
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 775–787

August 1–6, 2021. ©2021 Association for Computational Linguistics

775

LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking

Hang Jiang1∗, Sairam Gurajada2∗, Qiuhao Lu3, Sumit Neelam2, Lucian Popa2,
Prithviraj Sen2, Yunyao Li2, Alexander Gray2

1MIT 2IBM Research 3University of Oregon
hjian42@mit.edu, {sairam.gurajada, alexander.gray}@ibm.com, luqh@cs.uoregon.edu,

sumit.neelam@in.ibm.com, {lpopa,senp,yunyaoli}@us.ibm.com

Abstract

Entity linking (EL), the task of disambiguat-
ing mentions in text by linking them to enti-
ties in a knowledge graph, is crucial for text
understanding, question answering or conver-
sational systems. Entity linking on short text
(e.g., single sentence or question) poses partic-
ular challenges due to limited context. While
prior approaches use either heuristics or black-
box neural methods, here we propose LNN-
EL, a neuro-symbolic approach that combines
the advantages of using interpretable rules
based on first-order logic with the performance
of neural learning. Even though constrained to
using rules, LNN-EL performs competitively
against SotA black-box neural approaches,
with the added benefits of extensibility and
transferability. In particular, we show that we
can easily blend existing rule templates given
by a human expert, with multiple types of fea-
tures (priors, BERT encodings, box embed-
dings, etc), and even scores resulting from pre-
vious EL methods, thus improving on such
methods. For instance, on the LC-QuAD-1.0
dataset, we show more than 4% increase in
F1 score over previous SotA. Finally, we show
that the inductive bias offered by using logic
results in learned rules that transfer well across
datasets, even without fine tuning, while main-
taining high accuracy.

1 Introduction

Entity Linking (EL) is the task of disambiguat-
ing textual mentions by linking them to canoni-
cal entities provided by a knowledge graph (KG)
such as DBpedia, YAGO (Suchanek et al., 2007)
or Wikidata (Vrandečić and Krötzsch, 2014). A
large body of existing work deals with EL in the
context of longer text (i.e., comprising of multiple
sentences) (Bunescu and Pasca, 2006). The general

∗Equal contribution; Author Hang Jiang did this work
while interning at IBM.

approach is: 1) extract features measuring some
degree of similarity between the textual mention
and any one of several candidate entities (Mihalcea
and Csomai, 2007; Cucerzan, 2007; Ratinov et al.,
2011), followed by 2) the disambiguation step, ei-
ther heuristics-based (non-learning) (Hoffart et al.,
2011; Sakor et al., 2019; Ferragina and Scaiella,
2012) or learning-based (Mihalcea and Csomai,
2007; Cucerzan, 2007; Ratinov et al., 2011; Hof-
fart et al., 2012; Ganea and Hofmann, 2017), to
link the mention to an actual entity.

A particular type of entity linking, focused on
short text (i.e., a single sentence or question), has
attracted recent attention due to its relevance for
downstream applications such as question answer-
ing (e.g., (Kapanipathi et al., 2021)) and conversa-
tional systems. Short-text EL is particularly chal-
lenging because the limited context surrounding
mentions results in greater ambiguity (Sakor et al.,
2019). To address this challenge, one needs to ex-
ploit as many features from as many sources of
evidence as possible.

Consider the question in Figure 1(a), containing
mention1 (Cameron) and mention2 (Titanic).1

DBpedia contains several person entities whose
last name matches Cameron. Two such entities
are shown in Figure 3(b), James_Cameron and
Roderick_Cameron, along with their string simi-
larity scores (in this case, character-level Jaccard
similarity) to mention1. In this case, the string
similarities are quite close. In the absence of re-
liable discerning information, one can employ a
prior such as using the more popular candidate en-
tity, as measured by the in-degree of the entity
in the KG (see Figure 3(b)). Given the higher
in-degree, we can (correctly) link mention1 to
James_Cameron. However, for mention2, the cor-
rect entry is Titanic_(1997_film) as opposed to

1Note that we assume that mention extraction has already
been applied and we are given the textual mentions.



776

Who composed soundtrack
of Cameron︸ ︷︷ ︸

mention1

’s Titanic︸ ︷︷ ︸
mention2

?

Mention Entity Similarity In-degree
mention1 James_Cameron 0.7 30

Roderick_Cameron 0.6 10
mention2 Titanic 1.0 44

Titanic_(1997_film) 0.4 52

James_Cameron

Titanic_(1997_film)Aliens_(film)

True_Lies

DirectorDirector

Director

Roderick_Cameron

Rory_CameronOntario

Upper_Canada

RelativerestingPlace

birthPlace

(a) (b) (c)

Figure 1: (a) Question with 2 mentions that need to be disambiguated against DBpedia. (b) For each mention-
candidate entity pair, the character-level Jaccard similarity is shown along with the in-degree of the entity in the
knowledge graph. (c) (Partial) Ego networks for entities James_Cameron and Roderick_Cameron.

Titanic the ship, but it actually has a lower string
similarity. To link to the correct entity, one needs
to exploit the fact that James_Cameron has an edge
connecting it to Titanic_(1997_film) in the KG
(see ego network on the left in Figure 1(c)). Link-
ing co-occurring mentions from text to connected
entities in the KG is an instance of collective en-
tity linking. This example provides some intuition
as to how priors, local features (string similarity)
and collective entity linking can be exploited to
overcome the limited context in short-text EL.

While the use of priors, local features and non-
local features (for collective linking) has been pro-
posed before (Ratinov et al., 2011), our goal in this
paper is to provide an extensible framework that
can combine any number of such features and more,
including contextual embeddings such as BERT
encodings (Devlin et al., 2019) and Query2box
embeddings (Ren et al., 2020), and even the re-
sults of previously developed neural EL models
(e.g., BLINK (Wu et al., 2020)). Additionally,
such a framework must not only allow for easy
inclusion of new sources of evidence but also for
interpretability of the resulting model (Guidotti
et al., 2018). An approach that combines disparate
features should, at the very least, be able to state,
post-training, which features are detrimental and
which features aid EL performance and under what
conditions, in order to enable actionable insights in
the next iteration of model improvement.
Our Approach. We propose to use rules in first-
order logic (FOL), an interpretable fragment of
logic, as a glue to combine EL features into a co-
herent model. Each rule in itself is a disambigua-
tion model capturing specific characteristics of the
overall linking. While inductive logic program-
ming (Muggleton, 1996) and statistical relational
learning (Getoor and Taskar, 2007) have for long
focused on learning FOL rules from labeled data,
more recent approaches based on neuro-symbolic
AI have led to impressive advances. In this work,
we start with an input set of rule templates (given
by an expert or available as a library), and learn the

parameters of these rules (namely, the thresholds
of the various similarity predicates as well as the
weights of the predicates that appear in the rules),
based on a labeled dataset. We use logical neural
networks (LNN) (Riegel et al., 2020), a powerful
neuro-symbolic AI approach based on real-valued
logic that employs neural networks to learn the pa-
rameters of the rules. Learning of the rule templates
themselves will be the focus of future work.

Summary of contributions
• We propose, to the best of our knowledge, the

first neuro-symbolic method for entity linking
(coined “LNN-EL") that provides a principled
approach to learning EL rules.

• Our approach is extensible and can combine
disparate types of local and global features as
well as results of prior black-box neural meth-
ods, thus building on top of such approaches.

• Our approach produces interpretable rules that
humans can inspect toward actionable insights.

• We evaluate our approach on three bench-
mark datasets and show competitive (or better)
performance with SotA black-box neural ap-
proaches (e.g., BLINK (Wu et al., 2020)) even
though we are constrained on using rules.

• By leveraging rules, the learned model shows a
desirable transferability property: it performs
well not only on the dataset on which it was
trained, but also on other datasets from the
same domain without further training.

2 Related Work

Entity Linking Models. Entity Linking is a well-
studied problem in NLP, especially for long text.
Approaches such as (Bunescu and Pasca, 2006;
Ratinov et al., 2011; Sil et al., 2012; Hoffart et al.,
2011; Shen et al., 2015) use a myriad of classical
ML and deep learning models to combine priors,
local and global features. These techniques, in gen-
eral, can be applied to short text, but the lack of suf-
ficient context may render them ineffective. The re-
cently proposed BLINK (Logeswaran et al., 2019;



777

Wu et al., 2020) uses powerful transformer-based
encoder architectures trained on massive amounts
of data (such as Wikipedia, Wikia) to achieve SotA
performance on entity disambiguation tasks, and
is shown to be especially effective in zero-shot set-
tings. BLINK is quite effective on short text (as
observed in our findings); in our approach, we use
BLINK both as a baseline and as a component that
is combined in larger rules.

For short-text EL, some prior works (Sakor et al.,
2019; Ferragina and Scaiella, 2012; Mendes et al.,
2011) address the joint problem of mention detec-
tion and linking, with primary focus on identifying
mention spans, while linking is done via heuristic
methods without learning. (Sakor et al., 2019) also
jointly extracts relation spans which aide in overall
linking performance. The recent ELQ (Li et al.,
2020) extends BLINK to jointly learn mention de-
tection and linking. In contrast, we focus solely
on linking and take a different strategy based on
combining logic rules with learning. This facili-
tates a principled way combining multiple types of
EL features with interpretability and learning using
promising gradient-based techniques.

Rule-based Learning. FOL rules and learning
have been successfully applied in some NLP tasks
and also other domains. Of these, the task that is
closest to ours is entity resolution (ER), which is
the task of linking two entities across two struc-
tured datasets. In this context, works like (Chaud-
huri et al., 2007; Arasu et al., 2010; Wang et al.,
2012; Hernández et al., 2013) use FOL rules for
ER. Approaches such as (Singla and Domingos,
2006; Pujara and Getoor, 2016) induce probabilis-
tic rules using MLNs (Richardson and Domingos,
2006) and PSL (Bach et al., 2017), respectively.
None of these approaches use any recent advances
in neural-based learning; moreover, they are fo-
cused on entity resolution, which is a related task
but distinct from short-text EL.

3 Preliminaries

3.1 Entity Linking.
Given text T , a setM = {m1,m2, ...} of mentions,
where each mi is contained in T , and a knowledge
graph (KG) comprising of a set E of entities, entity
linking is a many-to-one function that links each
mention mi ∈ M to an entity eij ∈ Ci, where
Ci ⊆ E is a subset of relevant candidates for men-
tion mi. More generally, we formulate the problem
as a ranking of the candidates in Ci so that the “cor-

rect" entity for mi is ranked highest. Following
existing approaches(e.g. (Sakor et al., 2019; Wu
et al., 2020), we use off-the-shelf lookup tools such
as DBpedia lookup2 to retrieve top-100 candidates
for each mention. While this service is specific to
DBpedia, we assume that similar services exist or
can be implemented on top of other KGs.

3.2 Logical Neural Networks

Fueled by the rise in complexity of deep learn-
ing, recently there has been a push towards learn-
ing interpretable models (Guidotti et al., 2018;
Danilevsky et al., 2020). While linear classifiers,
decision lists/trees may also be considered inter-
pretable, rules expressed in first-order logic (FOL)
form a much more powerful, closed language that
offer semantics clear enough for human interpre-
tation and a larger range of operators facilitating
the expression of richer models. To learn these
rules, neuro-symbolic AI typically substitutes con-
junctions (disjunctions) with differentiable t-norms
(t-conorms) (Esteva and Godo, 2001). However,
since these norms do not have any learnable param-
eters (more details in Appendix A.1), their behav-
ior cannot be adjusted, thus limiting their ability to
model well the data.

In contrast, logical neural networks (LNN)
(Riegel et al., 2020) offer operators that include pa-
rameters, thus allowing to better learn from the data.
To maintain the crisp semantics of FOL, LNNs en-
force constraints when learning operators such as
conjunction. Concretely, LNN-∧ is expressed as:

max(0,min(1, β − w1(1− x)− w2(1− y)))

subject to: β − (1− α)(w1 + w2) ≥ α (1)
β − αw1 ≤ 1− α (2)
β − αw2 ≤ 1− α (3)
w1, w2 ≥ 0

where β,w1, w2 are learnable parameters, x, y ∈
[0, 1] are inputs and α ∈ [12 , 1] is a hyperparameter.
Note that max(0,min(1, ·)) clamps the output of
LNN-∧ between 0 and 1 regardless of β,w1, w2, x,
and y. The more interesting aspects are in the con-
straints. While Boolean conjunction only returns
1 or true when both inputs are 1, LNNs relax
this condition by using α as a proxy for 1 (and
conversely, 1 − α as a proxy for 0). In particular,
Constraint (1) forces the output of LNN-∧ to be
greater than α when both inputs are greater than
α. Similarly, Constraints (2) and (3) constrain the

2https://lookup.dbpedia.org/

https://lookup.dbpedia.org/


778

 0 0.2 0.4 0.6 0.8  1  0  0.2 0.4 0.6 0.8 1

 0
 0.2
 0.4
 0.6
 0.8

 1

x y

 0
 0.2
 0.4
 0.6
 0.8
 1

 0 0.2 0.4 0.6 0.8  1  0  0.2 0.4 0.6 0.8 1

 0
 0.2
 0.4
 0.6
 0.8

 1

x y

 0
 0.2
 0.4
 0.6
 0.8
 1

Figure 2: (left) Product t-norm. (right) LNN-∧ (α =
0.7).

behavior of LNN-∧ when one input is low and the
other is high. For instance, Constraint (2) forces
the output of LNN-∧ to be less than 1−α for y = 1
and x ≤ 1 − α. This formulation allows for un-
constrained learning when x, y ∈ [1 − α, α]. By
changing α a user can control how much learning
to enable (increase to make region of unconstrained
learning wider or decrease for the opposite). Fig-
ure 2 depicts product t-norm and LNN-∧ (α = 0.7).
While the former increases slowly with increasing
x, y, LNN-∧ produces a high output when both in-
puts are ≥ α and stays high thereafter, thus closely
modeling Boolean conjunction semantics.

In case the application requires even more de-
grees of freedom, the hard constraints (1), (2) and
(3) can be relaxed via the inclusion of slacks:

max(0,min(1, β − w1(1− x)− w2(1− y)))

subject to: β − (1− α)(w1 + w2) + ∆ ≥ α
β − αw1 ≤ 1− α+ δ1

β − αw2 ≤ 1− α+ δ2

w1, w2, δ1, δ2,∆ ≥ 0

LNN-∧(x, y) =

where δ1, δ2, and ∆ denote slack variables. If
any of Constraints (1), (2) and (3) in LNN-∧ are
unsatisfied then slacks help correct the direction
of the inequality without putting pressure on
parameters w1, w2, and β during training. For the
rest of the paper, by LNN-∧ we refer to the above
formulation. LNN negation is a pass-through oper-
ator: LNN-¬(x) = 1− x, and LNN disjunction is
defined in terms of LNN-∧:

LNN-∨(x, y) = 1− LNN-∧(1− x, 1− y)

While vanilla backpropagation cannot handle lin-
ear inequality constraints such as Constraint (1),
specialized learning algorithms are available within
the LNN framework. For more details, please
check Riegel et al. (2020)

4 LNN-EL

An overview of our neuro-symbolic approach for
entity linking is depicted in Figure 3. We next
discuss the details about feature generation com-
ponent that generates features using a catalogue

Features Description

Name sim(mi, eij), where sim is a general
purpose string similarity function such as
Jaccard (jacc), JaroWinkler (jw),
Levenshtein (lev), Partial Ratio (pr), etc.

Context Ctx(mi, eij)
=
∑

mk∈M\{mi}
pr(mk, eij .desc)

where mk is a mention in the context of mi

Type Type(mi, eij)

=

{
1 if mi.type ∈ eij .dom
0, otherwise

where mi.type is the type of the mention
and eij .dom is the set of domains

Entity Prom(eij) = indegree(eij),
Prominence i.e., number of links pointing to entity eij

Table 1: Non-embedding based feature functions.

of feature functions (Section 4.1) followed by pro-
posed model that does neuro-symbolic learning
over user provided EL algorithm in Section 4.2.

Given the input text T , together with labeled
data in the form (mi, Ci, Li), where mi ∈ M is
a mention in T , Ci is a list of candidate entities
eij (drawn from lookup services3) for the mention
mi, and where each lij ∈ Li denotes a link/not-
link label for the pair (mi, eij). The first step is to
generate a set Fij = {fk(mi, eij)} of features for
each pair (mi, eij), where fk is a feature function
drawn from a catalog F of user provided functions.

4.1 Feature Functions

Our collection of feature functions include both
non-embedding and embedding based functions.

Non-embedding based. We include here a mul-
titude of functions (see Table 1) that measure the
similarity between the mention mi and the candi-
date entity eij based on multiple types of scores.

Name: a set of general purpose string similarity
functions4 such as Jaccard, Jaro Winkler, Leven-
shtein, Partial Ratio, etc. are used to compute the
similarity between mi and eij’s name.

Context: aggregated similarity of mi’s context
to the description of eij . Here, we consider the list
of all other mentions mk ∈M (k 6= i) as mi’s con-
text, together with eij’s textual description obtained
using KG resources5. The exact formula we use
is shown in Table 1, where Partial Ratio(pr) mea-
sures the similarity between each context mention
and the description. (Partial Ratio computes the

3https://lookup.dbpedia.org
4pypi.org/project/py-stringmatching
5dbpedia.org/sparql

https://lookup.dbpedia.org
pypi.org/project/py-stringmatching
dbpedia.org/sparql


779

Text T

KG Resources

Feature functions F

mi,

ei1, li1ei2, li2
...


Labeled data mi, [Ci, Li]

Feature
Generation

mi,

ei1, [f1, f2, . . .]i1, li1ei2, [f1, f2, . . .]i2, li2
...


Labeled data with features

mi, [Ci, Fi, Li]
LNN-∧

θ2

f2

θ1

f1

θ3

f3

fw1 fw2 fw3

LNN-∧

θ4

f1

θ5

f4

fw4 fw5

LNN-∨

rw1 rw2

LNN Reformulation of EL Algorithm

R1(mi, eij)← f1(mi, eij) > θ1 ∧ f2(mi, eij) > θ2

∧ f3(mi, eij) > θ3

∨
R2(mi, eij)← f1(mi, eij) > θ4 ∧ f4(mi, eij) > θ5

User provided EL Algorithm

mi,

ei1, s(mi, eij)
ei2, s(mi, ei2)

...


Final scores

Learnable parameters:
θi– feature thresholds,

fwi– feature weights,

rwi– rule weights

Figure 3: Overview of our approach

maximum similarity between a short input string
and substrings of a second, longer string.) For
normalizing the final score, we apply a min-max
rescaling over all entities eij ∈ Ci.

Type: the overlap similarity of mention
mi’s type to eij’s domain (class) set, similar
to the domain-entity coherence score proposed
in (Nguyen et al., 2014). Unlike in (Nguyen et al.,
2014), instead of using a single type for all men-
tions in M , we obtain type information for each
mentionmi using a trained BERT-based entity type
detection model. We use KG resources 5 to obtain
eij’s domain set, similar to Context similarity.

Entity Prominence: measure the prominence
of entity eij as the number of entities that link to
eij in target KG, i.e., indegree(eij). Similar to
Context score normalization, we apply min-max
rescaling over all entities eij ∈ Ci.

Embedding based. We also employ a suite of pre-
trained or custom trained neural language models
to compute the similarity of mi and eij .

Pre-trained Embedding Models. These include
SpaCy’s semantic similarity6 function that uses
Glove (Pennington et al., 2014) trained on Com-
mon Crawl. In addition to SpaCy, we also use
scores from an entity linking system such as
BLINK (Wu et al., 2020) (a state-of-the-art entity
linking model) as a feature function in our system.

BERT Embeddings. To further explore the se-
mantics of the context in T and the inherent struc-
ture of the target KG, we incorporate an embedding-
based similarity by training a mini entity linking
model without any aforementioned prior informa-
tion. We first tag the input text T with a special
token [MENT] to indicate the position of mention
mi, and then encode T with BERT, i.e., mi =
BERT(mi, T ). Each candidate eij is encoded with

6spacy.io/usage/vectors-similarity

BoxCameron

BoxCameron + BoxNeighbors

BoxTitanic

CCameron N (CCameron)
Neighborhood

Projection
CTitanic

Figure 4: Candidates for linking the ‘Titanic’ mention
appear in the intersection of the two boxes.

a pre-trained graph embedding Wiki2Vec (Yamada
et al., 2020), i.e., eij = Wiki2Vec(eij). The candi-
dates are ranked in order of the cosine similarity
to mi, i.e., Simcos(mi, eij). The mini EL model
is optimized with margin ranking loss so that the
correct candidate is ranked higher.

BERT with Box Embeddings. While features
such as Context (see Table 1) can exploit other men-
tions appearing within the same piece of text, they
only do so via textual similarity. A more powerful
method is to jointly disambiguate the mentions in
text to the actual entities in the KG, thus exploiting
the structural context in the KG. Intuitively, the
simultaneous linking of co-occurring mentions in
text to related entities in the KG is a way to rein-
force the links for each individual mention. To this
end, we adapt the recent Query2Box (Ren et al.,
2020), whose goal is to answer FOL queries over
a KG. The main idea there is to represent sets of
entities (i.e., queries) as contiguous regions in em-
bedded space (e.g., axis-parallel hyper-rectangles
or boxes), thus reducing logical operations to geo-
metric operations (e.g., intersection).

Since Query2Box assumes a well-formed query
as input, one complication in directly applying it to
our setting is that we lack the information necessary
to form such an FOL query. For instance, in the
example from Section 1, while we may assume that
the correct entities for our Cameron and Titanic

mentions are connected in the KG, we do not know
how these are connected, i.e., via which relation. To
circumvent this challenge, we introduce a special
neighborhood relation N , such that v ∈ N (u)
whenever there is some KG relation from entity u

spacy.io/usage/vectors-similarity


780

to entity v. We next define two box operations:

Box(Ci) = {v|min({eij|eij ∈ Ci})
� v � max({eij|eij ∈ Ci})}

Box(N (Ci)) = Box(Ci) + BoxN

The first operation represents mention mi as a
box, by taking the smallest box that contains the
set Ci of candidate entities for mi. This can be
achieved by computing the dimension-wise mini-
mum (maximum) of all entity embeddings in Ci

to obtain the lower-left (upper-right) corner of the
resulting box. The second operation takesmi’s box
and produces the box containing its neighbors in
the KG. Query2Box achieves this by representing
BoxN via a center vector ψ and offset vector ω,
both of which are learned parameters. The box of
neighbors is then obtained by translating the center
of mi’s box by ψ and adding the offset ω to its side.

Figure 4 shows how these operations are used
to disambiguate Titanic while exploiting the co-
occurring mention Cameron and the KG struc-
ture. We take the box for Cameron, compute its
neighborhood box, then intersect with the Titanic
box. This intersection contains valid entities that
can disambiguate Titanic and are connected to
the entity for Cameron. For the actual score of
each such entity, we take its distance to the cen-
ter of the intersection box and convert it to a
similarity score Simbox(mi, eij). We then lin-
early combine this with the BERT-based similarity
measure: βboxSimbox(mi, eij) +Simcos(mi, eij),
where βbox is a hyper-parameter that adjusts the im-
portance of the two scores. The approach described
can be easily extended to more than two mentions.

4.2 Model
In this section, we describe how an EL algorithm
composed of a disjunctive set of rules is reformu-
lated into LNN representation for learning.
Entity Linking Rules are a restricted form of FOL
rules comprising of a set of Boolean predicates
connected via logical operators: conjunction (∧)
and disjunction (∨). A Boolean predicate has the
form fk > θ, where fk ∈ F is one of the feature
functions, and θ can be either a user provided or
a learned threshold in [0, 1]. Figure 5(a) shows
two example rules R1 and R2, where, for instance,
R1(mi, eij) evaluates to True if both the predicate
jacc(mi, eij) > θ1 and Ctx(mi, eij) > θ2 are
True. Rules can be disjuncted together to form
a larger EL algorithm, as the one shown in Fig-
ure 5(b), which states that Links(mi, eij) evalu-

(a)EL Rules
R1(mi, eij)← jacc(mi, eij) > θ1 ∧ Ctx(mi, eij) > θ2

R2(mi, eij)← lev(mi, eij) > θ3 ∧ Prom(mi, eij) > θ4

(b)EL Algorithm

Links(mi, eij)← R1(mi, eij) ∨R2(mi, eij)

(c)Scoring

s(mi, eij) =

+

(
rw1 × ((fw1 × jacc(mi, eij)× (fw2 × Ctx(mi, eij))
rw2 × ((fw3 × jacc(mi, eij)× (fw4 × Ctx(mi, eij))

)

Figure 5: Example of entity linking rules and scoring.

ates to True if any one of its rules evaluates to True.
The Links predicate is meant to store high-quality
links between mention and candidate entities that
pass the conditions of at least one rule. The EL
algorithm also acts as a scoring mechanism. In
general, there are many ways in which scores can
computed. In a baseline implementation (no learn-
ing), we use the scoring function in Figure 5(c),
where rwi denote manually assigned rule weights,
while fwi are manually assigned feature weights.

An EL algorithm is an explicit and extensible
description of the entity linking logic, which can be
easily understood and manipulated by users. How-
ever, obtaining competitive performance to that
of deep learning approaches such as BLINK (Wu
et al., 2020) requires a significant amount of man-
ual effort to fine tune the thresholds θi, the feature
weights (fwi) and the rule weights (rwi).
LNN Reformulation. To facilitate learning of the
thresholds and weights in an EL algorithm, we
map the Boolean-valued logic rules into the LNN
formalism, where the LNN constructs – LNN-∨
(for logical OR) and LNN-∧ (for logical AND) –
allow for continuous real-valued numbers in [0, 1].
As described in Section 3.2, LNN-∧ and LNN-∨
are a weighted real-valued version of the classical
logical operators, where a hyperparameter α is used
as a proxy for 1. Each LNN operator produces a
value in [0, 1] based on the values of the inputs,
their weights and bias β. Both the weights and β
are learnable parameters. The score of each link
is based on the score that the LNN operators give,
with an added complication related to how we score
the feature functions. To illustrate, for the EL rules
in Figure 5, the score of a link is computed as:
s(mi, eij) =

LNN- ∨


LNN- ∧

(
TL(jacc(mi, eij), θ1),
TL(Ctx(mi, eij), θ2)

)
,

LNN- ∧
(
TL(lev(mi, eij), θ3),
TL(Prom(mi, eij), θ4)

)




781

Dataset Train Test
|Q| |E| |Q| |E|

LC-QuAD 1.0 (Trivedi et al., 2017) 4,000 6,823 1000 1,721
QALD-9 (Usbeck et al., 2018) 408 568 150 174
WebQSPEL (Li et al., 2020) 2974 3,237 1603 1,798

Table 2: Characteristics of the datasets.

Here the top-level LNN-∨ represents the disjunc-
tion R1 ∨ R2, while the two inner LNN-∧ cap-
ture the rules R1 and R2 respectively. For the fea-
ture functions with thresholds, a natural scoring
mechanism would be to use score(f > θ) = f
if f > θ else 0, which filters out the candidates
that do not satisfy the condition f > θ, and gives a
non-zero score for the candidates that pass the con-
dition. However, since this is a step function which
breaks the gradient flow through a neural network,
we approximate it via a smooth function TL(f, θ)
= f · σ(f − θ), where σ is Sigmoid function and θ
is the learnable threshold that is generated using σ,
i.e., θ = σ(γ), to ensure that it lies in [0, 1].
Training. We train the LNN formulated EL rules
over the labeled data and use a margin-ranking loss
over all the candidates in Ci to perform gradient
descent. The loss function L(mi, Ci) for mention
mi and candidates set Ci is defined as∑

ein∈Ci\{eip}

max(0,−(s(mi, eip)− s(mi, ein)) + µ)

Here, eip ∈ Ci is a positive candidate, Ci\{eip} is
the set of negative candidates, and µ is a margin hy-
per parameter. The positive and negative labels are
obtained from the given labels Li (see Figure 3).
Inference. Given mention mi and candidate set
Ci, similar to training, we generate features for
each mention-candidate pair (mi, eij) in the feature
generation step. We then pass them through the
learned LNN network to obtain final scores for
each candidate entity in Ci as shown in Figure 3.

5 Evaluation
We first evaluate our approach w.r.t performance
& extensibility, interpretability and transferability.
We also discuss the training and inference time.
Datasets. As shown in Table 2, we consider three
short-text QA datasets. LC-QuAD and QALD-9
are datasets comprising of questions (Q) over DB-
pedia together with their corresponding SPARQL
queries. We extract entities (E) from SPARQL
queries and manually annotate mention spans.
WebQSPEL dataset (Li et al., 2020) comprises of

both mention spans and links to the correct en-
tity. Since the target KG for WebQSP is Wiki-
data, we translate each Wikidata entity to its DB-
pedia counterpart using DBpedia Mappings7. In
addition, we discard mentions that link to DBpe-
dia concepts (e.g., heaviest player linked
to dbo:Person) and mentions mi with empty
result (i.e., Ci = φ) or all not-link labels (i.e,
∀lij ∈ Li, lij = 0)8.

Baselines. We compare our approach to (1)
BLINK (Wu et al., 2020), the current state-of-the-
art on both short-text and long-text EL, (2) three
BERT-based models - (a) BERT: both mention
and candidate entity embeddings are obtained via
BERTbase pre-trained encoder, similar to (Gillick
et al., 2019), (b) BERTWiki: mention embeddings
are obtained from BERTbase, while candidate entity
is from pretrained Wiki2Vec (Yamada et al., 2020),
(c) Box: BERTWiki embeddings finetuned with
Query2Box embeddings (see Section 4.1). In addi-
tion to the aforementioned black-box neural mod-
els, we also compare our approach to (3) two logis-
tic regression models that use the same feature set
as LNN-EL: LogisticRegression without BLINK
and LogisticRegressionBLINK with BLINK.

Furthermore, we use the following variants of
our approach: (4) RuleEL: a baseline rule-based
EL approach with manually defined weights and
thresholds, (5) LogicEL: a baseline approach built
on RuleEL where only the thresholds are learn-
able, based on product t-norm (see Section 3.2),
(6) LNN-EL: our core LNN-based method us-
ing non-embedding features plus SpaCy, and (7)
LNN-ELens: an ensemble combining core LNN-
EL with additional features from existing EL ap-
proaches, namely BLINK and Box (we consider
Box, as it outperforms BERT and BERTWiki on
all datasets). Detailed rule templates are provided
in Appendix A.3.

Setup. All the baselines are trained for 30 epochs,
except for BLINK which we use as a zero-shot
approach. For BERT approaches, we use BERTbase
as pretrained model. We used two Nvidia V100
GPUs with 16GB memory each. We perform hyper-
parameter search for margin µ and learning rates
in the range [0.6, 0.95], [10−5, 10−1] respectively.

7http://mappings.dbpedia.org/
8Please check arXiv version for the datasets.

http://mappings.dbpedia.org/


782

Model LC-QuAD QALD-9 WebQSPEL
Precision Recall F1 Precision Recall F1 Precision Recall F1

BLINK 87.04 87.04 87.04 89.14 89.14 89.14 92.15 92.05 92.10
BERT 57.14 63.09 59.97 55.46 61.11 58.15 70.26 72.15 71.20
BERTWiki 66.96 73.85 70.23 66.16 72.90 69.37 81.11 83.29 82.19
Box 67.31 74.32 70.64 68.91 75.93 72.25 81.53 83.72 82.61

LogisticRegression 87.04 86.83 86.93 84.73 84.73 84.73 83.39 83.33 83.36
LogisticRegressionBLINK 90.50 90.30 90.40 88.94 88.94 88.94 89.33 89.28 89.31

RuleEL 79.82 80.10 79.96 81.55 75.15 78.22 76.56 74.55 75.54
LogicEL 86.68 86.48 86.58 83.05 83.05 83.05 82.60 82.58 82.59
LNN-EL 87.74 87.54 87.64 88.52 88.52 88.52 85.11 85.05 85.08
LNN-ELens 91.10 90.90 91.00 91.38 91.38 91.38 92.17 92.08 92.12

Table 3: Performance comparison of various baselines with our neuro-symbolic variants.

5.1 Results

Overall Performance. As seen in Table 3, among
logic-based approaches, LNN-EL outperforms
LogicEL and RuleEL, showing that parameterized
real-valued LNN learning is more effective than
the non-parameterized version with t-norm (Log-
icEL) and the manually tuned RuleEL. Logistic
regression models which also learn weights over
features achieve competitive performance to LNN-
EL models; however they lack the representation
power that LNN-EL offer in the form of logical
rules comprising of conjunctions and disjunctions.
In other words, LNN-EL allows learning over a
richer space of models that help in achieving better
performance as observed in Table 3.

On the other hand, simple BERT-based ap-
proaches (BERT, BERTWiki, Box) that are trained
on the QA datasets underperform the logic-based
approaches, which incorporate finer-grained fea-
tures. BLINK (also a BERT-based approach, but
trained on the entire Wikipedia) is used as zero-shot
approach and achieves SotA performance (when
not counting the LNN-EL variants). The core LNN-
EL version is competitive with BLINK on LC-
QuAD and QALD-9, despite being a rule-based
approach. Furthermore, LNN-ELens, which com-
bines the core LNN-EL with both BLINK and Box
features, easily beats BLINK on LC-QuAD and
QALD-9 and slightly on WebQSPEL.

Table 4 shows the Recall@k performance of
LNN-EL against the BLINK model. Both LNN-
EL and LNN-ELens have better Recall@k perfor-
mance against BLINK on LC-QuAD and QALD-9
datasets, however BLINK’s Recall@k achieves a
slightly better performance for WebQSPEL dataset.
Extensibility. Here, we inspect empirically how
a multitude of EL features coming from various
black-box approaches can be combined in a princi-
pled way with LNN-EL, often leading to an overall
better performance than the individual approaches.
A detailed ablation study of the core LNN-EL ver-

Dataset Model R@5 R@10 R@64

LC-QuAD BLINK 94.69 96.01 96.92
LNN-EL 93.66 94.39 97.56
LNN-ELens 97.07 97.20 97.68

QALD-9 BLINK 93.39 93.39 94.29
LNN-EL 92.72 95.94 98.04
LNN-ELens 94.63 94.63 95.48

WebQSPEL
BLINK 97.40 97.64 98.61
LNN-EL 93.54 95.12 96.59
LNN-ELens 96.34 96.59 96.95

Table 4: Recall@k performance of LNN-EL models

Dataset LNN-EL LNN-EL LNN-EL LNN-EL LNN-ELens
+BLINK +BERTWiki +Box

LC-QuAD 87.64 90.24 88.23 89.05 91.00
QALD-9 88.52 90.96 86.41 88.52 91.38
WebQSPEL 85.08 92.32 91.70 91.44 92.12

Table 5: F1 scores of LNN-EL with additional features
coming from various black-box EL approaches.

sion can be found in Appendix A.2. As seen in Ta-
ble 5, approaches like BERTWiki and Box which in
isolation underperform compared to LNN-EL, help
boost the latter’s performance if they are included
as predicates. Similarly, LNN-EL which has com-
parable performance to BLINK, can accommodate
the latter’s score to produce better performance
(see LNN-EL+BLINK). We also note that adding fea-
tures is not a guarantee to improve performance,
as LNN-ELens (which includes both BLINK and
Box) slightly underperforms LNN-EL+BLINK on
WebQSPEL. For such cases, the interpretability of
LNN-EL (discussed next) can help users select the
right features based on their relative importance.

Interpretability. Unlike black-box models, rule-
based approaches provide the capability to inspect
the model, specifically on how the features impact
performance. This inspection can help in dropping
or adjusting features that are detrimental. For in-
stance, consider our case of LNN-EL+BLINK and
LNN-ELens trained on WebQSPEL dataset, where
we observed that LNN-ELens’s performance is in-
ferior to LNN-EL+BLINK even though the former
model has more features. A human expert can find



783

∨

BLINK ∨

Sim∧Ctx Type

∨ Promθ

. . .Levθ Boxθ

0.89 0.26

0.22 0.72 0.19

0.18 0.81

0.16 0.69

∨

BLINK ∨

Sim∧Ctx Type

∨ Promθ

. . .Levθ

1.01 0.42

0.55 0.350.47

0.94 0.84

0.10

Figure 6: Feature weights of two models LNN-
ELens(left) and LNN-EL+BLINK (right) on WebQSPEL

Train Test
LC-QuAD QALD-9 WebQSPEL

LC-QuAD 87.64 86.41 78.90
QALD-9 85.58 88.52 83.06
WebQSPEL 80.95 87.25 85.08

Table 6: F1 scores of LNN-EL in transfer settings.

insights into this behavior by looking at the fea-
ture weights in each model. In Figure 6 (left), the
disjunction tree with the Box feature is given a
low weight of 0.26, thus discounting some of the
other useful features in the same tree. Removal
of the Box feature leads to a re-weighting of the
features in the model; the modified disjunction tree
(Figure 6 (left)) has now a weight of 0.42. Such vi-
sualization can help the rule designer to judiciously
select features to combine towards building a per-
formant model.

Transferability. To study the transferability as-
pect, we train LNN-EL on one dataset and evaluate
the model on the other two, without any finetun-
ing. We use the core LNN-EL variant for this,
but similar properties hold for the other variants.
Table 6 shows F1 scores on different train-test con-
figurations, with diagonal (underlined numbers)
denoting the F1 score when trained and tested on
the same dataset. We observe that LNN-EL trans-
fers reasonably well, even in cases where train-
ing is done on a very small dataset. For exam-
ple, when we transfer from QALD-9 (with only
a few hundred questions to train) to WebQSPEL,
we obtain an F1-score of 83.06 which is within 2
percentage points of the F1-score when trained di-
rectly on WebQSPEL. We remark that the zero-shot
BLINK by design has very good transferability and
achieves F1 scores of 87.04, 89.14, 92.10 on LC-
QuAD, QALD-9, WebQSPEL respectively. How-
ever, BLINK is trained on the entire Wikipedia,
while LNN-EL needs much less data to achieve
reasonable transfer performance.

Candidate & feature Training Inference
generation per epoch per epoch

QALD-9 26.21 0.010 0.009
LC-QuAD 33.05 0.010 0.013
WebQSPEL 19.80 0.009 0.012

Table 7: Time per question for candidate & feature gen-
eration, along with train and inference time per ques-
tion for LNN-ELens. All numbers are in seconds.

Runtime Analysis. We study the efficiency of
LNN-ELens across three aspects: 1) candidate &
feature generation, 2) training, and 3) inference.
Candidate & feature generation involve using the
DBpedia lookup API to obtain candidates for each
mention, pruning non-entity candidates (i.e., cate-
gories, disambiguation links, etc.), obtaining any
missing descriptions for candidates using SPARQL
endpoint, and finally generating feature vectors
for each mention-candidate pair using the feature
functions described in Section 4.1. The generated
features for the train and test data are then used,
respectively, to train and test the LNN-EL models.
The number of parameters in an LNN-EL model
is linearly proportional to the combined number of
disjunctions and conjunctions, which typically is
in the order of few 10s. For example, LNN-ELens

comprises of 72 parameters, which is several or-
ders of magnitude smaller than in neural black box
models such as BLINK. Table 7 provides the time
(in seconds) taken per question for candidate & fea-
ture generation, as well as 5-run average training
and inference time per epoch.

6 Conclusions

We introduced LNN-EL, a neuro-symbolic ap-
proach for entity linking on short text. Our ap-
proach complements human-given rule templates
through neural learning and achieves competitive
performance against SotA black-box neural models,
while exhibiting interpretability and transferability
without requiring a large amount of labeled data.
While LNN-EL provides an extensible framework
where one can easily add and test new features in
existing rule templates, currently this is done manu-
ally. A future direction is to automatically learn the
rules with the optimal combinations of features.

Acknowledgements

We thank Ibrahim Abdelaziz, Pavan Kapanipathi,
Srinivas Ravishankar, Berthold Reinwald, Salim
Roukos and anonymous reviewers for their valu-
able inputs and feedback.



784

References
Arvind Arasu, Michaela Götz, and Raghav Kaushik.

2010. On active learning of record matching pack-
ages. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’10, page 783–794, New York, NY, USA.
Association for Computing Machinery.

Stephen H. Bach, Matthias Broecheler, Bert Huang,
and Lise Getoor. 2017. Hinge-loss markov random
fields and probabilistic soft logic. J. Mach. Learn.
Res., 18(1):3846–3912.

Razvan Bunescu and Marius Pasca. 2006. Using en-
cyclopedic knowledge for named entity disambigua-
tion. In Proceesings of the 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-06), pages 9–16, Trento,
Italy.

S. Chaudhuri, Bee-Chung Chen, V. Ganti, and
R. Kaushik. 2007. Example-driven design of effi-
cient record matching queries. In VLDB.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on Wikipedia data. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 708–716, Prague, Czech Republic.
Association for Computational Linguistics.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yan-
nis Katsis, Ban Kawas, and Prithviraj Sen. 2020. A
survey of the state of explainable AI for natural lan-
guage processing. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, pages 447–459, Suzhou, China. Associ-
ation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

F. Esteva and L. Godo. 2001. Monoidal t-norm based
logic: Towards a logic for left-continuous t-norms.
Fuzzy Sets and Systems.

Richard Evans and Edward Grefenstette. 2018. Learn-
ing explanatory rules from noisy data. JAIR.

Paolo Ferragina and Ugo Scaiella. 2012. Fast and ac-
curate annotation of short texts with wikipedia pages.
IEEE Softw., 29(1):70–75.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2619–2629, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Lise Getoor and Ben Taskar. 2007. Introduction to Sta-
tistical Relational Learning (Adaptive Computation
and Machine Learning). The MIT Press.

Daniel Gillick, Sayali Kulkarni, Larry Lansing,
Alessandro Presta, Jason Baldridge, Eugene Ie, and
Diego Garcia-Olano. 2019. Learning dense repre-
sentations for entity retrieval.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Franco Turini, Fosca Giannotti, and Dino Pedreschi.
2018. A survey of methods for explaining black box
models. ACM Computing Surveys.

Mauricio Hernández, Georgia Koutrika, Rajasekar Kr-
ishnamurthy, Lucian Popa, and Ryan Wisnesky.
2013. Hil: A high-level scripting language for en-
tity integration. In Proceedings of the 16th Interna-
tional Conference on Extending Database Technol-
ogy, EDBT ’13, page 549–560, New York, NY, USA.
Association for Computing Machinery.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012. Kore:
Keyphrase overlap relatedness for entity disam-
biguation. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’12, page 545–554, New York,
NY, USA. Association for Computing Machinery.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named en-
tities in text. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Process-
ing, pages 782–792, Edinburgh, Scotland, UK. Asso-
ciation for Computational Linguistics.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Rav-
ishankar, Salim Roukos, Alexander Gray, Ramon
Astudillo, Maria Chang, Cristina Cornelio, Saswati
Dana, Achille Fokoue, et al. 2021. Leveraging ab-
stract meaning representation for knowledge base-
question answering. Findings of the Association for
Computational Linguistics: ACL 2021.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In EMNLP.

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, Jacob Devlin, and Honglak Lee.
2019. Zero-shot entity linking by reading entity de-
scriptions. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3449–3460, Florence, Italy. Association for
Computational Linguistics.

Pablo N Mendes, Max Jakob, Andrés García-Silva, and
Christian Bizer. 2011. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of
the 7th international conference on semantic sys-
tems, pages 1–8.

https://doi.org/10.1145/1807167.1807252
https://doi.org/10.1145/1807167.1807252
http://www.cs.utexas.edu/users/ai-lab?bunescu:eacl06
http://www.cs.utexas.edu/users/ai-lab?bunescu:eacl06
http://www.cs.utexas.edu/users/ai-lab?bunescu:eacl06
https://www.aclweb.org/anthology/D07-1074
https://www.aclweb.org/anthology/D07-1074
https://www.aclweb.org/anthology/2020.aacl-main.46
https://www.aclweb.org/anthology/2020.aacl-main.46
https://www.aclweb.org/anthology/2020.aacl-main.46
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/MS.2011.122
https://doi.org/10.1109/MS.2011.122
https://doi.org/10.18653/v1/D17-1277
https://doi.org/10.18653/v1/D17-1277
http://arxiv.org/abs/1909.10506
http://arxiv.org/abs/1909.10506
https://doi.org/10.1145/2452376.2452440
https://doi.org/10.1145/2452376.2452440
https://doi.org/10.1145/2396761.2396832
https://doi.org/10.1145/2396761.2396832
https://doi.org/10.1145/2396761.2396832
https://www.aclweb.org/anthology/D11-1072
https://www.aclweb.org/anthology/D11-1072
https://doi.org/10.18653/v1/P19-1335
https://doi.org/10.18653/v1/P19-1335


785

Rada Mihalcea and Andras Csomai. 2007. Wikify!
linking documents to encyclopedic knowledge. In
Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Manage-
ment, CIKM ’07, page 233–242, New York, NY,
USA. Association for Computing Machinery.

Stephen Muggleton. 1996. Learning from positive data.
In Worshop on ILP.

D. Nguyen, Johannes Hoffart, M. Theobald, and
G. Weikum. 2014. Aida-light: High-throughput
named-entity disambiguation. In LDOW.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

J. Pujara and L. Getoor. 2016. Generic statistical rela-
tional entity resolution in knowledge graphs. ArXiv,
abs/1607.00992.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and global algorithms for dis-
ambiguation to Wikipedia. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1375–1384, Portland, Oregon, USA. As-
sociation for Computational Linguistics.

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.
Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Matthew Richardson and Pedro Domingos.
2006. Markov logic networks. Mach. Learn.,
62(1–2):107–136.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed
Khan, Ndivhuwo Makondo, Ismail Yunus Akhal-
waya, Haifeng Qian, Ronald Fagin, Francisco Bara-
hona, Udit Sharma, Shajith Ikbal, Hima Karanam,
Sumit Neelam, Ankita Likhyani, and Santosh Srivas-
tava. 2020. Logical neural networks. arXiv.

Ahmad Sakor, Isaiah Onando Mulang’, Kuldeep Singh,
Saeedeh Shekarpour, Maria Esther Vidal, Jens
Lehmann, and Sören Auer. 2019. Old is gold: Lin-
guistic driven approach for entity and relation link-
ing of short text. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2336–2346, Minneapolis, Minnesota.
Association for Computational Linguistics.

W. Shen, J. Wang, and J. Han. 2015. Entity linking
with a knowledge base: Issues, techniques, and so-
lutions. IEEE Transactions on Knowledge and Data
Engineering, 27(2):443–460.

Avirup Sil, Ernest Cronin, Penghai Nie, Yinfei Yang,
Ana-Maria Popescu, and Alexander Yates. 2012.
Linking named entities to any database. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 116–
127, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Parag Singla and Pedro Domingos. 2006. Entity resolu-
tion with markov logic. In Proceedings of the Sixth
International Conference on Data Mining, ICDM
’06, page 572–582, USA. IEEE Computer Society.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish
Dubey, and Jens Lehmann. 2017. Lc-quad: A cor-
pus for complex question answering over knowledge
graphs. In The Semantic Web – ISWC 2017, pages
210–218, Cham. Springer International Publishing.

Ricardo Usbeck, Ria Hari Gusmita, Axel-
Cyrille Ngonga Ngomo, and M. Saleem.
2018. 9th challenge on question answering
over linked data (qald-9) (invited paper). In
Semdeep/NLIWoD@ISWC.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Jiannan Wang, Tim Kraska, Michael J. Franklin,
and Jianhua Feng. 2012. Crowder: Crowd-
sourcing entity resolution. Proc. VLDB Endow.,
5(11):1483–1494.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Zero-shot en-
tity linking with dense entity retrieval. In EMNLP.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki
Shindo, Hideaki Takeda, Yoshiyasu Takefuji, and
Yuji Matsumoto. 2020. Wikipedia2Vec: An effi-
cient toolkit for learning and visualizing the embed-
dings of words and entities from Wikipedia. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 23–30. Association for Com-
putational Linguistics.

Fan Yang, Zhilin Yang, and William W Cohen. 2017.
Differentiable learning of logical rules for knowl-
edge base reasoning. In NeurIPS.

https://doi.org/10.1145/1321440.1321475
https://doi.org/10.1145/1321440.1321475
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/P11-1138
https://www.aclweb.org/anthology/P11-1138
https://openreview.net/forum?id=BJgr4kSFDS
https://openreview.net/forum?id=BJgr4kSFDS
https://doi.org/10.1007/s10994-006-5833-1
http://arxiv.org/abs/2006.13155
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1109/TKDE.2014.2327028
https://www.aclweb.org/anthology/D12-1011
https://doi.org/10.1109/ICDM.2006.65
https://doi.org/10.1109/ICDM.2006.65
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.14778/2350229.2350263
https://doi.org/10.14778/2350229.2350263


786

A Appendix

A.1 t-norm and t-conorm
While linear classifiers, decision lists/trees may
also be considered interpretable, rules expressed
in first-order logic (FOL) form a much more pow-
erful, closed language that offer semantics clear
enough for human interpretation and a larger range
of operators facilitating the expression of richer
models. To learn these rules, neuro-symbolic AI
substitutes conjunctions (disjunctions) with differ-
entiable t-norms (t-conorms) (Esteva and Godo,
2001). However, since it does not have any learn-
able parameters, this behavior cannot be adjusted,
which limits how well it can model the data. For
example, while linear classifiers such as logistic
regression can only express a (weighted) sum of
features which is similar to logic’s disjunction (∨)
operator, logic also contains other operators includ-
ing, but not limited to, conjunction (∧), and nega-
tion (¬).

As opposed to inductive logic programming
(Muggleton, 1996) and statistical relational learn-
ing (Getoor and Taskar, 2007), neuro-symbolic AI
utilizes neural networks to learn rules. Towards
achieving this, the first challenge to overcome is
that classical Boolean logic is non-differentiable
and thus, not amenable to gradient-based opti-
mization (e.g., backpropagation). To address this,
neuro-symbolic AI substitutes conjunctions (dis-
junctions) with differentiable t-norms (t-conorms)
(Esteva and Godo, 2001). For example, prod-
uct t-norm, used in multiple neuro-symbolic rule-
learners (Evans and Grefenstette, 2018; Yang et al.,
2017), is given by x ∧ y ≡ xy, where x, y ∈ [0, 1]
denote input features in real-valued logic. Product
t-norm agrees with Boolean conjunction at the ex-
tremities, i.e., when x, y are set to 0 (false) or
1 (true). However, when x, y ∈ [0, 1] \ {0, 1},
its behavior is governed by the product function.
More importantly, since it does not have any learn-
able parameters, this behavior cannot be adjusted,
which limits how well it can model the data.

A.2 Ablation Study
To understand the roles of eac rule in LNN-EL, we
also conduct ablation study on the largest bench-
mark dataset LC-QuAD (see Table 8). We observe
that Context is the most performant rule alone.
Although PureName rule is behind the other two
alone, PureName + Context improves the perfor-
mance of Context by 1%. Meanwhile, Context

+ Type only improves Context’s performance by
0.05%. Interestingly, the combination of three rules
performs slightly worse than PureName + Context
by 0.35%. These results show that Type rule is less
important among the three rules. To be consistent
with the RuleEL system, we apply “PureName +
Context + Type” setting for LNN-EL in our experi-
ments.

Dataset Precision Recall F1

PureName 76.03 75.83 75.93
+ Context 88.09 87.89 87.99

+ Type 87.74 87.54 87.64
+ Type 81.46 81.26 81.36

Context 87.04 86.83 86.93
+ Type 87.09 86.88 86.98

Type 87.04 86.83 86.93

Table 8: LNN-EL Ablation Analysis on LC-QuAD

Additionally, we also show the transferability of
LR in Table 9. This must be compared with the cor-
responding LNN-EL results in the earlier Table 6.
In particular, we observe that LNN-EL outperforms
LR in 4 out of 6 transferability tests, demonstrating
that LNN-EL has superior transferability.

A.3 LNN-EL Rules
In our experiments, we explore the following mod-
ules, implemented in PyTorch.
Name Rule:

Rname ← [fjacc(mi, eij) > θ1 ∨ flev(mi, eij) > θ2

∨ fjw(mi, eij) > θ3 ∨ fspacy(mi, eij) > θ4]

∧ fprom(mi, eij)

Context Rule:

Rctx ← [fjacc(mi, eij) > θ1 ∨ flev(mi, eij) > θ2

∨ fjw(mi, eij) > θ3 ∨ fspacy(mi, eij) > θ4]

∧ fctx(mi, eij) > θ5

∧ fprom(mi, eij)

Type Rule:

Rtype ← [fjacc(mi, eij) > θ1 ∨ flev(mi, eij) > θ2

∨ fjw(mi, eij) > θ3 ∨ fspacy(mi, eij) > θ4]

∧ ftype(mi, eij) > θ5

∧ fprom(mi, eij)

Blink Rule:

Rblink ← [fjacc(mi, eij) > θ1 ∨ flev(mi, eij) > θ2

∨ fjw(mi, eij) > θ3 ∨ fspacy(mi, eij) > θ4]

∧ fblink(mi, eij)



787

Train Test
LC-QuAD QALD-9 WebQSPEL

LC-QuAD 86.93 84.73 76.72
QALD-9 87.14 84.73 80.03
WebQSPEL 83.42 86.83 83.59

Table 9: F1 scores of LR in transfer settings.

Box Rule:

Rbox ← [fjacc(mi, eij) > θ1 ∨ flev(mi, eij) > θ2

∨ fjw(mi, eij) > θ3 ∨ fspacy(mi, eij) > θ4]

∨ fbox(mi, eij) > θ5

BERT Rule:

Rbert ← [fjacc(mi, eij) > θ1 ∨ flev(mi, eij) > θ2

∨ fjw(mi, eij) > θ3 ∨ fspacy(mi, eij) > θ4]

∨ fbert(mi, eij) > θ5

LNN-EL:

RLNN−EL ←Rname ∨Rctx ∨Rtype

LNN-EL+BLINK:

RLNN−EL+BLINK ←RLNN−EL ∨Rblink

LNN-ELens:

RLNN−ELens ←RLNN−EL ∨Rblink ∨Rbox


