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Abstract

Prior work has proved that Translation mem-
ory (TM) can boost the performance of Neural
Machine Translation (NMT). In contrast to ex-
isting work that uses bilingual corpus as TM
and employs source-side similarity search for
memory retrieval, we propose a new frame-
work that uses monolingual memory and per-
forms learnable memory retrieval in a cross-
lingual manner. Our framework has unique ad-
vantages. First, the cross-lingual memory re-
triever allows abundant monolingual data to be
TM. Second, the memory retriever and NMT
model can be jointly optimized for the ulti-
mate translation goal. Experiments show that
the proposed method obtains substantial im-
provements. Remarkably, it even outperforms
strong TM-augmented NMT baselines using
bilingual TM. Owning to the ability to lever-
age monolingual data, our model also demon-
strates effectiveness in low-resource and do-
main adaptation scenarios.

1 Introduction

Augmenting parametric neural network models
with non-parametric memory (Khandelwal et al.,
2019; Guu et al., 2020; Lewis et al., 2020a,b) has
recently emerged as a promising direction to re-
lieve the demand for ever-larger model size (De-
vlin et al., 2019; Radford et al., 2019; Brown et al.,
2020). For the task of Machine Translation (MT),
inspired by the Computer-Aided Translation (CAT)
tools by professional human translators for increas-
ing productivity for decades (Yamada, 2011), the
usefulness of Translation Memory (TM) has long
been recognized (Huang et al., 2021). In general,
TM is a database that stores pairs of source text
and its corresponding translations. Like for human
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translation, early work (Koehn and Senellart, 2010;
He et al., 2010; Utiyama et al., 2011; Wang et al.,
2013, inter alia) presents translations for similar
source input to statistical translation models as ad-
ditional cues.

Recent work has confirmed that TM can help
Neural Machine Translation (NMT) models as well.
In a similar spirit to prior work, TM-augmented
NMT models do not discard the training corpus
after training but keep exploiting it in the test time.
These models perform translation in two stages: In
the retrieval stage, a retriever searches for nearest
neighbors (i.e., source-target pairs) from the train-
ing corpus based on source-side similarity such
as lexical overlaps (Gu et al., 2018; Zhang et al.,
2018; Xia et al., 2019), embedding-based matches
(Cao and Xiong, 2018), or a hybrid (Bulte and
Tezcan, 2019; Xu et al., 2020); In the generation
stage, the retrieved translations are injected into a
standard NMT model by attending over them with
sophisticated memory networks (Gu et al., 2018;
Cao and Xiong, 2018; Xia et al., 2019; He et al.,
2021) or directly concatenating them to the source
input (Bulte and Tezcan, 2019; Xu et al., 2020),
or biasing the word distribution during decoding
(Zhang et al., 2018). Most recently, Khandelwal
et al. (2020) propose a token-level nearest neighbor
search using complete translation context, i.e., both
the source-side input and target-side prefix.

Despite their differences, we identify two major
limitations in previous research. First, the transla-
tion memory has to be a bilingual corpus consisting
of aligned source-target pairs. This requirement
limits the memory bank to bilingual pairs and pre-
cludes the use of abundant monolingual data, which
can be especially helpful for low-resource scenar-
10s. Second, the memory retriever is non-learnable,
not end-to-end optimized, and lacks for the ability
to adapt to specific downstream NMT models. Con-
cretely, current retrieval mechanisms (e.g., BM25)
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are generic similarity search, adopting a simple
heuristic. That is, the more a source sentence over-
laps with the input sentence, the more likely its
target-side translation pieces will appear in the cor-
rect translation. Although this observation is true,
the most similar one does not necessarily serve the
best for NMT models. Ideally, the retrieval metric
would be learned from the data in a task-dependent
way: we wish to consider a memory only if it can
indeed boost the quality of final translation.

In this work, we propose to augment NMT mod-
els with monolingual TM and a learnable cross-
lingual memory retriever. Specifically, we align
source-side sentences and the corresponding target-
side translations in a latent vector space using a
simple dual-encoder framework (Bromley et al.,
1993), such that the distance in the latent space
yields a score function for retrieval. As a result,
our memory retriever directly connects the dots
between the source-side input and target-side trans-
lations, enabling monolingual data in the target
language to be used alone as TM. Before running
each translation, the memory retriever selects the
highest-scored memories from a large collection of
monolingual sentences (TM), which may include
but are not limited to the target side of training cor-
pus, and then the downstream NMT model attends
over those memories to help inform its translation.
We design the memory retriever with differentiable
neural networks. To unify the memory retriever and
its downstream NMT model into a learnable whole,
the retrieval scores are used to bias the attention
scores to the most useful retrieved memories. In
this way, our memory retrieval can be end-to-end
optimized for the translation objective: a retrieval
that improves the golden translation’s likelihood is
helpful and should be rewarded, while an uninfor-
mative retrieval should be penalized.

One challenge for training our proposed frame-
work is that, when starting from random initializa-
tion, the retrieved memories will likely be totally
unrelated to the input. Since the memory retriever
does not exert positive influence on NMT model’s
performance, it cannot receive a meaningful gradi-
ent and improve. This causes the NMT model to
learn to ignore all retrieved memories. To avoid this
cold-start problem, we propose to warm-start the
retrieval model using two cross-alignment tasks.

Experiments show that (1) Our model leads
to significant improvements over non-TM base-
line NMT model, even outperforming strong TM-

augmented baselines. This is remarkable given that
previous TM-augmented models rely on bilingual
TM while our model only exploits the target side.
(2) Our model can substantially boost translation
quality in low-resource scenarios by utilizing extra
monolingual TM that is not present in training pairs.
(3) Our model gains a strong cross-domain trans-
ferability by hot-swapping domain-specific mono-
lingual memory.

2 Related Work

TM-augmented NMT This work contributes
primarily to the research line of Translation Mem-
ory (TM) augmented Neural Machine Translation
(NMT). Feng et al. (2017) augmented NMT with a
bilingual dictionary to tackle infrequent word trans-
lation. Gu et al. (2018) proposed a model that re-
trieves examples similar to the test source sentence
and encodes retrieved source-target pairs with key-
value memory networks. Cao and Xiong (2018);
Cao et al. (2019) used a gating mechanism to bal-
ance the impact of the translation memory. Zhang
et al. (2018) proposed guiding models by retriev-
ing n-grams and up-weighting the probabilities of
retrieved n-grams. Bulte and Tezcan (2019) and
Xu et al. (2020) used fuzzy-matching with transla-
tion memories and augment source sequences with
retrieved source-target pairs. Xia et al. (2019) di-
rectly ignored the source side of a TM and packed
the target side into a compact graph. Khandelwal
et al. (2020) ran existing translation model on large
bi-text corpora and recorded all hidden states for
later nearest neighbor search at each decoding step,
which is very compute-intensive. The distinctions
between our work and prior work are obvious: (1)
The TM in our framework is a collection of mono-
lingual sentences rather than bilingual sentence
pairs; (2) We use learnable task-specific retrieval
rather than generic retrieval mechanisms.

Retrieval for Text Generation Discrete re-
trieval as an intermediate step has been shown
beneficial to a variety of natural language process-
ing tasks. One typical use is to retrieve support-
ing evidence for open-domain question answering
(e.g., Chenetal., 2017; Lee et al., 2019; Karpukhin
et al., 2020). Recently, retrieval-guided genera-
tion has gained increasing interest in a wide range
of text generation tasks such as language model-
ing (Guu et al., 2018; Khandelwal et al., 2019;
Guu et al., 2020), dialogue response generation
(Weston et al., 2018; Wu et al., 2019; Cai et al.,
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Figure 1: Overall framework. For an input sentence x in the source language, the retrieval model uses Maximum
Inner Product Search (MIPS) to find the top-M TM sentences {z;}2, in the target language. The translation
model takes {2;}2, and corresponding relevance scores { f(z, 2;)}£, as input and generate the translation .

2019a,b), code generation (Hashimoto et al., 2018)
and other knowledge-intensive generation (Lewis
et al., 2020b). It can be observed that there is a
shift from using off-the-shelf search engines to
learning task-specific retrievers. Our work draws
inspiration from this line of research. However,
retrieval-guided generation has so far been mainly
investigated for knowledge retrieval in the same
language. The memory retrieval in this work is
more challenging due to the cross-lingual setting.

NMT using Monolingual Data To our knowl-
edge, the integration of monolingual data for NMT
was first investigated by Gulcehre et al. (2015), who
separately trained target-side language models us-
ing monolingual data, and then integrated them dur-
ing decoding either through re-scoring the beam, or
by feeding the hidden state of the language model
to the NMT model. Jean et al. (2015) also explored
re-ranking the NMT output with a n-gram language
model. Another successful method for leveraging
monolingual data in NMT is back-translation (Sen-
nrich et al., 2016; Fadaee et al., 2017; Edunov et al.,
2018; He et al., 2016), where a reverse translation
model is used to translate monolingual sentences
from the target language to the source language to
generate synthetic parallel sentences. Recent stud-
ies (Jiao et al., 2021; He et al., 2019) showed that
self-training, where the synthetic parallel sentences
are created by translating monolingual sentences
in the source language, is also helpful. Our method
is orthogonal to previous work and bears a unique
feature: it can use more monolingual data without
re-training (see §4.3).

3 Proposed Approach

We start by formalizing the translation task as a
retrieve-then-generate process in §3.1. Then in
§3.2, we describe the model design for the cross-

lingual memory retrieval model. In §3.3, we de-
scribe the model design for the memory-augmented
translation model. Lastly, we show how to optimize
the two components jointly using standard maxi-
mum likelihood training in §3.4 and therein we
address the cold-start problem via cross-alignment
pre-training.

3.1 Overview

Our approach decomposes the whole translation
processing into two steps: retrieve, then generate.
The overall framework is illustrated in Figure 1.
The Translation Memory (TM) in our approach
is a collection of sentences in the target language
Z. Given an input x in the source language, the re-
trieval model first selects a number of possibly help-
ful sentences {z;}£, from Z, where M < | Z|, ac-
cording to a relevance function f(x, z;). Then, the
translation model conditions on both the retrieved
set {(z;, f(x,z;)};2, and the original input x to
generate the output y using a probabilistic model
p(ylx, z1, f(z,21), ..., 2p, f(z, 20r)). Note that
the relevance scores { f(z, 2;)}M, are also part of
the input to the translation model, encouraging the
translation model to focus more on more relevant
sentences. During training, maximizing the likeli-
hood of the translation references improves both
the translation model and the retrieval model.

3.2 Retrieval Model

The retrieval model is responsible for selecting the
most relevant sentences for a source sentence from
a large monolingual TM. This could involve mea-
suring the relevance scores between the source sen-
tence and millions of candidate target sentences,
which poses a serious computational challenge. To
address this, we implement the retrieval model us-
ing a simple dual-encoder framework (Bromley
et al., 1993) such that the selection of the most
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relevant sentences can be reduced to Maximum In-
ner Product Search (MIPS). With performant data
structures and search algorithms (e.g., Shrivastava
and Li, 2014; Malkov and Yashunin, 2018), the
retrieval can be done efficiently.

Specifically, we define the relevance score
f(x, z) between the source sentence = and the can-
didate sentence z as the dot product of their dense
vector representations:

[z, 2) = EsrC(x)TEtgt(Z)

where FE. and Eigy are the source sentence encoder
and the target sentence encoder that map x and z to
d-dimensional vectors respectively. We implement
the two sentence encoders using two independent
Transformers (Vaswani et al., 2017). For an input
sentence, we prepend the [BOS] token to its to-
ken sequence and then feed it into a Transformer.
We take the representation at the [BOS] token as
the output (denoted Trans g (o1} ({7 2})), and per-
form a linear projection (W o}) to reduce the
dimensionality of the vector. Finally, we normal-
ize the vectors to regulate the range of relevance
scores.

Egc(x) = normalize (W Transs,.(z))

Egt(2) = normalize(Wig Trans. g (2))

The normalized vectors have zero means and unit
lengths. Therefore, the relevance scores always
fall in the interval [—1,1]. We let 6 denote all
parameters associated with the retrieval model.

In practice, the dense representations of all sen-
tences in TM can be pre-computed and indexed us-
ing FAISS (Johnson et al., 2019), an open-source
toolkit for efficient vector search. Given a source
sentence x in hand, we compute the vector rep-
resentation v, = Fg.(x) and retrieve the top M
target sentences with vectors closest to v.

3.3 Translation Model

Given a source sentence x, a small set of relevant
TM {z;}M,, and relevance scores {f(z,2)}M,,
the translation model defines the conditional proba-
blhty p(y|$, 21, f(.’E, Zl)a sy M, f(CL‘, ZM))

Our translation model is built upon the standard
encoder-decoder NMT model (Bahdanau et al.,
2015; Vaswani et al., 2017): the (source) encoder
transforms the source sentence z into dense vec-
tor representations. The decoder generates an out-
put sequence y in an auto-regressive fashion. At
each time step t, the decoder attends over both

previously generated sequence y;..—1 and the out-
put of the source encoder, generating a hidden
state h;. The hidden state h; is then converted
to next-token probabilities through a linear pro-
jection followed by softmax function, i.e., P, =
softmax (W, hy + by).

To accommodate the extra memory input, we
extend the standard encoder-decoder NMT frame-
work with a memory encoder and allow cross-
attention from the decoder to the memory encoder.
Specifically, the memory encoder encodes each TM
sentence z; individually, resulting in a set of con-
textualized token embeddings {Zi,k}éél, where L;
is the length of the token sequence z;. We compute
a cross attention over all TM sentences:

exp (bt Winzi ;)
SM SE exp(hTWinzig)

M L,
Ct — WC E E Q525 5

i=1 j=1

)

Oéij =

where «;; is the attention score of the j-th token
in z;, ¢; is a weighted combination of memory em-
beddings, and W,,, and W, are trainable matrices.
The cross attention is used twice during decod-
ing. First, the decoder’s hidden state h; is updated
by a weighted sum of memory embeddings, i.e.,
ht = hy + ¢;. Second, we consider each attention
score as a probability of copying the corresponding
token (Gu et al., 2016; See et al., 2017). Formally,
the next-token probabilities are computed as:

M L;
pyil) = (L= X)Polye) + X DD iy,
=1 j—1

where 1 is the indicator function and )\; is a gating
variable computed by another feed-forward net-
work A\; = g(hy, ct).

Inspired by Lewis et al. (2020a), to enable the
gradient flow from the translation output to the
retrieval model, we bias the attention scores with
the relevance scores, rewriting Eq. (1) as:

exp(hy Winzij + Bf (%, 2))
2%1 Zﬁél exp(hy Wiz + Bf (@, 2))
2
where [ is a trainable scalar that controls the weight
of the relevance scores. We let ¢ denote all param-
eters associated with the translation model.

Oéij =

3.4 Training

We optimize the model parameters 6 and
¢ using stochastic gradient descent on
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the negative log-likelihood loss function
—log p(y*|x, z1, f(z,21), .-y 20, [y 200))s

where y* refers to the reference translation. As
implied by Eq. (2), TM sentences that improve the
likelihood of reference translations should receive
higher attention scores and higher relevance scores,
so gradient descent on the loss function will
improve the quality of the retrieval model as well.

Cross-alignment Pre-training However, if the
retrieval model starts from random initialization,
all top TM sentences z; will likely be unrelated
to x (or equally useless). This leads to a problem
that the retrieval model cannot receive meaningful
gradients and improve, and the translation model
will learn to completely ignore the TM input. To
avoid this cold-start problem, we propose two cross-
alignment tasks to warm-start the retrieval model.

The first task is sentence-level cross-alignment.
This task aims to find the right translation for a
source sentence given a set of other translations,
which is directly related to our retrieval function.
Concretely, We sample B source-target pairs from
the training corpus at each training step. Let X
and Z be the (B x d) matrix of the source and tar-
get vectors encoded by g and Eig respectively.
S = XZ"isa (B x B) matrix of relevance scores,
where each row corresponds to a source sentence
and each column corresponds to a target sentence.
Any (X, Z;) pair should be aligned when ¢ = j,
and should not otherwise. The objective is to max-
imize the scores along the diagonal of the matrix
and henceforth reduce the values in other entries.
The loss function can be written as:

0 _ — exp(Si)
1 exp(Si) + Zj;éi exp(Si;)

The second task is token-level cross-alignment,
which aims to predict the tokens in the target lan-
guage given the source sentence representation and
vice versa. Formally, we use bag-of-words losses:

£9 ==Y logp(w,|X) + > logp(w,|Yi)

wy €Y; Wy €EX;

where X; ();) represents the set of tokens in the ¢-th
source (target) sentence and the token probabilities
are computed by a linear projection followed by the
softmax function. The joint loss for pre-training
is 557 £9 4 £9 In practice, we find that
both the sentence-level and token-level objectives
are crucial for achieving superior performance.

Dataset #Train Pairs | #Dev Pairs | #Test Pairs
En<Es 679,088 2,533 2,596
EnsDe 699,569 2,454 2,483

Table 1: Data statistics for the JRC-Acquis corpus.

Asynchronous Index Refresh To employ fast
MIPS, we must pre-compute Eig(z) for every
z € Z and build an index. However, the index
cannot remain consistent with the running model
during training as € will be updated over time. One
straightforward solution to fix the parameters of
Eig after the pre-training described above and only
fine-tune the parameters of Eg.. However, this may
hurt performance since Eiy cannot adapt to the
translation objective. Another solution is to asyn-
chronously refresh the index by re-computing and
re-indexing all TM sentences at regular intervals.
The index is slightly outdated between refreshes,
however, we use fresh Eiy in gradient estimate. We
explore both options in our experiments.

4 Experiments

We experiment with the proposed approach in three
settings: (1) the conventional setting where the
available TM is limited to the bilingual training
corpus, (2) the low-resource setting where bilin-
gual training pairs are scarce but extra monolingual
data is exploited as additional TM, and (3) non-
parametric domain adaptation using monolingual
TM. Note that existing TM-augmented NMT mod-
els are only applicable to the first setting, the last
two settings only become possible with our pro-
posed model. We use BLEU score (Papineni et al.,
2002) as the evaluation metric.

4.1 Implementation Details

We build our model using Transformer blocks
with the same configuration as Transformer Base
(Vaswani et al., 2017) (8 attention heads, 512 di-
mensional hidden state, and 2048 dimensional
feed-forward state). The number of Transformer
blocks is 3 for the retrieval model, 4 for the mem-
ory encoder in the translation model, and 6 for
the encoder-decoder architecture in the translation
model. We retrieve the top 5 TM sentences. The
FAISS index code is “IVF1024_HNSW32,SQ8”
and the search depth is 64.

We follow the learning rate schedule, dropout
and label smoothing settings described in Vaswani
et al. (2017). We use Adam optimizer (Kingma
and Ba, 2014) and train models with up to 100K
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# | System Retriever Es=En En=Es De=-En En=-De
Dev Test Dev Test Dev Test Dev Test
Existing NMT systems*
Gu et al. (2018) source similarity 63.16 6294 | - - - - - -
Zhang et al. (2018) | source similarity 63.97 6430 | 61.50 61.56 | 60.10 60.26 | 55.54 55.14
Xia et al. (2019) source similarity 66.37 66.21 | 62.50 62.76 | 61.85 61.72 | 5743 56.88
Our NMT systems
1 None 64.25 64.07 | 62.27 61.54 | 59.82 60.76 | 55.01 54.90
2 source similarity 6698 6648 | 63.04 62.76 | 63.62 63.85 | 57.88 57.53
3 this work cross-lingual (fixed) 66.68 66.24 | 63.06 62.73 | 63.25 63.06 | 57.61 56.97
4 cross-lingual (fixed Eig)T 67.66 67.16 | 63.73 63.22 | 6439 64.01 | 58.12 57.92
5 cross-lingualf 67.73 6742 | 64.18 63.86 | 6448 64.62 | 58.77 58.42

Table 2: Experimental results (BLEU scores) on four translation tasks. *Results are from Xia et al. (2019). {The
two variants of our method (model #4 and model #5) are significantly better than other baselines with p-value <

0.01, tested by bootstrap re-sampling (Koehn, 2004).

steps throughout all experiments. When trained
with asynchronous index refresh, the re-indexing
interval is 3K training steps. '

4.2 Conventional Experiments

Following prior work in TM-augmented NMT, we
first conduct experiments in a setting where the
bilingual training corpus is the only source for TM.

Data We use the JRC-Acquis corpus (Steinberger
et al., 2006) for our experiments. The JRC-Acquis
corpus contains the total body of European Union
(EU) law applicable to the EU member states.
This corpus was also used by Gu et al. (2018);
Zhang et al. (2018); Xia et al. (2019) and we
managed to get the datasets originally prepro-
cessed by Gu et al. (2018), making it possible
to fairly compare our results with previously re-
ported BLEU scores. Specifically, we select four
translation directions, namely, Spanish=-English
(Es=En), En=-Es, German=-English (De=-En),
and En=-De, for evaluation. Detailed data statistics
are shown in Table 1.

Models To study the effect of each model com-
ponent, we implement a series of model variants
(model #1 to #5 in Table 2).

1. NMT without TM. To measure the help from
TM, we remove the model components re-
lated to TM (including the retrieval model
and the memory encoder), and only employ
the encoder-decoder architecture for NMT.
The resulted model is equivalent to the Trans-
former Base model (Vaswani et al., 2017).

'0ur code is released at https://github.com/
jcyk/copyisallyouneed.

2. TM-augmented NMT using source similar-
ity search. To isolate the effect of architec-
tural changes in NMT models, we replace
our cross-lingual memory retriever with tradi-
tional source-side similarity search. Specifi-
cally, we use the fuzzy match system used in
Xia et al. (2019) and many others, which is
based on BM25 and edit distance.

3. TM-augmented NMT using pre-trained cross-
lingual retriever. To study the effect of end-to-
end task-specific optimization of the retrieval
model, we pre-train the retrieval model using
the cross-alignment tasks introduced in §3.4
and keep it fixed in the following NMT train-
ing.

4. Our full model using a fixed TM index; Af-
ter pre-training, we fix the parameter of iy
during NMT training.

5. Our full model trained with asynchronous in-
dex refresh.

Results The results of the above models are pre-
sented in Table 2. We have the following observa-
tions: (1) Our full model trained with asynchronous
index refresh (model #5) delivers the best perfor-
mance on test sets across all four translation tasks,
outperforming the non-TM baseline (model #1)
by 3.26 BLEU points in average and up to 3.86
BLEU points (De=-En). This result confirms that
monolingual TM can boost NMT performance; (2)
The end-to-end learning of the retriever model is
the key for substantial performance improvement.
We can see that using a pre-trained fixed cross-
lingual retriever only gives moderate test perfor-
mance, fine-tuning E. and fixing Eg significantly
boosts the performance, and fine-tuning both F.
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Figure 2: Test results with 1/4 bilingual pairs (upper) and 2/4 bilingual pairs (lower) across different TM sizes.

and Eig leads to the strongest performance (model
#5>model #4>model #3); (3) Cross-lingual re-
trieval (model #4 and model #5) can obtain better
results than that of the source similarity search
(model #2). This is remarkable since the cross-
lingual retrieval only requires monolingual TM,
while the source similarity search relies on bilin-
gual TM. We attribute the success, again, to the end-
to-end adaptability of our cross-lingual retriever.
This is manifested by the fact that model #3 even
slightly underperforms model #2 in some of trans-
lation tasks.

Contrast to Previous Bilingual TM Systems
We also compare our results with the best previ-
ously reported models.> We can see that our results
significantly outperform previous arts. Notably, our
best model (model #5) surpasses the best reported
model (Xia et al., 2019) by 1.69 BLEU points in av-
erage and up to 2.9 BLEU points (De=-En). This
result verifies the effectiveness of our proposed
models. In fact, we can see that our translation
model using traditional similarity search (model
#2) already outperforms the best previously re-
ported results, which reveals that the architectural
design of our translation model is surprisingly ef-
fective despite its simplicity.

2Some recent work used different datasets other than JRC-
Acquis with unspecified data split, which makes it hard to
make an exhaustive comparison. However, note that our in-
house baseline (model #2) is quite strong.

4.3 Low-Resource Scenarios

One most unique characteristic of our proposed
model is that it uses monolingual TM. This moti-
vates us to conduct experiments in low-resource
scenarios, where we use extra monolingual data in
the target language to boost translation quality.

Data We create low-resource scenarios by ran-
domly partitioning each training set in JRC-Acquis
corpus into four subsets of equal size. We set up
two series of experiments: (1) We only use the
bilinguals pairs in the first subset and gradually en-
large the TM by including more monolingual data
in other subsets. (2) Similar to (1), but we instead
use the bilingual pairs in the first two subsets.

Models As shown in §4.2, the model trained with
asynchronous index refresh (model #5) is slightly
better than the model using fixed Eiy (model #4),
however, the computational cost of training model
#5 is much bigger. For simplicity and environmen-
tal consideration, we only test model #4 in low-
resource scenarios. Nevertheless, we note there
are still two modeling choices: (1) train the model
once with the TM limited to training pairs and
only enlarge the TM during testing; (2) re-train the
model with every enlarged TM. Note that when
using the first choice, the model may retrieve a
TM sentence that has never been seen during train-
ing. To measure the performance improvements
from additional monolingual TM, we also include
a Transformer Base baseline (model #1, denoted as

7313



Data Model Es=En En=Es De=En En=-De
dev [ test dev [ test dev [ test dev [ test
» Ours | 61.46 | 61.02 | 57.86 | 57.40 | 56.77 | 56.54 | 51.11 | 51.58
Zj b‘hnglu.‘al * ' BT 62.47 | 61.99 | 60.28 | 59.59 | 57.75 | 58.20 | 52.47 | 52.96
MONoiNguat 1 o, +BT | 65.98 | 65.51 | 62.48 | 62.22 | 62.22 | 61.79 | 56.75 | 56.50
i Ours | 65.17 | 64.60 | 6131 | 61.01 | 61.43 | 61.19 | 55.55 | 55.35
iﬁ bﬂmgﬁal M | BT 63.82 | 63.10 | 61.59 | 60.83 | 59.17 | 59.26 | 54.18 | 54.29
monolngual 1 o, +BT | 66.95 | 66.38 | 63.22 | 62.90 | 63.68 | 63.10 | 57.69 | 57.40
Table 3: Comparison with back-translation (BT).
Medical Law IT Koran | Subtitle | Avg. | Avg. A
#Bilingual Pairs 61,388 | 114,930 | 55,060 | 4,458 | 124,992 - N
#Monolingual Sents 184,165 | 344,791 | 165,181 | 13,375 | 374,977 - .
Using Bilingual Pairs Only
Transformer Base 47.81 51.40 33.90 14.64 21.64 33.88 -
Ours 47.52 51.17 3464 | 1549 | 2266 | 3430 | +0.42
+ Monolingual Memory
Ours + domain-specific | 50.32 53.97 3533 | 1626 | 22.78 | 35.73 | +1.85
Ours + all-domains 50.23 54.12 3524 | 1624 | 2278 | 3572 | +1.84

Table 4: Test results on domain adaptation.

base) and a bilingual TM baseline (model #2).

Results Figure 2 shows the main results on the
test sets. The general patterns are consistent across
all experiments: the larger the TM becomes, the
better translation performance the model achieves.
When using all available monolingual data (4/4),
the translation quality is boosted significantly. In-
terestingly, the performance of models without re-
training is comparable to, if not better than, those
with re-training. We also observe that when the
training pairs are very scarce (only 1/4 bilingual
pairs are available), a small size of TM even hurts
the model performance. The reason could be over-
fitting. We speculate that better results would be
obtained by tuning the model hyper-parameters ac-
cording to different TM sizes.

Contrast to Back-Translation We compare our
models with back-translation (BT) (Sennrich et al.,
2016), a popular way of utilizing monolingual data
for NMT. We train a target-to-source Transformer
Base model using bilingual pairs and use the resul-
tant model to translate monolingual sentences to
obtain additional synthetic parallel data. As shown
in Table 3, our method performs better than BT
with 2/4 bilingual pairs but performs worse with
1/4 bilingual pairs. Interestingly, the combination
of BT and our method yields significant further
gains, which demonstrates that our method is not
only orthogonal but also complementary to BT.

4.4 Non-parametric Domain Adaptation

Lastly, the “plug and play” property of TM further
motivates us to domain adaptation, where we adapt
a single general-domain model to a specific domain
by using domain-specific monolingual TM.

Data To simulate a diverse multi-domain setting,
we use the data splits in Aharoni and Goldberg
(2020) originally collected by Koehn and Knowles
(2017). It includes German-English parallel data
for train/dev/test sets in five domains: Medical,
Law, IT, Koran and Subtitles. Similar to the experi-
ments in §4.3, we only use one fourth of bilingual
pairs for training. The target side of the remaining
data is treated as additional monolingual data for
building domain-specific TM, and the source side
is discarded. The data statistics can be found in the
upper block of Table 4. The dev and test sets for
each domain contains 2K instances.

Models We first train a Transformer Base base-
line (model #1) on the concatenation of bilingual
pairs in all domains. As in §4.3, we train our model
using fixed Fig (model #4). One advantage of
our approach is the possibility of training a single
model which can be adapted to any new domain at
the inference time without any re-training, by just
switching the TM. When adapting to a new TM,
we do not re-train our model. As the purpose here
is to verify that our approach can tackle domain
adaptation without any domain-specific training,
we leave the comparison and combination of other
domain adaptation techniques (Moore and Lewis,
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2010; Chu and Wang, 2018) as future work.

Results The results are presented in Table 4. We
can see that when only using the bilingual data, the
TM-augmented model obtains higher BLEU scores
in domains with less data but slightly lower scores
in other domains compared to the non-TM baseline.
However, as we switch the TM to domain-specific
TM, the translation quality is significantly boosted
in all domains, improving the non-TM baseline by
an average of 1.85 BLEU points, with improve-
ments as large as 2.57 BLEU points on Law and
2.51 BLEU point on Medical. We also attempt to
combine all domain-specific TMs to one and use it
for all domains (the last row in Table 4). However,
we do not obtain noticeable improvement. This
reveals that the out-of-domain data can provide
little help so that a smaller in-domain TM is suffi-
cient, which is also confirmed by the fact that about
90.21% of the retrieved sentences come from the
corresponding domain in the combined TM.

4.5 Running Speed

With the help of FAISS in-GPU index, search over
millions of vectors can be made incredibly efficient
(often in tens of milliseconds). In our implementa-
tion, the memory search performs even faster than
naive BM253. For the results in Table 2, taking
the vanilla Transformer Base model (model #1) as
the baseline. The inference latency of our mod-
els (both model #4 and model #5) is about 1.36
times of the baseline (all use a single Nividia V100
GPU). Note that the corresponding number for the
previous state-of-the-art model (Xia et al., 2019) is
1.80. As for training cost, the averaged time cost
per training step of model #4 and model #5 is 2.62
times and 2.76 times of the baseline respectively,
which are on par with traditional TM-augmented
baselines (model #2 is 2.59 times) (all use two Ni-
vidia V100 GPUs). Table 5 presents the results. In
addition, we also observe that memory-augmented
models converge much faster than vanilla models
in terms of training steps.

5 Conclusion

We introduced an effective approach that augments
NMT models with monolingual TM. We show that
a task-specific cross-lingual memory retriever can
be learned by end-to-end MT training. Our ap-
proach achieves new state-of-the-art results on sev-

3Elasticsearch
elastic.co/

Implementation: https://www.

# Model Training | Inference
1 Transformer Base 1.00x 1.00x

2 source similarity 2.59x -

4 | cross-lingual (fixed Eig) 2.62x 1.36x

5 cross-lingual 2.76x 1.36x

- Xia et al. (2019) - 1.80x

Table 5: Latency cost for training and inference. For
training, we measure the averaged time cost per train-
ing step. The number of Xia et al. (2019) is inferred
from their paper.

eral datasets, leads to large gains in low-resource
scenarios where the bilingual data is limited, and
can specialize a NMT model for specific domains
without further training.

Future work should aim to build over our pro-
posed framework. Two obvious directions are: (1)
Even though our experiments validated that the
whole framework can be learned from scratch us-
ing standard MT corpora, it is possible to initialize
each model component in our framework with mas-
sively pre-trained models for performance enhance-
ment; and (2) The NMT model can benefit from
aggregating over a set of diverse memories, which
is not explicitly encouraged in current design.
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