe a monotonic rela-
tionship between training and testing performance
and note that the shallow models fail to achieve

1023

SNOMED-CT Core Re-Ranking Improvement
® Re-ranking Improvement ® BERT-ResNet

1.000 +058 4042 ’
0750 +079
4 4142 +132 #4119 +097

+020

oson -T12

MRR

0.250

0.000

[0y [1.2) [2,3) [3,5 [570) [10,25) [25,50) [50,100) 100+

In-Degree of Tail Entity

Figure 3: Effect of re-ranking on performance for
SNOMED CT Core across varying levels of sparsity.

Model Trainable ~SNOMED CT Core
Params Train/Test MRR
BERT-ConvE 34M 1460/ .383
BERT-ConvTransE 3™ .449 /.373
BERT-DeepConv 38M .696 /.479
BERT-ResNet 33M 715/ .492

Table 3: Comparison of trainable parameters for KGC
models that utilize textual entity representations.

our model’s test performance on the training set.
This demonstrates that the shallow models lack the
complexity to adequately fit the training data. A
similar trend held for all datasets except for FB15k-
237-Sparse whose smaller size reduces the risk of
underfitting. This explains the smaller performance
improvement for that dataset.

Malaviya et al. (2020) scaled up BERT-Large-
ConvTransE to use over 524M trainable parame-
ters, and their model did outperform our smaller
BERT-ConvTransE baseline. However, their model
still fails to match the performance of either of our
deep convolutional models despite using over 15x
the number of trainable parameters.

7 Conclusion

KGs often include many sparsely connected en-
tities where the use of textual entity embeddings
is necessary for strong performance. We develop
a deep convolutional network that is better-suited
for this setting than existing neural models devel-
oped on artificially dense benchmark KGs. We
also introduce a re-ranking procedure to distill the
knowledge from our convolutional model into a
student re-ranking network and demonstrate that
our procedure is particularly effective at improving
the ranking of sparse candidates. We utilize these
innovations to develop a KGC pipeline with greater
robustness to the realities of KGs and demonstrate

the generalizability of our improvements across
biomedical, commonsense, and encyclopedic KGs.

Acknowledgments

This work was supported by the National Science
Foundation grant IIS 1917955 and the National Li-
brary Medicine of the National Institutes of Health
under award number T15 LM007059.

References

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185-5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An empirical investigation of statis-
tical significance in NLP. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning, pages 995-1005, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (UMLS): integrating biomedical ter-
minology. Nucleic acids research, 32:D267-D270.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 12471250, New York,
NY, USA. Association for Computing Machinery.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014a. Question answering with subgraph embed-
dings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 615-620. Association for Compu-
tational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787-2795.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014b. Open question answering with weakly super-
vised embedding models. In Machine Learning and
Knowledge Discovery in Databases, pages 165-180,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Tim Dettmers, Minervini Pasquale, Stenetorp Pon-
tus, and Sebastian Riedel. 2018. Convolutional 2d

1024

https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://www.aclweb.org/anthology/D12-1091
https://www.aclweb.org/anthology/D12-1091
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.3115/v1/D14-1067
https://doi.org/10.3115/v1/D14-1067
https://arxiv.org/abs/1707.01476

knowledge graph embeddings. In Proceedings of
the 32th AAAI Conference on Artificial Intelligence,
pages 1811-1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages 601—
610, New York, NY, USA. ACM.

Kevin Donnelly. 2006. SNOMED-CT: The advanced
terminology and coding system for eHealth. Studies
in health technology and informatics, 121:279.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lu-
cas, Naoto Usuyama, Xiaodong Liu, Tristan Nau-
mann, Jianfeng Gao, and Hoifung Poon. 2020.
Domain-specific language model pretraining for

biomedical natural language processing. ArXiv,
abs/2007.15779.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang,
Qingyao Ai, Hamed Zamani, Chen Wu, W. Bruce
Croft, and Xueqi Cheng. 2020. A deep look into
neural ranking models for information retrieval. In-
formation Processing Management, 57(6):102067.

K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving
deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In 2015 IEEE In-

ternational Conference on Computer Vision (ICCV),
pages 1026-1034.

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep resid-
ual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 770-778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Identity mappings in deep residual net-
works. 2016 European Conference on Computer Vi-
sion (ECCV).

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learn-
ing Workshop.

Sture Holm. 1979. A simple sequentially rejective mul-
tiple test procedure. Scandinavian Journal of Statis-
tics, 6(2):65-70.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition.

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van
Der Maaten, and Kilian Weinberger. 2019. Con-
volutional networks with dense connectivity. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Guogqian Jiang and Christopher G. Chute. 2009. Audit-
ing the Semantic Completeness of SNOMED CT Us-
ing Formal Concept Analysis. Journal of the Ameri-
can Medical Informatics Association, 16(1):89-102.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian
Horrocks, and Rafael Berlanga. 2011. Logic-based
assessment of the compatibility of UMLS ontology
sources. Journal of Biomedical Semantics, 2(1):S2.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Proceedings of the
25th International Conference on Neural Informa-
tion Processing Systems - Volume 1, NIPS 12, page
1097-1105, Red Hook, NY, USA. Curran Associates
Inc.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1445-1455, Berlin, Germany.
Association for Computational Linguistics.

Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L. Li. 2017.
Learning from noisy labels with distillation. In 2017
IEEE International Conference on Computer Vision
(ICCV), pages 1928-1936.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017.
Analogical inference for multi-relational embed-
dings. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages
2168-2178, International Convention Centre, Syd-
ney, Australia. PMLR.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

1025

https://arxiv.org/abs/1707.01476
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/2623330.2623623
https://doi.org/https://doi.org/10.1016/j.ipm.2019.102067
https://doi.org/https://doi.org/10.1016/j.ipm.2019.102067
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1503.02531
http://www.jstor.org/stable/4615733
http://www.jstor.org/stable/4615733
https://doi.org/10.1197/jamia.M2541
https://doi.org/10.1197/jamia.M2541
https://doi.org/10.1197/jamia.M2541
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1186/2041-1480-2-S1-S2
https://doi.org/10.1186/2041-1480-2-S1-S2
https://doi.org/10.1186/2041-1480-2-S1-S2
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P16-1137
https://doi.org/10.1109/ICCV.2017.211
http://proceedings.mlr.press/v70/liu17d.html
http://proceedings.mlr.press/v70/liu17d.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Y. Ma, P. A. Crook, R. Sarikaya, and E. Fosler-Lussier.
2015. Knowledge graph inference for spoken dialog
systems. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 5346-5350.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. Proceedings of the 34th AAAI Con-
ference on Artificial Intelligence.

Yoshitomo Matsubara, Thuy Vu, and Alessandro Mos-
chitti. 2020. Reranking for Efficient Transformer-
Based Answer Selection, page 1577-1580. Associ-
ation for Computing Machinery, New York, NY,
USA.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 1003-1011, Suntec, Singapore. Association
for Computational Linguistics.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference

on International Conference on Machine Learning,
ICML’ 10, pages 807-814, USA. Omnipress.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAT’16,
pages 1955-1961. AAAI Press.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809-816, Madison, WI, USA. Omnipress.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with BERT. arXiv preprint
arXiv:1901.04085.

Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun,
Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Jun-
feng Ge, Wenwu Ou, and Dan Pei. 2019. Person-
alized re-ranking for recommendation. In Proceed-
ings of the 13th ACM Conference on Recommender
Systems, RecSys 19, page 3-11, New York, NY,
USA. Association for Computing Machinery.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7-14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Fabio Petroni, Tim Rocktédschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463-2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Jay Pujara, Eriq Augustine, and Lise Getoor. 2017.
Sparsity and noise: Where knowledge graph embed-
dings fall short. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1751-1756, Copenhagen, Den-
mark. Association for Computational Linguistics.

Thomas Rebele, Fabian Suchanek, Johannes Hoffart,
Joanna Biega, Erdal Kuzey, and Gerhard Weikum.
2016. Yago: A multilingual knowledge base from
wikipedia, wordnet, and geonames. In International
semantic web conference, pages 177-185. Springer.

Anna Rogers, O. Kovaleva, and Anna Rumshisky. 2020.
A primer in bertology: What we know about how
bert works. ArXiv, abs/2002.12327.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You can teach an old dog new
tricks! on training knowledge graph embeddings.
In International Conference on Learning Represen-
tations.

Jia Jia Huanbo Luan Maosong Sun Ruobing Xie,
Zhiyuan Liu. 2016. Representation learning of
knowledge graphs with entity descriptions. In The
30th AAAI Conference on Artificial Intelligence.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xi-
aodong He, and Bowen Zhou. 2018. End-to-end
structure-aware convolutional networks for knowl-
edge base completion. CoRR, abs/1811.04441.

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 1,
NIPS’13, pages 926-934, USA. Curran Associates
Inc.

Robyn Speer and Catherine Havasi. 2013. ConceptNet
5: A Large Semantic Network for Relational Knowl-
edge, pages 161-176. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In Interna-
tional Conference on Learning Representations.

1026

https://doi.org/10.1109/ICASSP.2015.7178992
https://doi.org/10.1109/ICASSP.2015.7178992
https://doi.org/10.1145/3397271.3401266
https://doi.org/10.1145/3397271.3401266
https://www.aclweb.org/anthology/P09-1113
https://www.aclweb.org/anthology/P09-1113
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3016100.3016172
http://dl.acm.org/citation.cfm?id=3016100.3016172
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D17-1184
https://doi.org/10.18653/v1/D17-1184
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
http://arxiv.org/abs/1811.04441
http://arxiv.org/abs/1811.04441
http://arxiv.org/abs/1811.04441
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://dl.acm.org/citation.cfm?id=2999611.2999715
http://dl.acm.org/citation.cfm?id=2999611.2999715
https://doi.org/10.1007/978-3-642-35085-6_6
https://doi.org/10.1007/978-3-642-35085-6_6
https://doi.org/10.1007/978-3-642-35085-6_6
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and
C. Bregler. 2015. Efficient object localization us-
ing convolutional networks. In 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 648-656.

Kristina Toutanova and Dangi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57-66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Inter-

national Conference on Machine Learning - Volume
48, ICML’ 16, pages 2071-2080. JMLR.org.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
Reside: Improving distantly-supervised neural rela-
tion extraction using side information. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1257-1266.
Association for Computational Linguistics.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin,
Nilesh Agrawal, and Partha Talukdar. 2020a. In-
teracte: Improving convolution-based knowledge
graph embeddings by increasing feature interactions.
In Proceedings of the 34th AAAI Conference on Ar-
tificial Intelligence, pages 3009-3016. AAAI Press.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2020b. Composition-based multi-
relational graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A
cascade ranking model for efficient ranked retrieval.
In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR *11, page 105-114, New
York, NY, USA. Association for Computing Machin-

ery.

Tsun-Hsuan Wang, Hung-Jui Huang, Juan-Ting Lin,
Chan-Wei Hu, Kuo-Hao Zeng, and Min Sun. 2018.
Omnidirectional CNN for visual place recognition
and navigation. arXiv preprint arXiv:1803.04228.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016. Ssp:
Semantic space projection for knowledge graph em-
bedding with text descriptions.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding entities
and relations for learning and inference in knowl-
edge bases. In Proceedings of the International Con-
ference on Learning Representations (ICLR) 2015.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for knowledge graph completion.
CoRR, abs/1909.03193.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing
Xie, and Wei-Ying Ma. 2016. Collaborative knowl-
edge base embedding for recommender systems.
In Proceedings of the 22Nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’16, pages 353-362, New York,
NY, USA. ACM.

A Implementation Details

A.1 BERT MLM Pre-training

We utilize the HuggingFace Transformers library
(Wolf et al., 2020) to work with pre-trained lan-
guage models. We fine-tune the pre-trained lan-
guage model with the masked-language-modeling
objective upon the set of textual entity identifiers
for the knowledge graph. We train the model for 3
epochs with a batch size of 32 using a learning rate
of 3e-5. We use a warmup proportion of 0.1 of the
total training steps for each dataset. We use a max
sequence length of 64 during this pre-training ex-
cept when using the textual descriptions associated
with FB15k-237 where we use a max sequence
length of 256. We utilize these dataset-specific
language models for both generating the entity em-
beddings and for initializing the re-ranking model.

A.2 Ranking

A.2.1 Training Procedure

We train all of the ranking models implemented in
this work for a maximum of 200 epochs and termi-
nate training early if the validation MRR has not
improved for 20 epochs. For evaluation, we reload
the model weights from the epoch that achieved the
best validation MRR and evaluate it on the test set.

A.2.2 BERT-ResNet Implementations

For our BERT-ResNet model, we set f = 5 where
f is the hyperparameter that controls the size of
the spatial feature map produced by the initial 1D
convolution. Thus our initial 1D convolution has
f x f = 25 filters. We set N = 2 where N is

1027

https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://dl.acm.org/citation.cfm?id=3045390.3045609
http://dl.acm.org/citation.cfm?id=3045390.3045609
http://aclweb.org/anthology/D18-1157
http://aclweb.org/anthology/D18-1157
https://aaai.org/ojs/index.php/AAAI/article/view/5694
https://aaai.org/ojs/index.php/AAAI/article/view/5694
https://aaai.org/ojs/index.php/AAAI/article/view/5694
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://doi.org/10.1145/2009916.2009934
https://doi.org/10.1145/2009916.2009934
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
http://arxiv.org/abs/1909.03193
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2939672.2939673

the hyperparameter that controls the depth of the
convolutional network. This means that our BERT-
ResNet model consists of 3/N = 6 sequential bot-
tleneck blocks.

We trained the models using a batch size of 64
with a 1vsAll strategy (Ruffinelli et al., 2020) with
the binary cross entropy loss function. We use the
Adam optimizer (Kingma and Ba, 2015) with de-
coupled weight decay regularization (Loshchilov
and Hutter, 2019) and train the model with a learn-
ing rate of le-3. We use label smoothing with a
value of 0.1, clip gradients to a max value of 1,
and regularize the model using weight decay with
a weight of 1e-4. We apply dropout with drop prob-
ability 0.2 after the embedding layer and apply 2D
dropout (Tompson et al., 2015) with the same drop
probability before the 2D convolutions. We apply
dropout with probability 0.3 after the pooling and
fully connected layer. We manually tuned the hy-
perparameters for this model based on validation
performance.

A.2.3 Baseline Implementations

For our baseline implementations of DistMult,
ComplEx, ConvE, and ConvTransE, we adapt the
implementations released by Dettmers et al. (2018)
and Malaviya et al. (2020). We utilize the hyper-
parameters reported in the original papers and con-
duct a grid search to tune the embedding dimension
from [100, 200, 300] and the initial learning rate
from [5e-3, 1e-3, 5e-4, 1e-4] for each dataset. We
train the models with a batch size of 128 using the
1vsAll strategy with the cross entropy loss function
because the replication study by Ruffinelli et al.
(2020) found that this training strategy generally
led to better performance than other training strate-
gies. For the grid search, we train each model for a
maximum of 50 epochs and then select the hyperpa-
rameters with the best validation performance and
retrain the model with our aforementioned training
procedure.

For our implementation of BERT-ConvE and
BERT-ConvTransE, we adapt the baseline ConvE
and ConvTransE to use BERT embeddings in the
same manner as our model. The convolution for
BERT-ConvE has 32 channels and the convolution
for BERT-ConvTransE has 64 channels. These val-
ues were selected to produce models with a compa-
rable number of trainable parameters to our model.
We then project the final feature vector down to
the embedding dimensionality and rank candidates
identically to our model.

We trained both models with a batch size of
64 using 1vsAll strategy (Ruffinelli et al., 2020)
with the binary cross entropy loss function using
the Adam optimizer (Kingma and Ba, 2015) with
decoupled weight decay regularization (Loshchilov
and Hutter, 2019). We train the models with a
learning rate of le-4, use label smoothing with
value 0.1, clip gradients to a max value of 1, and
regularize the model using weight decay with a
weight of 0.0001. We apply dropout with drop
probability 0.2 after the embedding layer and after
the convolution. We apply dropout with probability
0.3 after the fully connected layer.

For our baseline BERT-DeepConv model, we use
the same hyperparamters as BERT-ResNet for the
initial 1-D convolution and then apply a sequence
of three 3 x 3 convolutions with circular padding.
The second convolution doubles the number of
channels so the dimensionality of the final feature
map produced by the sequence of convolutions is
2d. We then mean pool and project the feature map
to the embedding dimensionality identically to our
proposed model. We selected these hyperparame-
ters so that this baseline has a similar number of
trainable parameters to our proposed model. All
other implementation details are identical to our
BERT-Resnet model (e.g. use of pre-activations,
application of dropout, training hyperparameters,
etc.).

A.3 Re-Ranking

We fine-tune BERT with a learning rate of 3e—5
using the Adam optimizer (Kingma and Ba,
2015) with decoupled weight decay regularization
(Loshchilov and Hutter, 2019). We truncate the
textual triple representation to a max length of 32
tokens and fine-tune BERT with a batch size of 128
for a maximum of 10 epochs. Training is termi-
nated early if the validation MRR does not improve
for 3 epochs. We set the weight decay parameter to
0.01 and clip gradients to a max value of 1 during
training. We apply dropout with probability 0.3
to the final feature representation before the pre-
diction and otherwise use the default parameters
provided by the HuggingFace Transformers library
(Wolf et al., 2020). We set A = 0.5 for SNOMED
CT Core, A = 1.0 for CN-100K, and A = 0.75
for FB15k-237 and FB15k-237-Sparse. We set the
temparature as 7' = 1 for all models.

1028

B Evaluation Metrics

We provide a mathematical formulation for our
evaluation metrics. If we denote the set of all facts
in the test set as 7, then the Mean Rank (MR) is

simply computed as
1
MR = — Z rank(z;)
|T| z, €T

The Mean Reciprocal Rank (MRR) is computed as

1 1
MRR = — —_—
|T] I;_ rank (z;)

The Hits at k (H@Xk) is calculated as

H@k = L Z Irank(z;) < k]
|T| x»;ET

where I[P] is 1 if the condition P is true and is
0 otherwise. When computing rank(x;), we first
filter out all positive samples other than the tar-
get entity ;. This is commonly referred to as the
filtered setting.

C Supplementary Tables

SNOMED CT Core

MR MRR He@l He@3 He@l0
DistMult 5039 .294 .226 .319 427
ComplEx 3850 .303 .225 .335 457
ConvE 3618 271 .191 .303 429
ConvTransE 3484 .293 .216 .323 .446
BERT-ConvE 386 .384 .278 .431 .593
BERT-ConvTransE 487 374 274 417 .569
BERT-DeepConv 250 .481 .376 .534 .687
BERT-ResNet 249 .493 .389 .546 .694

Table 4: Validation ranking results for SNOMED CT
Core.

CN-100K
MR MRR He@I He@e3 He@l10
BERT-ConvE 283 .370 .253 .423 .606

BERT-ConvTransE 323 .381 .267 .430 608

BERT-DeepConv 261 463 .342 .526 .705

BERT-ResNet 269 463 .341 .53 .700

Table 5: Validation ranking results for CN-100K.

FB15k-237
MR MRR H@l H@3 He@I0

BERT-ConvE 189 .308 .228 .334 467
BERT-ConvTransE 208 .301 .224 .326 .449

BERT-DeepConv 186 .332 .251 .360 .490

BERT-ResNet 185 .351 .269 .384 .514

Table 6: Validation ranking results for FB15k-237.

FB15k-237-Sparse

MR MRR He@l H@3 H@I0
DistMult 3034 .136 .093 .146 227
ComplEx 3311 134 .092 .144 .220
ConvE 2247 .158 107 .166 .261
ConvTransE 2275 .154 .103 .163 257
BERT-ConvE 412 .192 .128 .202 .321
BERT-ConvTransE 390 .192 129 .204 .318
BERT-DeepConv 419 .193 131 .203 .320
BERT-ResNet 412 .194 131 .204 .321

Table 7: Validation ranking results for FB15k-237-
Sparse.

SNOMED CT Core
MR MRR H@l H@3

BERT-ResNet 2 .698 .561 787
+ Re-ranking + KD + TE 2 .822 724 1901
CN-100K

MR MRR H@l H@3

BERT-ResNet 3 .648 488 .758
+ Re-ranking + KD + TE 2 .668 511 .780
FB15k-237

MR MRR He@l H@3

BERT-ResNet .664 523 .748
+ Re-ranking + KD + TE 3 .678 .539 .761

w

FB15k-237-Sparse
MR MRR H@l H@3

BERT-ResNet 3 567 .407 .634
+ Re-ranking + KD + TE 3 .589 427 667

Table 8: Validation re-ranking results. We report met-
rics for the subset of queries where the retrieved entity
is already in the top 10 entities because the re-ranking
procedure leaves other rankings unchanged.

1029

