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Abstract

We introduce VoxPopuli, a large-scale multi-
lingual corpus providing 400K hours of un-
labeled speech data in 23 languages. It is
the largest open data to date for unsuper-
vised representation learning as well as semi-
supervised learning.  VoxPopuli also con-
tains 1.8K hours of transcribed speeches in
15 languages and their aligned oral inter-
pretations into 15 target languages totaling
17.3K hours. We provide speech recogni-
tion (ASR) baselines and validate the versa-
tility of VoxPopuli unlabeled data in semi-
supervised ASR and speech-to-text transla-
tion under challenging out-of-domain settings.
The corpus is available at https://github.
com/facebookresearch/voxpopuli.

1 Introduction

Recent progress in speech-to-text tasks such as
automatic speech recognition (ASR) and speech
translation (ST) has been achieved by the devel-
opment and application of unsupervised speech
pre-training methods (Oord et al., 2018; Schnei-
der et al., 2019; Baevski et al., 2020; Conneau
et al., 2020; Wu et al., 2020; Nguyen et al., 2020),
with semi-supervised learning (self-training) (Kahn
et al., 2020a; Pino et al., 2020; Zhang et al., 2020b;
Xu et al., 2020) or a combination of both meth-
ods (Xu et al., 2020). This line of research lever-
ages large amounts of unlabeled English speech
data (Kahn et al., 2020b) that enable improve-
ments in English ASR or out-of-English ST. Large
amounts of multilingual audio data are needed in
order to achieve similar progress for multilingual
ASR and ST. Similarly, most ASR and ST research
is currently conducted on the LibriSpeech (Panay-
otov et al., 2015) and MuST-C benchmarks (Cattoni
et al., 2020; Di Gangi et al., 2019). As a result, the
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research community has been mostly focused on
speech-to-text tasks with English as input. While
multilingual ASR (Pratap et al., 2020; Ardila et al.,
2020) and ST datasets (Wang et al., 2020b; Iranzo-
Sénchez et al., 2020) have recently been made avail-
able, the amount of data available quickly drops
beyond the top few high-resource languages.

Simultaneous speech translation (interpretation)
has witnessed a resurgence with the applications
of end-to-end encoder-decoder models. Most of
the recent studies focus on text output and leverage
ST corpora that are translated offline in the writ-
ten form. There are differences, however, between
translationese and interpretese (Sridhar et al., 2013;
He et al., 2016), where interpreters develop a vari-
ety of strategies to improve simultaneity. Models
trained on translation corpora are unlikely to learn
from these interpretation skills to achieve better
quality-latency trade-offs. Finally, there has been
little research (Jia et al., 2019; Tjandra et al., 2019;
Zhang et al., 2020a) into speech output due to the
lack of open data. Existing corpora (Tohyama et al.,
2004; Bendazzoli et al., 2005) are either of limited
size or no longer publicly available.

In this paper, we introduce VoxPopuli, a large-
scale multilingual speech corpus for representation
learning, semi-supervised learning and interpreta-
tion. It contains the largest open unlabeled speech
data to date, totaling 400K hours in 23 languages:
Bulgarian (Bg), Czech (Cs), Croatian (Hr), Dan-
ish (Da), Dutch (NI), English (En), Estonian (Et),
Finnish (Fi), French (Fr), German (De), Greek (El),
Hungarian (Hu), Italian (It), Latvian (Lv), Lithua-
nian (Lt), Maltese (Mt), Polish (P1), Portuguese
(Pt), Romanian (Ro), Slovak (Sk), Slovene (S1),
Spanish (Es) and Swedish (Sv). VoxPopuli also
provides a total of 1.8K hours of transcribed speech
in 16 languages (En, De, Fr, Es, P, It, Ro, Hu, Cs,
NI, Fi, Hr, Sk, S, Et and Lt) and their aligned oral
interpretations into 15 target languages (En, De, Fr,

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 993-1003
August 1-6, 2021. ©2021 Association for Computational Linguistics


https://github.com/facebookresearch/voxpopuli
https://github.com/facebookresearch/voxpopuli

Es, P, It, Ro, Hu, Cs, NI, Fi, Sk, SI, Lt and Da)
totaling 17.3K hours.

We describe our corpus creation methodology in
Section 2 and analyze the created corpus in Sec-
tion 3. We provide ASR baselines and demonstrate
the value of our multilingual unlabeled data as well
as weakly labeled data on several non-English lan-
guages in Section 4.

2 Corpus Creation

2.1 Data Acquisition

VoxPopuli sources data from 2009-2020 European
Parliament (EP) event recordings, which include
plenary sessions, committee meetings and other
events. In each event, speakers give speeches in
turn in different European Union (EU) languages.
These speeches are partially transcribed (for ple-
nary sessions only) and interpreted into 24 EU lan-
guages. The interpretations are only oral without
any transcription. In the following part, we refer to
the original speech as “source speech” and to the
interpreted one as “target speech”. We download
audio clips for both source and target speeches
from the official website!. We also crawl the
transcript, speaker information and starting/ending
timestamps for each speech (for plenary sessions
only) from that source, with which we later align
the speech to its transcript and interpretation ut-
terance by utterance. The acquired raw data suf-
fers from missing audios, incomplete transcripts
and inaccurate timestamps. We build data process-
ing pipelines to segment speech paragraphs into
utterances and filter out the ones with erroneous
transcriptions.

2.2 Data Processing
2.2.1 Unlabeled Speech

We construct VoxPopuli unlabeled set from all
source and target speeches in 23 EU languages
(excluding Irish because of very limited data avail-
ability). We segment full-event audios into short
clips of 15-30 seconds using an energy-based voice
activity detection (VAD) algorithm!. Each audio
clip has a maximum of 2 seconds of continuous
silence, and silent clips are discarded. Around 16%
of the data is dropped after silence removal, which
leads to a final overall duration of around 400K
hours.

"https://multimedia.europarl.europa.eu
'https://github.com/amsehili/auditok
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Unlab. Transcribed LM

Hrs Hrs Spkrs (F%)  Tkns Tkns
En | 24.1K | 543 1313 (29.6) 4.8M | 60.1M
De | 232K | 282 531 (30.6) 2.3M | 50.0M
Fr | 228K | 211 534 (38.6) 2.1M | 58.6M
Es | 214K 166 305 (40.6) 1.6M | 57.4M
Pl | 21.2K 111 282 (23.7) 802K | 13.6M
It 21.9K 91 306 (33.8) 757K | 52.1M
Ro | 179K 89 164 (27.6) 739K | 10.3M
Hu | 17.7K 63 143 (30.3) 431K | 13.0M
Cs | 187K 62 138 (24.9) 461K | 13.5M
NI 19K 53 221(39.3) 488K | 54.6M
Fi 14.2K 27 84 (56.8) 160K | 34.5M
Hr 8.1K 43 83 (33.1) 337K | 285K
Sk | 12.1K 35 96 (33.8) 270K | 13.3M
S1 11.3K 10 45 (43.9) 76K | 12.6M
Et 10.6K 3 29 (43.7) 18K | 11.3M
Lt | 144K 2 21 (14.8) 10K | 11.5M
Pt 17.5K - - - -
Bg | 17.6K - - - -
El 17.7K - - - -
Lv | 13.1K - - - -
Mt 9.1K - - - -
Sv | 16.3K - - - -
Da | 13.6K - - - -
All \ 384K \ 1791 4295 15M \ 467M

Table 1: Statistics for unlabeled (“Unlab.”) and tran-
scribed speech data in VoxPopuli: duration in hours
(“Hrs”), number of speakers (“Spkrs”), percentage
of female speakers (“F%”) and number of tokens
(“Tkns”). Durations are calculated on segmented au-
dios where leading and trailing silence is trimmed. The
LM data is a combination of VoxPopuli transcription
and sentences from EuroParl (Koehn, 2005).

2.2.2 Transcribed Speech

The VoxPopuli transcribed set comes from aligning
the full-event source speech audio with the tran-
scripts for plenary sessions. Official timestamps
are available for locating speeches by speaker in
the full session, but they are frequently inaccurate,
resulting in truncation of the speech or mixture
of fragments from the preceding or the succeed-
ing speeches. To calibrate the original timestamps,
we perform speaker diarization (SD) on the full-
session audio using pyannote.audio (Bredin et al.,
2020) and adopt the nearest SD timestamps (by
L1 distance to the original ones) instead for seg-
mentation. Full-session audios are segmented into
speech paragraphs by speaker, each of which has a
transcript available.

The speech paragraphs have an average dura-
tion of 197 seconds, which leads to significant
memory usage and prevents efficient parallelism
(batching) during model training. We hence further
segment these paragraphs into utterances with a
maximum duration of 20 seconds. We leverage



Source Target (Oral Interpretation)
En De Fr Es Pl It Ro Hu GCs N1 Fi Sk S1 Lt Da \ Total
En - 463 427 441 432 461 457 382 427 400 442 433 434 398 370 | 6.0K
De 187 - 196 204 214 217 198 205 214 196 217 208 218 164 179 2.8K
Fr 169 187 - 187 172 197 195 144 170 158 168 168 156 139 134 23K
Es 130 138 135 - 118 148 128 93 118 115 124 114 108 83 86 1.6K
Pl 68 66 54 55 - 67 55 43 67 42 55 62 57 50 34 775
It 69 77 76 79 72 - 75 61 68 64 71 66 70 53 60 961
Ro 60 59 59 58 49 61 - 38 50 43 48 50 46 38 29 688
Hu 30 38 25 27 29 30 27 - 27 20 31 29 26 21 18 378
Cs 39 35 29 30 36 32 31 23 - 23 29 55 29 25 18 434
NI 31 43 35 29 27 38 24 25 25 - 32 25 23 19 25 401
Fi 15 18 15 13 13 13 13 12 13 11 - 14 12 11 9 182
Hr 31 27 27 24 27 28 24 22 24 22 24 26 37 21 20 384
Sk 21 22 14 16 19 16 16 14 32 13 16 - 17 13 10 239
S1 6 6 4 5 5 6 5 4 5 4 5 6 - 4 3 68
Lt 1 1 1 1 1 1 1 1 1 1 1 1 1 - 0 13

Total | 857 12K 1.1IK 12K 12K 13K 12K 11K 12K 11K 13K 13K 12K 1.0K 995 | 173K

Table 2: Duration statistics (hours) of aligned speech-to-speech data in VoxPopuli between 15 source languages

and 15 target languages.

speech recognition (ASR) systems to force-align
speech paragraphs to the given transcripts and cut
the utterances by ending punctuation or the longest
silence inside the sentence if it exceeds 20 seconds.
The ASR systems are TDS models (Hannun et al.,
2019) trained with ASG criterion (Collobert et al.,
2016) on audio tracks from in-house de-identified
video data. The resulting utterance segments may
have incorrect transcriptions due to incomplete raw
transcripts or inaccurate ASR force-alignment. We
use the predictions from the same ASR systems
as references and filter the candidate segments by
a maximum threshold of 20% character error rate
(CER).

We split the filtered utterances into train, devel-
opment and test sets with disjoint speakers and
target duration ratio (18:1:1). To determine the
assignments, we group utterances by speaker and
sort them by overall duration in ascending order.
We assign the sorted groups to the test set in or-
der until it reaches 20 speakers or the target dura-
tion (whichever comes later). The same process
is repeated on the remaining utterance groups to
construct the development set (with minimum 10
speakers instead). Finally, the rest of utterances
make up the train set. This approach ensures higher
speaker diversity in the test and development sets.

2.2.3 Speech-To-Speech Alignment

Even though every source speech is associated with
corresponding simultaneous interpretations in tar-
get languages, considerable preprocessing and fil-
tering is necessary to make this dataset usable. Our
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strategy is to align source and target at the sentence
level using ASR.

We first compare the spectrogram of the source
and the target speech to remove the identical parts
and segment the target speech into paragraphs.
These identical speech are due to either the short
delay between the time the source speaker and the
interpreter started, or the fact that the source lan-
guage is the same as the target one, and thus no
interpretation is needed. For long target paragraphs,
we further segment them by silence into audio clips
of at most 15 minutes long. We use the same ASR
model described in Section 2.2.2 and a language
model (Section 2.2.4) to decode the segmented tar-
get audio. The decoded text is also forced aligned
with the target audio, so that we have the times-
tamps of every decoded word.

For each source segment produced in Sec-
tion 2.2.2, we locate all decoded words that are
within a window of five seconds to its start and
end. A set of candidate target segments can be
generated from all possible combinations of the
starting and ending decoded words. We compute
the cosine similarity between the LASER represen-
tation (Artetxe and Schwenk, 2019) of the source
text and each decoded text in the candidate set to
find the best target segment, i.e. the one with the
highest score. We first carry out this process for
all source segments, respectively, and then finetune
the boundaries of overlapping target segments for
consecutive source segments. Finally, a threshold
of 0.75 is applied on the similarity score to filter
out low-quality alignments, which can be due to



Vous le savez tous, la forét recule. Toutes
les deux secondes dans le monde, c’est
I’équivalent d’un terrain de football qui est
détruit, c’est en un an 1’équivalent du terri-
toire de la Greéce qui est déforesté et c’est
évidemment dramatique.

Original
(French)

As you all know, the forest is receding.
Every two seconds, across the world, the
equivalent of a football pitch is destroyed;
within a year, an area the size of Greece is
deforested. Clearly, this is a tragic situation.

Trans-
lation

You all know that we are losing forests ev-
ery second, the surface the size area of a
football field is lost in the forest. This is
really tragic.

Inter-
pretation

Table 3: An example from VoxPopuli for interpretese
vs. translationese. Translationese is verbatim and exact,
while interpretese tends to be more general and summa-
rizing with unimportant details dropped.

ASR errors.

In addition to ASR output, we also collect human
transcription on 400 hours of English target speech.
The human annotators were asked to provide times-
tamps for each word while transcribing, and thus
we can apply the same alignment process described
above on human transcription and generate a set of
ground truth speech-to-speech alignment data.

As a by-product from this alignment process,
source text and target speech is aligned, which pro-
vides speech-to-text “translation” data in the re-
versed direction. This data is weakly labeled—the
label (text) may contain more information than the
speech data (interpretation is likely to drop unim-
portant details) and hence is not exact. However, it
is still useful for ST model training as an addition
to labeled data.

2.2.4 Language Modeling Data

To train language models (LM) for ASR decoding,
we combine VoxPopuli transcription in the training
set with the EuroParl corpus (Koehn, 2005), which
is from the proceedings of the European Parlia-
ment from 1996 to 2011. To process the EuroParl
data, we first apply the sentence segmentation tool
provided with the corpus. We remove all texts in
the parentheses, replace hyphens and slashes with
space, and remove all other punctuation except
apostrophes. All digits are converted into words,
and all texts are normalized into lowercase. Table 1
shows the statistics of the LM data.
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3 Data Analysis

Unlabeled speech As we can see from Table 1,
VoxPopuli has a total of 400K hours of unlabeled
data well-distributed across 23 EU languages, re-
sulting in 8K-24K hours of data for each language.
This ensures adequate data on languages with lower
ASR resource, which are likely to benefit more
from semi-supervised learning. It also facilitates
multilingual model training since there is not much
data imbalance and little need for tuning data sam-
pling strategy.

Transcribed speech The VoxPopuli transcribed
data contains 16 languages totaling 1.8K hours
and 4.3K speakers, whose detailed statistics can
be found in Table 1, including duration (hours) by
language, number of speakers, percentage of fe-
male speakers and number of tokens. The data
distribution is imbalanced and reflects the natural
distribution of the number of native speakers. The
remaining 7 languages (Pt, Bg, El, Lv, Mt, Sv and
Da) are not covered due to either limited data vol-
ume or the availability of processing pipelines.

Speech-to-speech alignment The statistics of
the speech-to-speech alignment between all source
languages and 15 target languages are shown in
Table 2. Compared with the total amount of data
available for each source language (“Transcribed
hours” in Table 1), we obtain target alignments for
more than 70% of the source sentences in En, De,
Fr, Es and It, more than 50% for Pl, Ro, Cs, NI
and Hr, and the rest has at least 40% of source seg-
ments aligned. To examine the quality of our ASR
system, we align the ASR output with the human
transcription we collect on English target speech
and see a word error rate (WER) of 31.7. With
the human transcription, we can produce ground
truth speech-to-speech alignment data that is 1.1
times larger than the size of the alignment data cre-
ated from using ASR output, indicating that around
12% of the low-quality alignments are filtered due
to ASR errors. If we compare the ASR-based and
the ground truth alignment data, there is on average
a 0.75-second shift in the target segment bound-
aries.

Interpretese vs. translationese We exemplify
the differences between simultaneous oral interpre-
tation and offline written translation using VoxPop-
uli in Table 3. The latter is verbatim and exact
compared to the original speech, while the former



| En De It Fr Es Pl

Ro Hu NI Cs N Fi Hr

Sk | Avg. |

Sup. Dev | 30.1 29.0 41.6 28.6 274 27.1 285 274 357 278 957 457 449 30.2 37.1
baseline  Test | 30.0 29.3 452 30.5 314 25.6 27.7 279 383 27.7 96.5 41.6 402 32.7 37.5
VP-10K  Dev | 155 172 19.1 139 86 128 83 11.5 185 11.1 206 21.1 156 104 14.6

+FT Test | 162 162 215 154 11.0 125 94 120 197 118 26.1 17.1 141 11.1 15.3

Table 4: VoxPopuli ASR baselines and in-domain unsupervised pre-training. We report VoxPopuli dev and
test WER for languages with >10 hours of data. Top: supervised monolingual Transformer baselines. Bottom:
wav2vec 2.0 Base model pre-trained on 10K-hour VoxPopuli unlabeled data (23 languages) and fine-tuned on Vox-
Populi ASR data. As we can see, pre-training with in-domain unlabeled data substantially improves performance

especially for low-resource languages.

Within/Across Speaker |

En | Fr | Zh | St |

MFCC | 12.1/23.4 | 12.6/25.5 | 11.5/21.3 -

Sup.t | 6.2/8.0 | 8.7/10.8 | 7.9/10.3 -
LL-6K* | 4.5/62 | 8.4/12.7 8.2/8.2 | 1.8/2.7

VoxPopuli

En-500 | 6.9/9.9 | 9.6/14.5 8.7/9.7 | 1.112.2
Fr-500 | 8.1/12.1 | 9.1/13.8 | 9.2/10.1 | 0.5/1.5
En+Fr-500 | 6.9/9.8 | 9.0/13.1 8.6/9.6 | 0.9/1.6

Table 5: Phoneme discriminability of unsupervised
features across languages. We report ABX discrim-
inability score on the 10s test set from ZeroSpeech
2017 for English (“En”), French (“Fr”) and Man-
darin (“Zh”). We compare our models with the MFCC
baseline, the supervised topline and the state-of-the-
art monolingual (English) model*. We measure the
generality of the representations by standard deviation
(““Std.”) of the scores across the 3 languages. We see
that multilingual representations generalize better and
are more robust on unseen languages. T Dunbar et al.
(2017). * Riviere and Dupoux (2020).

tends to be more general and summarizing with
unimportant details dropped. Human interpreters
regularly apply these tactics to make better quality-
latency trade-offs. Speech-to-speech translation
models may benefit from these tactics if they are
trained on interpretation data that VoxPopuli pro-
vides.

4 Experiments & Results

We provide VoxPopuli ASR baselines and vali-
date the versatility of VoxPopuli unlabeled data
in unsupervised representation learning and semi-
supervised learning for ASR as well as ST. We
also evaluate the quality of speech-to-speech align-
ment indirectly via the weakly labeled ST data it
produces.
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4.1 Experimental Setup

For representation learning, we perform speaker
diarization before VAD-based segmentation so that
each utterance contains exactly one speaker. We
augment the data with time dropout, pitch modifi-
cation and reverberation (Kharitonov et al., 2020)
during model training.

For non-wav2vec models, we extract 80-
dimensional log-mel filterbank speech features
with 25ms windows size and 10ms shift. We apply
per-utterance CMVN (cepstral mean and variance
normalization) to the extracted features. For GPU
memory efficiency, we remove training samples
that have more than 60 seconds of speech or have
more than 1024 characters.

We train wav2vec 2.0 (Baevski et al., 2020) mod-
els with original hyper-parameter settings using
fairseq (Ott et al., 2019), except for Table 7 where
we use wav2letter (Pratap et al., 2018) and fol-
low Talnikar et al. (2020) to do finetuning using
both supervised CTC (Graves et al., 2006) loss
and unsupervised wav2vec 2.0 loss. The largest
model (“VP-100K”) takes 10 days on 128 V100
GPUs for 1M updates. For non-wav2vec models,
we train Transformer (Vaswani et al., 2017) with
cross-entropy criterion using fairseq S2T (Wang
et al., 2020a). For Section 4.2 and Section 4.4.1,
we use phoneme vocabularies for models that we
evaluate with PER (phone error rate) and character
vocabularies for the other. For Section 4.4.2, we
use Unigram (Kudo and Richardson, 2018) vocabu-
laries with 2K subwords for all models. To improve
ST model training, we pre-train the encoder on the
LibriSpeech (Panayotov et al., 2015) ASR task.

We use the best checkpoint by validation loss
for evaluation, except for Section 4.4.2 where we
average the 10 best checkpoints. We build n-gram
language models for decoding (when specified) us-
ing KenLLM (Heafield, 2011).



PT PT Langs.

Domain Hours In Out | Es Fr It

PER | (VoxPopuli Langs.)

PER
Avg. | Std. |

PER | (Other Langs.)

Nl Sv Ky Ru Tr Tt Zh

m-CPCT | Out 60K 0 1 |364 443 378 43.1 465 |37.5 42.4 457 40.6 53.2 | 427 438
wav2vec 2.0 Base (95M)
XLSR-Mono* | In  <04K 1 0 | 68 104 109 374 63.6 [29.6 11.6 44.0 214 314 | 267 172
XLSR-10* | In 14K 10 1 | 94 134 138 163 21.0 | 8.6 112 1L7 83 245 | 138 5.1
VP-Mono-5K | Out 45K 1 0 |68 86 75 97 93 | - - - - - - -
VP-10K | Out 10K 5 18 | 85 119 11.0 13.6 150 | 109 124 13.1 88 193 | 125 3.0
VP-100K | Out 100K 5 18 | 7.6 103 9.7 122 13.0 | 94 107 117 8.0 175 | 11.0 27
wav2vec 2.0 Large (317M)
XLSR-10* | 'In 14K 10 1 | 79 126 117 140 206 | 70 93 97 72 228 | 123 52
XLSR-53% | In+Out 56K 10 43 | 29 50 67 58 122 | 61 81 71 51 183 | 7.6 42
VP-Mono-5K | Out 45K 1 0 |55 70 61 72 63 | - - - - - - -
VP-I0K | Out 10K 5 18 | 63 89 79 93 97 |93 92 113 76 188 | 98 32
VP-100K | Out 100K 5 18 | 54 7.7 65 80 83 |85 80 98 69 173 | 86 3.1

Table 6: Few-shot ASR with out-of-domain out-of-language unsupervised pre-training. We adopt the Com-
mon Voice (CV) few-shot phoneme recognition setup’ and report test PER (phone error rate). Our wav2vec 2.0
models are pre-trained on VoxPopuli (out-of-CV-domain) either with 4.5K-hour monolingual data (“VP-Mono-
5K”) or 10K-hour/100K-hour multilingual data (“VP-10K” and “VP-100K”). Pre-training languages may include
the ones being evaluated (“In”) and others (“Out”). Our models outperform XLSR-Mono and XLSR-10 (same
architecture as ours but using in-domain CV data) on most languages with out-of-domain and (partially) out-of-
language pre-training. Our best model (VP-100K Large) performs competitively to XLSR-53, which leverages
52K-hour out-of-CV-domain data in addition to the CV data. T Riviere et al. (2020) ¥ Conneau et al. (2020)

Train Hours Test WER |

De Fr Es De Fr Es

Baseline” | 1582 787 660 | 12.8 194 165
VP-50K | 314 364 203 | 17.0 188 11.9
+LM | (20%) (46%) (31%) | 7.8 9.6 10.0

Table 7: ASR with out-of-domain unsupervised pre-
training and less supervision. We report test WER on
Common Voice (CV). Top: supervised baseline trained
on the combination of an extended CV train set and sev-
eral other corpora (decoding with LM). Bottom: our
wav2vec 2.0 Base model pre-trained on SOK-hour Vox-
Populi data (out-of-CV-domain) and fine-tuned on the
standard CV train set (a subset of the baseline’s one).
We optionally use 4-gram LMs trained on CV for de-
coding. Our model outperforms the baseline (even
without LM) while using less supervised train data.
TDeepspeech Polyglot.

4.2 Speech Recognition (ASR) Baselines

We provide monolingual Transformer baselines for
the 14 languages that have more than 10 hours of
transcribed data (see Table 1). Both development
and test WER are reported in Table 4. We see
that several low-resource languages (Fi, It, Hr, Sk
and SI) suffer from high recognition errors (>40%
WER) due to the lack of training data. Even the
highest resource one (En) has a high WER of
around 30%.

4.3 Unsupervised Representation Learning

We follow the setting in Riviere et al. (2020) to
evaluate unsupervised speech representations by
phoneme discriminability on 3 languages (English,
French and Mandarin), and report ABX discrim-
inability score (Schatz et al., 2013) on the 10s test
set from ZeroSpeech 2017 (Dunbar et al., 2017).
Standard deviation (“Std.”) of the scores across
the 3 languages is also reported as a measure for
the generality of the representations. As previous
studies focus on monolingual representations, we
explore multilingual representations and examine
their generality across languages. We train CPC-
based models (Riviere and Dupoux, 2020) on 500-
hour English and 500-hour French unlabeled data
from VoxPopuli, respectively. And we combine En-
glish and French data with 50% sampling (so that
the total duration remains the same) for the multi-
lingual setting. We observe from Table 5 that the
multilingual model (“En+Fr-500") performs com-
parably to the monolingual ones (“En-500" and
“Fr-500") on their seen languages and performs bet-
ter on unseen language (“Zh”). Its scores vary less
across languages (lower “Std.”) compared to “En-
500”. The variance of the scores is comparable to
“Fr-500” while the average is lower. We conclude
that multilingual representations generalize better
across languages and are more robust on unseen

998



| Fr—Ent | Es—Ent | De—Ent || Fr| | Es | | De |
Train hours (EP+CV) 38+264 32+113 42+184 38+264 32+113 42+184

Test set EP CvV EP CvV EP CvV EP CcvV EP CvV EP CvV

(Cascaded) Baseline! | 254 276 | 265 274 | 213 210 || 243 183 | 150 214 | 198 16.0

Our end-to-end baseline | 24.5 27.0 | 20.5 26.6 | 17.5 20.0 20.8 188 | 17.2 14.1 | 232 184

With 800h self-training | 26.7 28.6 | 22.4 26.8 | 18.8 20.1 195 173 | 156 13.7 | 21.8 175

With 3000h self-training | 27.4 28.9 | 22.7 273 | 19.6 200 || 19.0 17.0 | 153 132 | 214 173
400h weakly labeled | 22.9 10.1 | 222 109 | 18.0 8.8
+labeled | 31.1 30.3 | 284 29.7 | 244 234

Table 8: ST and ASR using VoxPopuli data for self-training or weak supervision. Left: test BLEU for ST
models. Right: test WER for ASR models. We evaluate in-VoxPopuli-domain performance with EuroParl-ST
(EP) and the out-of-domain performance with CoVoST 2 (CV). We combine both corpora to train our baseline
and pseudo-label 3K-hour monolingual VoxPopuli unlabeled data for self-training. For ST training with weak
supervision, we combine EP, CV and 300h weakly labeled data from VoxPopuli. Both approaches for leveraging
VoxPopuli data improve in-domain (EP) and out-of-domain (CV) performance simultaneously. T EP baselines
from Iranzo-Sanchez et al. (2020) and CV baselines from Wang et al. (2020b).

languages. For quick exploration, we leverage only
part of the VoxPopuli unlabeled data and leave the
validation on more data to future work.

4.4 Semi-Supervised Learning

We explore two semi-supervised learning settings
for the application of VoxPopuli unlabeled data:
unsupervised pre-training followed by supervised
fine-tuning for ASR and self-training for ASR as
well as ST.

4.4.1 ASR with Unsupervised Pre-Training

Self-supervised (unsupervised) pre-training such
as wav2vec 2.0 (Baevski et al., 2020) substan-
tially reduces the need of labeled data in ASR.
Furthermore, multilingual pre-training (Conneau
et al., 2020) allows cross-lingual transfer, which
brings extra gains especially to low-resource lan-
guages. Pre-training wav2vec 2.0 models is, how-
ever, resource-intensive and hence re-training mod-
els for each task with different domains is imprac-
tical. With the large-scale multilingual data in
VoxPopuli, we explore if scaling multilingual pre-
training can take us towards the one-model-fits-all
paradigm by alleviating the impacts of domain or
language mismatch between pre-training and fine-
tuning. We train wav2vec 2.0 models ! on 10K-
hour, 50K-hour and 100K-hour VoxPopuli data in
23 languages (denoted as “VP-10K”, “VP-50K”
and “VP-100K”, respectively). We also train mod-
els with 4.5K-hour monolingual data (denoted as
“VP-Mono-5K”) for comparison. For quick verifi-
cation, we use only part of the VoxPopuli unlabeled
data for pre-training. We leave training the models

"wav2vec 2.0 Base (95M) unless specified otherwise.

on the full 400K-hour data to future work, which
is supposed to achieve even better performance.

In-domain pre-training We examine the con-
ventional in-domain pre-training setting on the Vox-
Populi ASR benchmark. We evaluate the VP-10K
model, where the pre-training data is filtered so that
it has no overlaps with the transcribed development
and test set. From table 4, we see that pre-training
using unlabeled data brings significant gains to all
the languages (average 59% test WER reduction).
The gains are most significant on the low-resource
languages, where improvements are qualitative (for
example, from nearly 100% test WER on S1 down
to around 30%).

Out-of-domain pre-training We examine the
out-of-domain pre-training setting using the Com-
mon Voice (CV) ASR corpus (Ardila et al., 2020).
In contrast with the political domain oral speech
in VoxPopuli, they are more fluent read speech of
no copyright sentences (for example, Wikipedia
articles). We adopt the few-shot phoneme recog-
nition setup on CV v3 from Riviere et al. (2020),
with which domain adaptation is limited during
fine-tuning due to the small data volume — it
has 1-hour train set, 20-minute development set
and 1-hour test set for 10 languages including 5
VoxPopuli ones. We present the performance of
VP-Mono-5K, VP-10K and VP-100K with the m-
CPC (Riviere et al., 2020) and XLSR (Conneau
et al., 2020) baselines in Table 6, where phone error
rate (PER) is reported. The XLSR baselines share
the same wav2vec 2.0 architecture as our models
but are trained with in-domain CV data. VP-Mono-
5K outperforms XLSR-Mono and XLSR-10 on all
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5 VoxPopuli languages (except for a tie on Es with
XLSR-Mono). VP-100K outperforms XLSR-10
on 8 (9) out of the 10 languages. VP-100K (Large)
overall performs competitively to XLSR-53, which
leverages 52K-hour out-of-domain data in addition
to the in-domain CV data. Notably, it outperforms
XLSR-53 on Zh, which is covered by XLLSR-53 but
remote from the EU languages in VP-100K. This
suggests the high generality of the speech represen-
tations VP-100K learned.

We also evaluate our multilingual model (VP-
50K) under the normal setup (CV v5.1) and report
test WER in Table 7. They are compared with
supervised baselines from DeepSpeech-Polyglot!,
which leverage extended CV train sets and several
other corpora for training as well as LM for de-
coding. Our model outperforms the baseline with
fine-tuning on the standard CV train set (a subset
of the baseline’s one), even when not using LM in
decoding.

Out-of-language pre-training In the few-shot
phoneme recognition setup (Table 6), VP-100K
does not cover 5 of the 10 CV languages (Ky, Ru,
Tr, Tt and Zh) in pre-training, but leverages data
from 18 additional EU languages. It outperforms
the in-domain in-language XLSR baselines on most
of the uncovered languages (except Ky which is a
remote central Asian language). Moreover, it per-
forms more stably across all the 10 languages with
a smaller variance (standard deviation) on PER.

4.4.2 Self-Training for ASR and ST

Self-training (Scudder, 1965) is a classical semi-
supervised learning approach, where unlabeled
data is equipped with pseudo-labels from a su-
pervised model and then combined with labeled
data for model training. We use the combination
of EuroParl-ST (Iranzo-Sanchez et al., 2020) and
CoVoST 2 (Wang et al., 2020b) for both ASR and
ST labeled data in 3 languages (directions). The
former is created from 2009-2012 EP plenary ses-
sions and hence has the same domain as VoxPop-
uli. The latter is based on Common Voice v4,
which has different domain than VoxPopuli and
dominates the combined train set. We train Trans-
former Base (Vaswani et al., 2017) supervised base-
lines and use 0.8K/3K-hour monolingual VoxPop-
uli unlabeled data (from 2013-2020 sessions only
to avoid overlaps with EuroParl-ST) to self-train
Transformer Large models. We upsample labeled

"https://gitlab.com/Jaco-Assistant/deepspeech-polyglot

data in self-training so that it has the same duration
as the unlabeled one. We observe from Table 8
that self-training on VoxPopuli improves both in-
domain (“EP”) and out-of-domain (“CV”’) perfor-
mance with similar magnitude most of the time.
For ST, self-training helps to narrow the gap be-
tween end-to-end models and the cascaded ones
(more labeled data available) without the addition
of expensive labeled data.

4.5 Weakly Supervised ST

We evaluate the quality of the weakly labeled ST
data from our speech-to-speech alignment on the
same benchmark as the self-training experiments.
This also provides an indirect evaluation for our
alignment pipeline since imprecise alignments hurt
the ST label quality. We examine the performance
of weakly supervised training as well as joint train-
ing using both labeled and weakly labeled data. We
see from Table 8 that the former is on par with (or
better than) the supervised baseline in the VoxPop-
uli domain (“EP”’) with 0.3x-1.8x more training
data than the baseline. Joint training brings sub-
stantial gains to both in-domain (“EP”’) and out-of-
domain (“CV”) performance, and it outperforms
self-training. This suggests that our weakly labeled
data (0.4K hours) is much more informative and
efficient than the pseudo-labeled data (3K hours)
when combined with labeled data.

5 Related Work

Multilingual speech corpora LibriLight (Kahn
et al., 2020b) currently represents the largest scale
unlabeled speech corpus but it is limited to English.
MLS (Pratap et al., 2020) is a recently released
large-scale multilingual corpus of read speech in
8 languages, derived from LibriVox. MAILABS'
is also derived from Librivox and has about 1000
hours available in 9 languages. While MLS and
MAILABS are derived from audiobooks, Vox-
Forge1 and Common Voice (Ardila et al., 2020)
gather data via crowd-sourcing. VoxForge col-
lected data in about 15 different languages with
about 300 hours of speech in total; Common Voice
currently supports 60 languages for a total of 7327
validated hours available. The CMU Wilderness
dataset (Black, 2019) collects readings from the
New Testament, with 700 different languages avail-

"https://www.caito.de/2019/01/the-m-ailabs-speech-
dataset
"http://www.voxforge.org
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able. IARPA Babel program' collected data for 24
languages, mostly from conversational telephone
speech. The dataset is however not released and
under an open license, and focused on low-resource
languages, with labeled data ranging between 25
to 65 hours per language.

Speech-to-Text and Speech-to-Speech Transla-
tion Apart from machine translation (Koehn,
2005), the European Parliament open data has fos-
tered the development of corpora for speech-to-
text translation and for simultaneous interpreta-
tion. EuroParl-ST (Iranzo-Sénchez et al., 2020) is a
multilingual speech-to-text translation corpus with
translations between 6 European languages (En, Fr,
De, Es, It and Pt). Similarly, EPIC (Bendazzoli
et al., 2005) is derived from the European Parlia-
ment with simultaneous interpretation speeches in
Italian, English and Spanish. CIAIR (Tohyama
et al., 2004) and STC (Shimizu et al., 2014) are si-
multaneous interpretation corpora between English
and Japanese with a total of about 180 hours for the
former, while the latter is currently unavailable for
download. The MaSS dataset (Zanon Boito et al.,
2020) also provides speech to speech alignments
for about 8k utterances across 8 languages, for a
total of about 23h of speech.

6 Conclusion

In this paper, we introduce a large-scale multilin-
gual speech corpus, VoxPopuli, for representation
learning, semi-supervised learning and interpreta-
tion. VoxPopuli provides the largest open unla-
beled speech data to date, which has broad applica-
tions including unsupervised pre-training and self-
training. VoxPopuli is also the first corpus for large
amounts of open speech-to-speech interpretation
data. We provide VoxPopuli ASR baselines and val-
idate the versatility of VoxPopuli unlabeled data in
semi-supervised learning under challenging out-of-
domain settings. The corpus is available at https:

//github.com/facebookresearch/voxpopuli.
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