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Abstract

We present a targeted, scaled-up comparison

of incremental processing in humans and neu-

ral language models by collecting by-word re-

action time data for sixteen different syntac-

tic test suites across a range of structural phe-

nomena. Human reaction time data comes

from a novel online experimental paradigm

called the Interpolated Maze task. We com-

pare human reaction times to by-word proba-

bilities for four contemporary language mod-

els, with different architectures and trained on

a range of data set sizes. We find that across

many phenomena, both humans and language

models show increased processing difficulty

in ungrammatical sentence regions with hu-

man and model ‘accuracy’ scores (à la Mar-

vin and Linzen (2018)) about equal. How-

ever, although language model outputs match

humans in direction, we show that models

systematically under-predict the difference in

magnitude of incremental processing difficulty

between grammatical and ungrammatical sen-

tences. Specifically, when models encounter

syntactic violations they fail to accurately pre-

dict the longer reaction times observed in the

human data. These results call into question

whether contemporary language models are

approaching human-like performance for sen-

sitivity to syntactic violations.

1 Introduction

A substantial body of work has investigated con-

temporary language models (LMs) by assessing

whether their behavior is consistent with the rules

of syntax (Hu et al., 2020; Marvin and Linzen,

2018; Warstadt et al., 2020).1 Among other

structures, these studies have investigated agree-

ment (Linzen et al., 2016; Gulordava et al., 2018)

1Data and code for this paper can be found
online at https://github.com/wilcoxeg/

targeted-assessment-imaze

long distance dependencies (Wilcox et al., 2018),

pronominal and particle licensing (Jumelet and

Hupkes, 2018; Futrell et al., 2019), and expecta-

tions for phrase-level constituents (Futrell et al.,

2018). Many of the studies which report aggre-

gate behavior across a broad number of phenom-

ena focus on accuracy scores, or the proportion

of time LMs or human subjects in an online ex-

periment prefer a grammatical variant in match-

ing grammatical / ungrammatical sentence pairs.

While these investigations provide much insight,

they collapse a crucial dimension of comparison,

namely the difference in magnitude between the

grammatical and ungrammatical conditions. As

long as the direction of their predictions are the

same, an LM which finds grammatical conditions

only marginally worse than their corresponding

ungrammatical counterpart will receive the same

score as a model that displays large differences

between the two conditions.

At the same time, a related line of work has

investigated the quantitative relationship between

incremental predictions of language models and

human reaction times (Hale, 2001; Levy, 2008).

Smith and Levy (2013) found that this relationship

is log-linear across multiple orders of magnitude

for 3-gram models, and recent investigations have

shown that this holds for contemporary neural net-

work models as well (Wilcox et al., 2020; Good-

kind and Bicknell, 2018). So far, this work has

largely focused on the aggregate relationship, in-

stead of isolating individual phenomena in targeted

testing environments.

We combine these two approaches with a tar-

geted assessment of incremental processing in neu-

ral language models and humans. We collect in-

cremental processing data on a series of sixteen

test suites, adapted from Hu et al. (2020), each

of which targets a different syntactic phenomenon.

For LM incremental processing data, we collect

https://github.com/wilcoxeg/targeted-assessment-imaze
https://github.com/wilcoxeg/targeted-assessment-imaze
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Test Suite Name Tag Example

Wh-Cleft Structures Cleft What she did/spied was see the giraffe/the giraffe

Filler-Gap Dependency, Subject Gap FGD-subj I know who/that /my mother sent the present to Taylor.

Filler-Gap Dependency, Object Gap FGD-obj I know who/that my mother sent /the present to Taylor.

Filler-Gap Dependency, PP Gap FGD-pp I know who/that my mother sent the present to /Taylor
last weekend.

Main Verb/Reduced RC Gardenpath MVRR The ship ∅/that was sunk/steered in the storm carried treasure.

NPI Licensing, any, Subj RC Modifier NPL-any-src No/The senator that no/the journalist likes has gotten any votes.

NPI Licensing, any, Obj RC Modifier NPL-any-orc No/The senator that likes no/the journalists has gotten any votes.

NPI Licensing, ever, Subj RC Modifier NPL-ever-src No/The senator that no/the journalist likes has ever won.
NPI Licensing, ever, Obj RC Modifier NPL-ever-orc No/The senator that likes no/the journalists has ever won.

Subject-Verb Number Agr., Subj RC Modifier SVNA-src The lawyer/lawyers that helped the mayor is/are organized.
Subject-Verb Number Agr., Obj RC Modifier SVNA-orc The lawyer/lawyers that the mayor hired is/are very organized.
Subject-Verb Number Agr., PP Modifier SVNA-pp The lawyer/lawyers next to the mayor is/are very organized.

Reflexive Anaphora, Masc., Subj RC Modifier RNA-m-src The dukes/duke that hunted the rabbits saw himself/themselves
in the mirror.

Reflexive Anaphora, Masc., Obj RC Modifier RNA-m-orc The dukes/duke that the knights distrust saw
himself/themselves in the mirror.

Reflexive Anaphora, Fem., Subj RC Modifier RNA-f-src The queens/queen that hunted the rabbits saw
herself/themselves in the mirror.

Reflexive Anaphora, Fem., Obj RC Modifier RNA-f-orc The queens/queen that the knights distrust saw
herself/themselves in the mirror.

Table 1: The sixteen test suites evaluated in this paper. Sentence regions which are manipulated to form the four

conditions in each test suite are indicated with bold. Critical regions are underlined.

by-word probabilities for four contemporary neu-

ral network architectures. For human incremental

processing data, we use by-word reaction times

(RTs). We collect these by deploying a novel on-

line measurement paradigm called the Interpolated

Maze, which is based on the Maze task (Forster

et al., 2009). In the Maze task, participants must

read a sentence incrementally by selecting the cor-

rect word from two possible continuations, one of

which is ungrammatical. The time it takes partici-

pants to select the correct choice has been shown

to effectively capture incremental processing cost

and can be deployed at scale (Boyce et al., 2020).

We deploy three analysis techniques to investi-

gate how well models capture the human incremen-

tal processing data. First, we compute accuracy

metrics (for LMs) and consistency scores (for hu-

mans) for each of our test suites, which correspond

to the proportion of the time behavior is consis-

tent with the relevant grammatical rules. We find

that, for this analysis, humans and machine perfor-

mance is about equal. Next, we compare the ob-

served reaction-time slowdown between grammati-

cal/ungrammatical conditions within a test suite to

the slowdown predicted by each of our models. For

this analysis we use the methodology developed by

Van Schijndel and Linzen (2018), who use a ms/bit

(milliseconds of reaction time per bit of surprisal)

conversion metric derived from a fitted regression

model to convert between the outputs of LMs and

slowdowns in human reaction times. We find that

models systematically under-predict the observed

human data. In our third analysis, we train a linear

regression models to predict reaction times from

probabilities in non-critical sentence regions, and

show that these models are relatively poor at pre-

dicting reaction times in critical sentence regions.

That is, in areas of the sentence where human reac-

tion time is influenced by grammatical violations,

LM probabilities routinely under-predict human

processing difficulty as measured by reaction time.

Taken together, these results indicate that contem-

porary neural network languages models are sys-

tematically less sensitive to grammatical violations

compared to humans.

2 Methods

We collect incremental processing data on a series

of test suites, each of which targets an individual

syntactic phenomenon. Composition of the test

suites is described in Section 2.1. Methods used

to collect incremental processing data are outlined

in Section 2.2, for human reaction times. Section

2.3 describes the models tested. Linear Regression

Models used to predict reaction times from model

outputs will be referred to as ‘Linear Fits’ to avoid
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confusion with Language Models.

2.1 Syntactic Test Suites

We use sixteen test suites for syntactic generaliza-

tion, adapted from Hu et al. (2020). Test suites

consist of 20-25 items. Each item appears in four

conditions, two grammatical and two ungrammat-

ical.2 Table 1 gives the name of each test suite,

an example, as well as a tag, which we will use

to refer to that suite in figures. When test suites

have modifiers they always included distractors of

the opposite grammatical category. For example

singular reflexive anaphora sentences with subject

relative clause modifiers would have a plural noun

in the relative clause (e.g. The bishop who likes the

kings saw *themselves/himself in the mirror.)

Following the logic from Hu et al. (2020), each

test suite comes with two or more criteria, which

specifies an inequality that should hold in a partic-

ular critical region if model behavior follows the

rules of the relevant grammatical construction. Ac-

curacy scores for each test suite are generated by

computing the proportion of the time the inequality

holds within the critical region, across items in a

test suite. In Hu et al., test suites include criteria

that correspond to 2-way contrasts between gram-

matical/ungrammatical conditions as well as 2x2

interactions between four conditions. We only look

at the 2-way contrasts, here.

The incremental processing measure we de-

rive from a language model to determine its ac-

curacy according to a suite’s inequality predic-

tions is surprisal. Surprisal is the inverse log

probability of a word given its context: S(xi) =
− log2 p(xi|x1...xi−1), measured in bits. In this

paper, we novelly extend the usage of these in-

equalities to determine a human consistency score

for each test suite, by checking the mean reaction

times for the various conditions of each item in

the suite against the suite’s criteria. For natural-

istic corpus materials, the effect of surprisal on

human reaction times has been shown to be linear

(Smith and Levy, 2013; Goodkind and Bicknell,

2018; Wilcox et al., 2020), motivating this usage of

syntactic generalization criteria on human reading

patterns. We use the same criteria as described in

Appendix B of Hu et al. (2020).

To walk through a single test suite in detail, (1)

2For the MVRR test suites, the ‘ungrammatical’ condi-
tions are plausibly licensed by the grammar, but are unlikely.
Following convention in linguistics, ungrammatical sentences
will be marked with a *.

gives an example of all four conditions of the Main

Verb / Reduced Relative Clause suite, with critical

regions underlined.

(1) a. The artist drawn a portrait was impressed with the

work. [UN-REDUCED, UNAMBIGUOUS]
b. The artist that was drawn a portrait was impressed

with the work. [REDUCED, UNAMBIGUOUS]
c. The artist painted a portrait was impressed with the

work. [UN-REDUCED, UNAMBIGUOUS]
d. The artist that was painted a portrait was impressed

with the work. [REDUCED, AMBIGUOUS]

The logic of the test suite relies on the fact that

strings like painted are ambiguous between active

past-tense main verbs and passive participles that

introduce a reduced relative clause. On the other

hand, verbs like drawn unambiguously introduce

a reduced relative clause. If subjects believe that

the ambiguous form of the verb introduces a main

verb, they should find the critical-region verb was

impressed surprising. That is, relative to the [RE-

DUCED, AMBIGUOUS] conditions, not reducing

the verb or not using an ambiguous verb should

make the critical region less surprising (1 and 2

below). Furthermore, the effect of not reducing the

relative clause should be smaller for unambiguous

verbs than for ambiguous ones (3).

If we denote for convenience Sx(wi) as the sur-

prisal of word wi in the context of version x of a

test suite item, then the following list outlines these

three predictions as inequalities, which we used to

determine accuracy scores on our test suites.

1. Sd(was impressed) < Sc(was impressed)

2. Sd(was impressed) < Sb(was impressed)

3. (Sd(was impressed) - Sc(was impressed)) < (Sb(was
impressed) - Sa(was impressed))

To foreshadow our results, the MVRR panels of

Figures 3 and in Appendix A show that all three

of these criteria are met for most items both by

all models and by human average reaction times.

Unlike our other test suites, these predictions do

not correspond to contrasts between sentences that

vary based on their grammaticality, but rather on

predictive processing that prefers the main-verb

analysis for locally ambiguous strings.

2.2 The Interpolated Maze Task

Human reaction time data was collected via a novel

implementation of the Maze Task (Forster et al.,

2009) which we call the Interpolated Maze. In a

maze task participants read through a sentence; at

each index they are presented with two possible

continuations, one word is a plausible next-word
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The x-x-x

beside beaver

slapped pretty

its of

ago tailTime

The x-x-x

bliffor beaver

slapped sulped

its eet

twul tailTime

The x-x-x

bliffor beaver

slapped pretty

its of

twul tailTime

Grammatical Maze 

(G-Maze)

Lexical Maze 

(L-Maze)

Interpolated Maze 

(I-Maze)

Figure 1: The Maze Task: Participants read the sentence word-by-word. At each index they must select the right

continuation. For this study, we introduce the Interpolated Maze, which is a blend of G-Maze and L-Maze.

in the sentence and the other word is a distrac-

tor. Participants must select the correct continua-

tion by pressing a key on their keyboard. Figure

1 shows a cartoon of this process for three vari-

ants of the Maze Task. In the G(rammatical)-Maze

version, the distractor word is a word of English,

only it does not constitute a grammatical continua-

tion. In the L(exical)-Maze variant, the word is a

non-English nonce word. If participants select the

wrong continuation, the trial ends and they begin

reading the next sentence. The time it takes partici-

pants to select the correct word by pressing a key

has been shown to be a robust measure of incremen-

tal processing difficulty, with slowdowns occurring

on target words instead of in subsequent spillover

regions as is the case with other online processing

measures such as self-paced reading (Boyce et al.,

2020).

Of these two variants, G-Maze has been shown

to produce higher sensitivity results than L-Maze

(Boyce et al., 2020), however because each index

must present one possible continuation, it cannot

be used be used for items that have ungrammatical

conditions. At the critical choice point, both the

distractor and the continuation would be ungram-

matical and participants would not know which

continuation to select. To solve this problem we

deploy a novel variant of the maze task called Inter-

polated Maze, or I-Maze. In I-Maze, we interweave

G-Maze and L-Maze choices, with L-Maze distrac-

tors in critical regions where one of the conditions

is ungrammatical. Participants are instructed to

choose English words over nonce-words, thus mak-

ing the ‘right’ choice in these regions unambiguous.

In order not to clump L-Maze distractors only in

critical regions, we randomly sample ∼25% of all

other words and render them as L-Maze choices.

For a full comparison of I-Maze, G-Maze and L-

Maze see Vani et al. (2021). G-Maze distractors

were generated with the scripts provided in Boyce

et al. (2020), which uses a neural-network based

language model to automatically generate high sur-

prisal distractor words. Nonce words were gener-

ated with Wuggy (Keuleers and Brysbaert, 2010).

Experiments were hosted on Ibex Farm (Drum-

mond, 2013), with participants recruited on Ama-

zon M-Turk. reaction time data for each item was

collected from thirty separate participants.

2.3 Models Tested

JRNN is the ‘BIG LSTM+CNN Inputs’ from Joze-

fowicz et al. (2016). It was trained on the One

Billion Word Benchmark (Chelba et al., 2013) with

two hidden layers of 8196 units each and CNN

character embeddings as input.

GRNN is the best-performing model described in

the supplementary materials of Gulordava et al.

(2018). It was trained on 90 million tokens of

English Wikipedia with two hidden layers of 650

hidden units.

GPT-2 is the model presented in Radford et al.

(2019), and was trained on 40GB of internet text.

We use the version of GPT-2 available through the

Language Modeling Zoo distribution3

RNNG (Dyer et al., 2016) jointly models a sen-

tence as well as its syntactic parse. The model

explicitly represents parse trees and composes par-

tially built phrase structures. Models are supervised

with Penn-Treebank style parses during training.

We use the average of the three RNNG-BLLIP-LG

models from Hu et al. (2020).

3https://cpllab.github.io/lm-zoo/index.

html#welcome-to-lm-zoo

https://cpllab.github.io/lm-zoo/index.html#welcome-to-lm-zoo
https://cpllab.github.io/lm-zoo/index.html#welcome-to-lm-zoo
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Figure 2: Comparison between human consistency scores and model accuracy scores. Averages are taken across

all predictions within a test suite, error bars are 95% binomial confidence intervals. Scores are similar between

humans and models

2.4 Addressing Two Possible Confounds

Before we turn to our results, we will briefly ad-

dress two possible confounds with our methods:

First, while it may be the case that the relation-

ship between surprisal and reaction time is linear

in most sentence areas, this linearity may break

down in high surprisal regions regardless of the

underlying grammaticality of the sentence. Thus,

any potential badness of our linear fits in critical

regions is an epiphenomenon of the fact that they

were trained in regions where the linearity holds

and tested in regions where it does not. While

there is some evidence that the linear relationship

between surprisal may flatten off in high surprisal

regions for self-paced reading (see, e.g. Figure 1 in

Wilcox et al. (2020)), data collected for Maze task

for both GRNN and a large Transformer model

shows that the linear relationship holds even in

very high surprisal regions, even exceeding 20 bits

(Boyce and Levy, 2020) (see, especially Figure 3).

The second confound has to do with the Inter-

polated Maze task. It may be the case that switch-

ing between tasks incurs a cognitive load, thus un-

grammatical sentence regions might be read more

slowly, but only because they are always associated

with a switch from grammatical to lexical distrac-

tors. This could be worrisome, however we find

that reaction times in non-critical regions for L-

Maze decisions are actually slightly faster than

G-Maze decisions (p < 0.001 by a t-test). Fur-

thermore, all of our reported contrasts are between

L-Maze items, so this is controlled for in our anal-

yses.

3 Results

3.1 Test Suite Accuracy

In this section we discuss test suite accuracy scores,

which are computed using the predictions asso-

ciated with each test suite. For models, success

on a prediction means that the model found mate-

rial in a specified critical region more probable in

the grammatical condition than the ungrammatical

condition. For humans, a corresponding metric,

consistency scores, report the proportion of times

the critical region material was read more quickly

in the grammatical condition than in the ungram-

matical condition. Scores are calculated across the

total number of items in a test suite. Because mul-

tiple subjects provided reaction time data for each

item, we first average item-level data across all

participants before calculating consistency scores.

The accuracy/consistency scores for each of our

test suites can be seen in Figure 2. In this figure

each facet represents the results from a single test

suite, which aggregates across two or more predic-
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Figure 3: Comparison between human and (predicted) model reaction-time slowdows between grammatical and

ungrammatical conditions. Averages are taken across all predictions within a test suite, error bars are 95% confi-

dence intervals. Models systematically under-predict the observed slowdown.

tions. A full breakdown of test suite by prediction

can be seen in Appendix B. Chance, which is 50%

accuracy, is marked with a dashed blue line.

Humans perform above chance on 13/16 test

suites. Human RTs are at or below chance for

3/4 of the Reflexive Anaphora agreement tests and

the Subject-Verb Number Agreement with an Ob-

ject Relative Clause modifier. For the Reflexive

Anaphora tests, the low scores are driven by poor

performance when the noun that must be matched

is singular, such as in The lawyer who the judges

fear hurt herself/*themselves. Notably, human re-

action times for negative polarity items and for

number agreement on verbs and reflexive pronouns

are known to be susceptible to facilitatory inter-

ference effects from intervening attractors of the

sort that are used in our test suites (Vasishth et al.,

2008; Jäger et al., 2020). In general, human consis-

tency scores in this study are below that reported

in Marvin and Linzen (2018), who use an offline

forced-choice paradigm, in which participants must

judge which of two sentences sounds more natural.

Nevertheless, for the vast majority of test suites,

humans show robust sensitivity to the grammati-

cal effects being tested, and failure is due to spe-

cific biases, such as the singular reflexive behavior

discussed above, not general insensitivity to the

manipulations.

Table 2 shows the cross-suite correlations be-

tween human consistency scores and model accu-

Model Correlation p-value

GRNN 0.45 0.07
JRNN 0.68 < 0.01
GPT2 0.71 < 0.01
RNNG 0.65 < 0.01

Table 2: Correlations between model accuracy scores

and human consistency scores across test suites.

racy scores. The relatively strong correlation scores

indicate that the strength of signal for a syntactic

generalization in model surprisal differentials is

predictive of the signal-to-noise ratio for the gener-

alization in human reaction times.

3.2 Slowdown Between Conditions

In this section we turn to the size of the contrast be-

tween grammatical and ungrammatical conditions.

For humans, this contrast indicates a slowdown,

where critical regions of ungrammatical sentences

are read more difficultly than their corresponding

grammatical variants. For LMs, this contrast indi-

cates a surprisal difference, where ungrammatical

conditions are more surprising than their grammat-

ical counterparts. Do differences in surprisal accu-

rately predict the slowdowns observed in human

reaction time data?

To derive a predicted reaction-time slowdown

from the model surprisals, we followed the method-
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conditions. For this plot, labels indicate condition name, with a reference provided in Appendix A. Error bars are
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Model Surprisal Estimate p-value

GRNN 8.8ms/bit < 0.001
JRNN 0.5ms/bit < 0.05
GPT2 12.0ms/bit < 0.001
RNNG 19.0ms/bit < 0.001

Table 3: Surprisal Estimates from Linear Fits

ology outlined in Van Schijndel and Linzen (2018).

This approach draws on the fact that the relation-

ship between surprisal and human reaction time is

linear across multiple orders of magnitude (Smith

and Levy, 2013; Wilcox et al., 2020), including for

Maze data (Boyce and Levy, 2020). For each LM,

we trained a linear fit that predicts reaction time

from surprisal value at the word-level. The model

is fit on RTs from all L-Maze distractor trials, criti-

cal and non-critical region alike, and includes word

frequency and word length as additional predic-

tors, with random slopes for each item and each

participant. The linear model’s surprisal estimate,

therefore, is the slowdown in processing time pre-

dicted for each bit of surprisal. We treat this num-

ber as a scalar and multiply it by the difference

in surprisal between conditions to derive the total

predicted slowdown due to syntactic violation from

the language models. For all of our fits, we found

a significant effect for all of our predictors. The

estimates for each model’s surprisal term are given

in Table 3.

The results from this analysis can be seen in

Figure 3, with the various test suites on the x-axis

and observed or predicted slowdowns on the y-axis.

As with accuracy scores, we average across predic-

tions within each test suite. Humans demonstrate

positive slowdowns in 11/16 test suites, with re-

flexive anaphora again proving the exception to

the general trend. As is evident from the height

of the bars, models systematically under-predict

the slowdown observed in the human data. Mod-

els’ predictions are outside of the 95% confidence

intervals for the humans slowdowns in 7/16 test

suites for GPT2, 8/16 for RNNG, 9/16 for GRNN

and 12/16 for JRNN. The mean predicted differ-

ence between models and humans across all test

suites is 95ms (GPT2), 107ms (RNNG), 117ms
(GRNN) and 126ms (JRNN). These data indicate

that models are less sensitive to the contrast be-

tween grammatical and ungrammatical conditions

than are humans, at least in this controlled testing

environment.

3.3 Residuals

In this section, we discuss a follow-up analysis con-

ducted to validate the conclusion that models are

under-predicting reaction times in critical regions.

To do this, we train linear fits on data from the non-

critical regions, and get their residuals on data from

these regions as well the critical regions. The linear

fits are exactly the same as the ones described in the

previous section, except instead of being trained on

both critical and non-critical L-Maze trials, they are

trained on non-critical L-Maze trials alone. If the

conclusion from the last section is correct, then we

should see larger residuals for the critical-region

data then for the non-critical region data.

The results from this analysis can be seen in the

right and center facets of Figure 4. The left facet
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shows the mean absolute value of the residuals for

each of our LMs, both for the critical and non-

critical region. The center facet shows a histogram

of the same data. From both plots it is clear that the

critical region residuals are greater than the resid-

uals computed for words in other regions of the

sentence. From the histograms, we can see that the

critical region residuals are systematically higher

on average than the non-critical region residuals.

This indicates that the models under-predict the RT

values in the critical regions.

The difference between residuals provides addi-

tional evidence that models under-predict reaction

times in critical regions compared to words in other

parts of the sentence. However, it does not show

that models under predict reaction times specifi-

cally for ungrammatical sentences. To investigate

this, we break down average residual by condition,

within each of our sixteen test suites. The full re-

sults for this breakdown can be seen in Appendix B,

with the results for the Filler–Gap dependency tests

for the GRNN model in the right facet of Figure

4.4 Across all tests, we find that ungrammatical

conditions show much higher residual error. The

mean absolute value of the residual error is 163ms
in grammatical conditions, but in ungrammatical

conditions it is 244ms. The values of the two

conditions are significantly different (p < 0.001
by a t-test). Generally, residuals are largest for

Cleft, Filler–Gap Dependency and MVRR suites,

and smaller for suites that involve NPI Licensing,

Anaphora agreement and Subject-Verb Number

agreement. Human reaction-times are known to be

susceptible to interference effects from distractors

for these syntactic phenomena (Jäger et al., 2020),

which may explain why residuals are smaller for

these suites. Taken together this analysis demon-

strates that model surprisal values specifically un-

der predict human reaction times in ungrammatical

critical regions, suggesting that they are less sensi-

tive to syntactic violations than are humans.

4 Discussion

Our experiments have tackled the question of

whether syntactic difficulty can be reduced to by-

word probabilities by providing a comparison of

Language Model and human behavior that is both

incremental and targeted. Our methods build on

4With the MVRR test suite, no conditions are technically
ungrammatical, however we treat the reduced ambiguous con-
dition as ungrammatical for the purposes of this analysis.

those presented in Van Schijndel and Linzen (2018)

and van Schijndel and Linzen (2020), but differ

from theirs in a number of key respects, which

we review briefly below to highlight to novel as-

pects of our own investigation. First, all of our test

suites target grammatical/ungrammatical contrasts

(except for the MVRR gardenpath test), whereas

van Schijndel and Linzen test locally ambiguous

sentence regions that (may) require re-analysis for

proper processing. Second, we assess a broad range

of grammatical violations across sixteen test suites

that target seven distinct structures. Third, we de-

ploy a novel measurement of processing time (Inter-

polated Maze), instead of self-paced reading. We

fit our own linear models from the I-Maze data, and

use a ms/bit scalar term derived from lexical distrac-

tor items. Finally, we provide a novel analysis that

compares the residuals of linear fits between crit-

ical and non-critical regions, and we break down

these residuals based on the grammaticality of the

condition.

4.1 Model Comparison

While none of our models is able to capture hu-

manlike sensitivity in ungrammatical critical re-

gions, we do see some variation between them,

with RNNG and GPT-2 in particular showing the

most humanlike results. To compare model per-

formance for accuracy scores (i.e. the results pre-

sented in Section 3.1), we fit pairwise logistic re-

gression models, with the model class as the sole

predictor, and random slopes for nested item/test

suite combinations and predictions (this because

predictions are shared across test suites of the same

type). We find that GPT-2 performs significantly

beter than both JRNN and GRNN (p < 0.01)

and the contrast between RNNG and GRNN ap-

proaches significance (p = 0.07) None of the other

pairwise comparisons are significant.

To compare model performance at predicting

human slowdown in critical regions, we look at

the difference in residual errors between the mod-

els from Section 3.3 in the critical regions. We

fit liner regression models with the residual as

predictor variable, nested item/test suite combina-

tions, and condition as random slopes. We find

a significant contrast between GPT-2 and JRNN

(p < 0.05), with GPT-2 performing better, and

a near-significant contrast between RNNG and

JRNN (p = 0.053). Overall, these results sup-

port the conclusion that GPT-2 and RNNG have
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Figure 5: The effect of an additional ms/bit scalar term on model performance from tests in Section 3.2. Results

indicate that both the RNNG and GRNN models could reach near human-like performance (within the human

confidence intervals 90% of the time) when the scalar term is around 10.

a mild advantage over the other models. This is

especially interesting for the RNNG model, given

that it was trained on orders of magnitude less data

than GPT-2.

4.2 Single Stage Models

For the last decade, a “single-stage” theory of incre-

mental processing (Levy, 2008), in which word sur-

prisal in a left-to-right language model (with a large

or unlimited beam for models that explicitly repre-

sent multiple incremental parses) is the sole deter-

minant of the processing difficulty that arises due to

the relationship between a word and the context it

appears in, has been a prominent candidate theory

for both experimental (Staub, 2011) and compu-

tational (Frank and Bod, 2011) psycholinguistic

investigations. Although such a “single-stage” can

capture the qualitative difficulty patterns induced

by garden-pathing and other grammar-based ex-

pectation violations (Hale, 2001; Levy, 2013), we

now see that it quantitatively under-predicts the

difficulty induced when grammatical expectation

violations are involved, as measured by self-paced

reading (van Schijndel and Linzen, 2020) and re-

sponse times in the Maze task (here).

But just how bleak is the outlook for single-stage

models? To investigate this, we re-analyze the re-

sults from Section 3.2 with theoretical model per-

formance that includes an additional scalar term

that corresponds with an increase in the slope for

surprisal relative to that obtained from the fit to

reaction times. The results in Figure 5. Here, the

y-axis shows the proportion of tests for which the

models are within the confidence intervals of hu-

man results, and the x-axis shows this scalar term.

We find that models achieve 90% accuracy levels

when the scalar term is 4 for GPT2, 11 for RNNG

and 23 for GRNN. What this means is that if either

the ms/bit scalar term, or the surprisal in ungram-

matical conditions were (slightly under) an order of

magnitude greater, then the models’ performance

would match humans.

While we agree with the assessment from van

Schijndel and Linzen (2020) that these results pose

a challenge for contemporary implemented mod-

els, we do not necessarily believe that they cannot

be overcome within the framework of single-stage

models, especially ones that are mediated by sym-

bolic representations like the RNNG. Multiple op-

tions exist that could magnify surprisal values in

locally ambiguous or ungrammatical regions, such

as a reduced beam size (Roark, 2001) or particle

filters (Levy et al., 2009). Taken together, these

recent results highlight a key question for future

research—what additional modeling mechanisms

will be needed to accurately predict not only quali-

tative but also quantitative patterns of human diffi-

culty in language processing.
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Lena A Jäger, Daniela Mertzen, Julie A Van Dyke,
and Shravan Vasishth. 2020. Interference patterns
in subject-verb agreement and reflexives revisited:
A large-sample study. Journal of Memory and Lan-
guage, 111:104063.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. arXiv, 1602.02410.

Jaap Jumelet and Dieuwke Hupkes. 2018. Do language
models understand anything? on the ability of lstms
to understand negative polarity items. arXiv preprint
arXiv:1808.10627.

Emmanuel Keuleers and Marc Brysbaert. 2010.
Wuggy: A multilingual pseudoword generator. Be-
havior research methods, 42(3):627–633.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126–1177.

Roger Levy. 2013. Memory and surprisal in hu-
man sentence comprehension. In Roger P. G. van
Gompel, editor, Sentence Processing, pages 78–114.
Hove: Psychology Press.

Roger P Levy, Florencia Reali, and Thomas L Griffiths.
2009. Modeling the effects of memory on human
online sentence processing with particle filters. In
Advances in neural information processing systems,
pages 937–944.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

https://amlap2020.github.io/a/154.pdf
https://amlap2020.github.io/a/154.pdf
https://amlap2020.github.io/a/154.pdf


949

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational linguistics,
27(2):249–276.

Marten van Schijndel and Tal Linzen. 2020. Single-
stage prediction models do not explain the magni-
tude of syntactic disambiguation difficulty.

Nathaniel J Smith and Roger Levy. 2013. The effect of
word predictability on reading time is logarithmic.
Cognition, 128(3):302–319.

Adrian Staub. 2011. Word recognition and syntactic at-
tachment in reading: Evidence for a staged architec-
ture. Journal of Experimental Psychology: General,
140(3):407.

Marten Van Schijndel and Tal Linzen. 2018. Model-
ing garden path effects without explicit hierarchical
syntax. In CogSci.

Pranali Vani, Ethan Gotlieb Wilcox, and Roger Levy.
2021. Using the interpolated maze task to assess
incremental processing in english relative clauses.
Proceedings of the Annual Meeting of the Cognitive
Science Society.

Shravan Vasishth, Sven Brüssow, Richard L Lewis,
and Heiner Drenhaus. 2008. Processing polarity:
How the ungrammatical intrudes on the grammati-
cal. Cognitive Science, 32(4):685–712.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. Blimp: The benchmark of linguis-
tic minimal pairs for english. Transactions of the As-
sociation for Computational Linguistics, 8:377–392.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN language
models learn about filler-gap dependencies? In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu,
Peng Qian, and Roger Levy. 2020. On the predic-
tive power of neural language models for human
real-time comprehension behavior. arXiv preprint
arXiv:2006.01912.

A Consistency/Accuracy Scores by

Prediction

Figure 6 gives accuracy scores for humans and

LM models, broken down by individual predic-

tions. Predictions are taken from (Hu et al., 2020),

outlined in their Appendix B. Prediction names cor-

respond to the licensed element of the sentence,

so sing match prediction for reflexive anaphora

licensing corresponds to the contrast where him-

self or herself is grammatical (as opposed to them-

selves). Accuracy/consistency scores are similar

between humans and models for cleft structures,

filler–gap dependencies (except for subject tests,

which we discuss below), MVRR gardenpath and

Subject Verb Number Agreement suites. In the

rest of this appendix, we focus in on structures that

show different accuracy/consistency score patterns

for humans and models.

For filler–gap dependency tests, the human data

differs from the model data when there is a gap

in the subject position (FGD-sbj test). In this

case, both achieve relatively high scores for the

wh prediction (yellow bars), but lower scores

filled-gap prediction (I know *who/that my

mother...). (It should be noted that this con-

trast is not one strictly of grammaticality in the

critical region, as the sentence could be felicitously

completed by a gap in the object position.) This be-

havior is in perfect alignment with the large amount

of data demonstrating that English speakers take

longer processing object gaps over subject gaps,

and suggests that such expectations are weaker in

our neural models.

Turning to NPI and anaphor licensing,

we see a consistent pattern of difference

between humans and models. For the NPI

tests, models perform much worse than hu-

mans at the swap intervener predictions (No

senator that the lawyer liked ...

ever/any vs. The senator that no

lawyer liked ... ever/any), whereas

human participants performed about as well on

these tests as on the others. For reflexive anaphora

licensing, human performance is worse for the

singular predictions, regardless of the gender

of the pronoun, indicating a plural bias across

the board. For models, this is true only for the

feminine pronoun (herself ), and the difference in

accuracy is much greater than the human difference

in consistency scores. When the masculine version

of the pronoun is used, models show similar

https://doi.org/10.31234/osf.io/sgbqy
https://doi.org/10.31234/osf.io/sgbqy
https://doi.org/10.31234/osf.io/sgbqy
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Figure 6: Test suite accuracy / consistency scores bro-

ken down by individual predictions.

scores for both the singular and plural predictions.

This pattern is consistent with a plural bias in

humans, but a bias against specifically the feminine

(singular) form of the pronoun in models.

B Linear Fit Residuals by Condition

Table 4 gives a breakdown of all test suite condi-

tions, with an example and a tag used for labeling

for the left panel of Figure 4 in the main text and

for the figures in this appendix. Ungrammatical

conditions are marked with a star. Figure 7 shows

the residuals from our linear fits for each condi-

tion/test suite pair. See the figure caption for more

detail.
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Condition Label Test Suite Name Condition Name Example

1 Cleft np-match What she spied was the giraffe
2 Cleft np-mismatch *What she spied was see the giraffe
3 Cleft vp-match What she did was see the giraffe
4 Cleft vp-mismatch *What she did was see the giraffe

5 FGD-obj that-gap *I know that my mother sent — to Taylor yesterday.
6 FGD-obj that-nogap I know that my mother sent the present to Taylor yesterday.
7 FGD-obj what-gap I know what my mother sent — to Taylor yesterday.
8 FGD-obj what-nogap *I know what my mother sent the present to Taylor yesterday.
9 FGD-pp that-gap *I know that my mother sent the present to – yesterday.
10 FGD-pp that-nogap I know that my mother sent the present to Taylor yesterday.
11 FGD-pp what-gap I know who my mother sent the present to — yesterday.
12 FGD-pp what-nogap *I know who my mother sent the present to Taylor yesterday.
13 FGD-sbj that-gap *I know that — sent the present to Taylor yesterday.
14 FGD-sbj that-nogap I know that my mother sent the present to Taylor yesterday.
15 FGD-sbj what-gap I know who — sent the present to Taylor yesterday.
16 FGD-sbj what-nogap *I know who my mother sent the present to Taylor yesterday.

17 MVRR reduced-ambig The ship sunk the the storm carried treasure.
18 MVRR reduced-unambig The ship steered in the storm carried treasure.
19 MVRR unreduced-ambig The ship that was sunk in the storm carried treasure.
20 MVRR unreduced-unambig The ship that was steered in the storm carried treasure.

21 NPL-any-orc neg-neg No senator that no journalist likes has gotten any votes.
22 NPL-any-orc neg-pos No senator that the journalist likes has gotten any votes.
23 NPL-any-orc pos-neg *The senator that no journalist likes has gotten any votes.
24 NPL-any-orc pos-pos *The senator that the journalist likes has gotten any votes.
25 NPL-any-src neg-neg No senator that likes no journalists has gotten any votes.
26 NPL-any-src neg-pos No senator that likes the journalists has gotten any votes.
27 NPL-any-src pos-neg *The senator that likes no journalists has gotten any votes.
28 NPL-any-src pos-pos *The senator that likes the journalist has gotten any votes.
29 NPL-ever-orc neg-neg No senator that no journalist likes has ever won.
30 NPL-ever-orc neg-pos No senator that the journalist likes has ever won.
31 NPL-ever-orc pos-neg *The senator that no journalist likes has ever won.
32 NPL-ever-orc pos-pos *The senator that the journalist likes has ever won.
33 NPL-ever-src neg-neg No senator that likes no journalists has ever won.
34 NPL-ever-src neg-pos No senator that likes the journalists has ever won.
35 NPL-ever-src pos-neg *The senator that likes no journalists has ever won.
36 NPL-ever-src pos-pos *The senator that likes the journalist has ever won.

37 RNA-f-orc match-plural The queens who the dukes mistrust saw themselves in the mirror.
38 RNA-f-orc match-sing The queen who the duke mistrusts saw herself in the mirror.
39 RNA-f-orc mismatch-plural *The queens who the dukes mistrust saw herself in the mirror.
40 RNA-f-orc mismatch-sing *The queen who the dukes mistrust saw themselves in the mirror.
41 RNA-f-src match-plural The queens who hunted the rabbit saw themselves in the mirror.
42 RNA-f-src match-sing The queen who hunted the rabbits saw herself in the mirror.
43 RNA-f-src mismatch-plural *The queens who hunted the rabbit saw herself in the mirror.
44 RNA-f-src mismatch-sing *The queen who hunted the rabbits saw themselves in the mirror.
45 RNA-m-orc match-plural The dukes who the dukes mistrust saw themselves in the mirror.
46 RNA-m-orc match-sing The duke who the duke mistrusts saw himself in the mirror.
47 RNA-m-orc mismatch-plural *The dukes who the dukes mistrust saw himself in the mirror.
48 RNA-m-orc mismatch-sing *The duke who the dukes mistrust saw themselves in the mirror.
49 RNA-m-src match-plural The dukes who hunted the rabbit saw themselves in the mirror.
50 RNA-m-src match-sing The duke who hunted the rabbits saw himself in the mirror.
51 RNA-m-src mismatch-plural *The dukes who hunted the rabbit saw himself in the mirror.
52 RNA-m-src mismatch-sing *The duke who hunted the rabbits saw themselves in the mirror.

53 SVNA-orc match-plural The lawyers that helped the mayor are organized.
54 SVNA-orc match-sing The lawyer that helped the mayors is organized.
55 SVNA-orc mismatch-plural *The lawyers that helped the mayor is organized.
56 SVNA-orc mismatch-sing *The lawyer that helped the mayors are organized.
57 SVNA-pp match-plural The lawyers that the mayor helped are organized.
58 SVNA-pp match-sing The lawyer that the mayors helped is organized.
59 SVNA-pp mismatch-plural *The lawyers that the mayor helped is organized.
60 SVNA-pp mismatch-sing *The lawyer that the mayors helped are organized.
61 SVNA-src match-plural The lawyers next to the mayor are organized.
62 SVNA-src match-sing The lawyer next to the mayors is organized.
63 SVNA-src mismatch-plural *The lawyers next to the mayor is organized.
64 SVNA-src mismatch-sing *The lawyer next to the mayors is organized.

Table 4: Conditions for each of the test suites assessed in this paper, with a tag (used for labeling in Figure 7) and

an example. Ungrammatical sentences are marked with a star (∗)


