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Abstract

Recent years have seen the paradigm shift
of Named Entity Recognition (NER) systems
from sequence labeling to span prediction.
Despite its preliminary effectiveness, the span
prediction model’s architectural bias has not
been fully understood. In this paper, we
first investigate the strengths and weaknesses
when the span prediction model is used for
named entity recognition compared with the
sequence labeling framework and how to fur-
ther improve it, which motivates us to make
complementary advantages of systems based
on different paradigms. We then reveal that
span prediction, simultaneously, can serve as
a system combiner to re-recognize named en-
tities from different systems’ outputs. We
experimentally implement 154 systems on 11
datasets, covering three languages, compre-
hensive results show the effectiveness of span
prediction models that both serve as base NER
systems and system combiners. We make
all code and datasets available: https://
github.com/neulab/spanner, as well as
an online system demo: http://spanner.
sh. Our model also has been deployed into the
EXPLAINABOARD (Liu et al., 2021) platform,
which allows users to flexibly perform the sys-
tem combination of top-scoring systems in an
interactive way: http://explainaboard.
nlpedia.ai/leaderboard/task-ner/.

1 Introduction

The rapid evolution of neural architectures (Kalch-
brenner et al., 2014a; Kim, 2014; Hochreiter and
Schmidhuber, 1997) and large pre-trained models
(Devlin et al., 2019; Lewis et al., 2020) not only
drive the state-of-the-art performance of many
NLP tasks (Devlin et al., 2019; Liu and Lapata,
2019) to a new level but also change the way
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Figure 1: ONE span prediction model (SPANNER)
finishes TWO things: (1) named entity recognition (2)
combination of different NER systems.
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how researchers formulate the task. For example,
recent years have seen frequent paradigm shifts for
the task of named entity recognition (NER) from
token-level tagging, which conceptualize NER as
a sequence labeling (SEQLAB) task (Chiu and
Nichols, 2015; Huang et al., 2015; Ma and Hovy,
2016; Lample et al., 2016; Akbik et al., 2018;
Peters et al., 2018; Devlin et al., 2018; Xia et al.,
2019; Luo et al., 2020; Lin et al., 2020; Fu et al.,
2021), to span-level prediction (SPANNER) (Li
et al., 2020; Mengge et al., 2020; Jiang et al., 2020;
Ouchi et al., 2020; Yu et al., 2020), which regards
NER either as question answering (Li et al., 2020;
Mengge et al., 2020), span classification (Jiang
et al., 2020; Ouchi et al., 2020; Yamada et al.,
2020), and dependency parsing tasks (Yu et al.,
2020).

However, despite the success of span prediction-
based systems, as a relatively newly-explored
framework, the understanding of its architectural
bias has not been fully understood so far. For
example, what are the complementary advantages
compared with SEQLAB frameworks and how to
make full use of them? Motivated by this, in this
paper, we make two scientific contributions.

We first investigate what strengths and weak-
nesses are when NER is conceptualized as a
span prediction task. To achieve this goal, we
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perform a fine-grained evaluation of SPANNER
systems against SEQLAB systems and find there
are clear complementary advantages between these
two frameworks. For example, SEQLAB-based
models are better at dealing with those entities
that are long and with low label consistency. By
contrast, SPANNER systems do better in sentences
with more Out-of-Vocabulary (OOV) words and
entities with medium length (§3.3).

Secondly, we reveal the unique advantage
brought by the architectural bias of the span
prediction framework: ir can not only be used
as a base system for named entity recognition but
also serve as a meta-system to combine multiple
NER systems’ outputs. In other words, the span
prediction model play two roles showing in Fig. 1:
(i) as a base NER system; and (ii) as a system
combiner of multiple base systems. We claim that
compared with traditional ensemble learning of the
NER task, SPANNER combiners are advantageous
in the following aspects:

1. Most of the existing NER combiners rely
on heavy feature engineering and external
knowledge (Florian et al., 2003; Wu et al.,
2003; Saha and Ekbal, 2013). Instead, the
SPANNER models we proposed for system
combination train in an end-to-end fashion.

2. Combining complementarities of different
paradigms: most previous works perform
NER system combination solely focusing on
the sequence labeling framework. It is still an
understudied topic how systems from different
frameworks help each other.

3. No extra training overhead and flexibility of
use: Existing ensemble learning algorithms
are expensive, which usually need to collect
training samples by k-fold cross-validation for
system combiner (Speck and Ngomo, 2014),
reducing their practicality.

4. Connecting two separated training processes:
previously, the optimization of base NER
systems and ensemble learning for combiner
are two independent processes. Our work
builds their connection and the same set of
parameters shared over these two processes.

Experimentally, we first implement 154 systems
on 11 datasets, on which we comprehensively
evaluate the effectiveness of our proposed span
prediction-based system combiner. Empirical re-
sults show its superior performance against several
typical ensemble learning algorithms.

Lastly, we make an engineering contribution
that benefits from the practicality of our pro-
posed methods. Specifically, we developed an
online demo system based on our proposed method,
and integrate it into the NER Leaderboard, which
is very convenient for researchers to find the
complementarities among different combinations
of systems, and search for a new state-of-the-art
system.

2 Preliminaries

2.1 Task

NER is frequently formulated as a sequence label-
ing (SEQLAB) problem (Chiu and Nichols, 2015;
Huang et al., 2015; Ma and Hovy, 2016; Lample
et al., 2016), where X = {x1,x9,...,xp} is
an input sequence and Y = {y1,y2,...,yr} is
the output label (e.g., “B-PER”, “I-LOC”, “O”)
sequence. The goal of this task is to accurately
predict entities by assigning output label y; for each
token x;. We take the Fl-score' as the evaluation
metric for the NER task.

2.2 Datasets

To make a comprehensive evaluation, in this paper,
we use multiple NER datasets that cover different
domains and languages.

CoNLL-2003 2 (Sang and De Meulder, 2003) cov-
ers two different languages: English and German.
Here, we only consider the English (EN) dataset
collected from the Reuters Corpus.

CoNLL-2002 3 (Sang, 2002) contains annotated
corpus in Dutch (NL) collected from De Morgen
news, and Spanish (ES) collected from Spanish
EFE News Agency. We evaluate both languages.
OntoNotes 5.0 * (Weischedel et al., 2013) is a
large corpus consisting of three different languages:
English, Chinese, and Arabic, involving six genres:
newswire (NW), broadcast news (BN), broadcast
conversation (BC), magazine (MZ), web data (WB),
and telephone conversation (TC). Following previ-
ous works (Durrett and Klein, 2014; Ghaddar and
Langlais, 2018), we utilize different domains in
English to test the robustness of proposed models.

"http://www.clips.uantwerpen.be/
conll2000/chunking/conlleval.txt

https://www.clips.uantwerpen.be/
conll2003/ner/

*https://www.clips.uantwerpen.be/
conll2002/ner/

*nttps://catalog.ldc.upenn.edu/
LDC2013T19
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WNUT-2016 ° and WNUT-2017 © (Strauss et al.,
2016; Derczynski et al., 2017) are social media data
from Twitter, which were public as a shared task at
WNUT-2016 (W16) and WNUT-2017 (W17).

3 Span Prediction for NE Recognition

Although this is not the first work that formulates
NER as a span prediction problem (Jiang et al.,
2020; Ouchi et al., 2020; Yu et al., 2020; Li et al.,
2020; Mengge et al., 2020), we contribute by (1)
exploring how different design choices influence
the performance of SPANNER and (2) interpret-
ing complementary strengths between SEQLAB
and SPANNER with different design choices. In
what follows, we first detail span prediction-based
NER systems with the vanilla configuration and
proposed advanced featurization.

3.1 SPANNER as NER System

Overall, the span prediction-based framework for
NER consists of three major modules: token
representation layer, span representation layer, and
span prediction layer.

3.1.1 Token Representation Layer

Given a sentence X = {x1,---,z,} with n
tokens, the token representation h; is as follows:

ul’... 711n = EMB(JZl,"' ,xn); (1)
hy, .- h, = BILSTM(uy, -+ ,u,),  (2)

where EMB(+) is the pre-trained embeddings, such
as non-contextualized embeddings GloVe (Pen-
nington et al., 2014) or contextualized pre-trained
embeddings BERT (Devlin et al., 2018). BILSTM
is the bidirectional LSTM (Hochreiter and Schmid-
huber, 1997).

3.1.2 Span Representation Layer

First, we enumerate all the possible m spans
S = {s1,--,8, - ,sm} for sentence
X = {z, - ,x,} and then re-assign a
label y € Y for each span s. For example,
for sentence: “London; 1isy beautifuls”,
the possible span’s (start, end) indices are
{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}, and the
labels of these spans are all “O” except (1,1)
(London) is “LOC”. We use b; and ¢; to denote the
start- and end- index of the span s;, respectively,
Shttp://noisy-text.github.i0/2016/
ner—-shared-task.html

*http://noisy-text.github.io/2017/
emerging-rare-entities.html

and 1 < b; < e; < n. Then each span can be
represented as s; = {xp,, Tp, 41, ,T¢, ;- The
vectorial representation of each span could be
calculated based on the following parts:
Boundary embedding: span representation is
calculated by the concatenation of the start and
end tokens’ representations z° = [hy,; h,,]
Span length embedding: we additionally featur-
ize each span representation by introducing its
length embedding zé, which can be obtained by
a learnable look-up table.

The final representation of each span s; can be

l

obtained as: s; = [z%; Z!].

3.1.3 Span Prediction Layer

The span representations s; are fed into a softmax
function to get the probability w.r.t label y.

score(s;,y)

Z score(s;, y’)’

y'eY

P(ylsi) = (3)

where score(-) is a function that measures the
compatibility between a specified label and a span:

score(s;, yi) = exp(s! yi), 4)

where s; denotes the span representation and yy is
a learnable representation of the class k.

Heuristic Decoding Regarding the flat NER task
without nested entities, we present a heuristic
decoding method to avoid the prediction of over-
lapped spans. Specifically, for those overlapped
spans, we keep the span with the highest prediction
probability and drop the others.

3.2 Exp-I: Effectiveness of Model Variants

Setup To explore how different mechanisms in-
fluence the performance of span prediction models,
We design four specific model variants (i) generic
SPANNER: only using boundary embedding (ii)
boundary embedding + span length embedding,
(iii) boundary embedding + heuristic decoding, (iv)
heuristic decoding + (ii).

Results As shown in Tab. 1, we can observe that:
(1) heuristic decoding is an effective method that
can boost the generic model’s performance over all
the datasets. (ii) span length feature works most of
the time. The performances on 10 of the 11 datasets
have improved against the generic model. (iii) By
combining two mechanisms together, significant
improvements were achieved on all datasets.
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CoNLL OntoNotes 5.0 WNUT
Model EN ES NL BN BC MZ WB NW TC WI6 WI7
generic 9157 8458 8879 89.66 8224 8542 6792 9084 6667 5570 52.05
+decodex  91.89 8534 8956 90.55 8279 8662 6801 91.01 6854 5572 52.59
+lengthx 9222 8482 89.81 9060 8301 8628 66.69 9131 6896 5578 52.58
+both+ 9228 8754 91.04 9093 8322 87.03 6858 91.59 6991 5627 52.97

Table 1: The results of the span prediction model with different features. * denotes that the model’s performance
is significantly better than the generic setting (p < 0.01).

Generic (SPANNER), F1: 91.57 Generic+decode, F1: 91.89

eCon sLen elLen oDen eCon sLen elLen oDen
ForE ForX ForxX §orcX ForgE gorX ForX §orcX
sql | - . 002 A1 . 0.02
saz- [ [ ] sz [l [ |
sa3 | [ ] [ | 000 sq3 | [ ] B 0.00
Generic+length, F1: 92.22 Generic+length+decode, F1: 92.28
eCon sLen elLen oDen eCon sLen elLen oDen
Forx ForE JForox JorcX Forx ForE JForcx JorcX
sql - . - 002 Sal- . . . 0.02
<2 [l [ ] <2 [l [ |
= M H m w0 w2 M W
st [ [ | st [
95 . -0.02 g5 . -0.02

Table 2: Performance heatmap of pair-wise system diagnosis. sgq; represents different SEQLAB systems. Each
value in heatmap entry (i, j) represents the performance gap between SEQLAB and SPANNER (F'l¢q — F'lgpan) on
j-th bucket. The green area indicates SEQLAB performs better while the red area implies SPANNER is better.
eCon, sLen, eLen, and oDen represent different attributes.

3.3 Exp-II: Analysis of Complementarity

The holistic results in Tab. 1 make it hard for us to
interpret the relative advantages of NER systems
with different structural biases. To address this
problem, we follow the interpretable evaluation

given an entity e that belongs to a sentence S, the
following attribute feature functions can be defined:
* ¢eren = len(e): entity length

* Osren = len(S): sentence length

|oovs|

* ¢ = : density of OOVs
idea (Fu et al., 2020a,c) that proposes to breakdown open En‘(lsl)o (6 tabel(e) vce )
the holistic performance into different buckets * ®econ = s _|g| ST : entity label
from different perspectives and use a performance consistency

heatmap to illustrate relative advantages between
two systems, i.e., system-pair diagnosis.

Setup As a comparison, we replicate five top-
scoring SEQLAB-based NER systems, which are
sql : 92.41, sq2 : 92.01, sq3 : 92.46, sq¢4 : 92.11,
5g5 : 91.99. Notably, to make a fair comparison,
all five SEQLABs are with closed performance
comparing to the above SPANNERs. Although we
will detail configurations of these systems later (to
reduce content redundancy) in §5.1 Tab. 3 , it would
not influence our analysis in this section.
Regarding interpretable evaluation, we choose
the CoNLL-2003 (EN) dataset as a case study
and breakdown the holistic performance into four
groups based on different attributes. Specifically,

where len(-) counts the number of words, label(e)
gets the label for span e, £ denotes all spans in the
training set. |[OOVs| is the number of OOV words
in the sentence.

We additionally use a training set dependent
attribute: entity label consistency (eCon), which
measures how consistently a particular entity is
labeled with a particular label. For example, if an
entity with the label “LOC” has a higher eCon,
it means that the entity is frequently labeled as
“LOC” in the training set. Based on the attribute
value of entities, we partition test entities into four
buckets: extra-small (XS), small (S), large (L), and
extra-large (XL).”. For each bucket, we calculate a

"we show detailed bucket intervals in the appendix
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bucket-wise F1.

Analysis As shown in Tab. 2, the green area
indicates SEQLAB performs better while the red
area implies the span model is better. We observe
that:
(1) The generic SPANNER shows clear comple-
mentary advantages with SEQLAB-based systems.
Specifically, almost all SEQLAB-based models
outperform generic SPANNER when (i) entities are
long and with lower label consistency (ii) sentences
are long and with fewer OOV words. By contrast,
SPANNER is better at dealing with entities locating
on sentences with more OOV words and entities
with medium length.
(2) By introducing heuristic decoding and span
length features, SPANNERSs do slightly better in
long sentences and long entities, but are still under-
performing on entities with lower label consistency.
The complementary advantages presented by
SEQLABs and SPANNERs motivate us to search
for an effective framework to utilize them.

4 Span Prediction for NE Re-recognition

The development of ensemble learning for NER
systems, so far, lags behind the architectural
evolution of the NER task. Based on our evidence
from §3.3, we propose a new ensemble learning
framework for NER systems.

SPANNER as System Combiner The basic idea
is that each span prediction NER (SPANNER)
system itself can also conceptualize as a system
combiner to re-recognize named entities from
different systems’ outputs. Specifically, Fig. 2
illustrates the general workflow. Here, SPANNER
plays two roles, (1) as a base model to identify
potential named entities; (2) as a meta-model
(combiner) to calculate the score for each potential
named entity.

Given a test span s and prediction label set L
from m base systems (|£| = m). Let £ be NER
label set where |£| = c¢ and c¢ is the number of
pre-defined NER classes (i.e., “LOC, ORG, PER,
MISC, O” in CoNLL 2003 (EN).)

For each | € L we define P(s,l) as the
combined probability that span s can be assigned
as label [, which can be calculated as:

P(s,l) = Z score(s, 1), )

N

where score(+) is defined as Eq.4. Then the final
prediction label is:

argmax P(s, 1), (6)
le(L)

Intuitively, Fig. 2 gives an example of how
SPANNER re-recognizes the entity “New York”
based on outputs from four base systems. As a base
system, SPANNER predicts this span as “LOC”,
and the label will be considered as one input of the
combiner model.

g =9 LOC
3|2 £ Z o 2xP1
=) S = ORG P2
P1 P2 P3 P4 P5 PER 0.0

Sysa MISC, 0.0
[ o¢ pr - - - - 0 ) s

Life I

KI)ew Syss Loc  p1 - = =

York Max LOC

is Sysa ORG D2

fun

Sys1 O - - - - D5

Figure 2: The framework of span prediction system
(SPANNER) as system combiner. p; is calculated by
function score(+), as defined in Eq.4. score(-) takes a
span and predicted label as input and output a matching
score. For example, score(New York,LOC) = 0.5
suggests that span “New York” matches “LOC” with
the score of 0.5.

The prediction labels of the other three base
models are “LOC”, “ORG”, and “O”, respectively.
Then, as a combiner, SPANNER calculates the
score for each predicted label. We sum weights
(scores) of the same label that are predicted by the
base models and select the label that achieves the
maximum score as the output of the combiner.

5 Experiment

5.1 Base Systems

To make a thorough evaluation of SPANNER as a
system combiner, as illustrated in Tab. 3, we first
implement 10 SEQLAB based systems that cover
rich combinations of popular neural components.
To be fair for other system combination methods,
we also include two SPANNERs as base systems.
To reduce the uncertainty, we run experiments with
multiple trials and also perform the significant test
with Wilcoxon Signed-Rank Test (Wilcoxon et al.,
1970) at p < 0.05.

8Since the lack of an official EMLo language model in
Spanish and Dutch, we do not implement these base models.
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Char/Sub. Word  Sent. CoNLL OntoNotes 5.0 WNUT
Models %g EEE%E% gg

cEoo=oc Ew26 EN ES NL BN BC MZ WB NW TC WI6 W17
sq0 Vv v v/ 93.02 87.87 87.76 89.43 78.17 88.24 67.19 90.11 66.57 52.07 44.75
sql Vv Vv v/ 9241 88.11 87.71 89.03 79.55 87.13 67.78 90.23 65.58 52.22 43.57
sq2 V4 v v/ 92.01 88.81 91.73 90.70 81.55 88.02 62.14 90.08 71.07 50.18 45.23
sq3 v Y v 92.46 88.00 91.34 90.53 80.11 88.87 62.90 90.77 71.01 49.87 46.47
sq4 V4 v oo9211 - - 89.33 78.28 85.84 62.62 90.10 64.62 50.22 4891
sq5 V4 Vv v 9199 - - 89.21 79.32 84.64 61.69 90.44 65.57 49.86 47.35
sq6 v v v/ 90.88 82.33 82.23 86.84 75.10 86.61 62.61 88.31 64.36 42.04 36.41
sq7 Vv Vv v/ 89.71 80.01 80.70 86.18 74.63 86.55 49.85 86.87 56.16 39.40 33.72
sq8 Vv Vv v 83.03 79.44 75.44 83.87 69.81 82.20 51.35 86.03 51.83 20.68 18.77
sq9 v N4 v/ 78.49 70.66 64.78 81.05 66.42 75.34 48.91 85.73 46.84 17.24 18.39
SPANNER
+ generic (spl) 91.57 84.58 88.79 89.66 82.24 85.42 67.92 90.84 66.67 55.70 52.05
+ both (sp2) 92.28 87.54 91.04 90.93 83.22 87.03 68.58 91.59 69.91 56.27 52.97

Table 3: The holistic performance of the 12 base models on 11 datasets. “Sub” and “sent.” denotes the subword
embedding and sentence encoder, respectively. All the ten sequence labeling models use the CRF as the decoder.
4/ indicates the embedding/structure is utilized in the current SEQLAB system. For example, “sq0” denotes a
model that uses Flair, GloVe, LSTM, and CRF as the character-, word-level embedding, sentence-level encoder,

TR

and decoder, respectively.

Regarding SEQLAB-base systems, following
(Fu et al., 2020b), their designs are diverse in
four components: (1) character/subword-sensitive
representation: ELMo (Peters et al., 2018), Flair
(Akbik et al., 2018, 2019), BERT 9 (Devlin et al.,
2018) 2) word representation: G1oVe (Pennington
etal.,2014), fastText (Bojanowski et al., 2017);
(3) sentence-level encoders: L.STM (Hochreiter and
Schmidhuber, 1997), CNN (Kalchbrenner et al.,
2014b; Chen et al., 2019); (4) decoders: CRF
(Lample et al., 2016; Collobert et al., 2011). We
keep the testing result from the model with the best
performance on the development set, terminating
training when the performance of the development
set is not improved in 20 epochs.

5.2 Baselines

We extensively explore six system combination
methods as competitors, which involves supervised
and unsupervised fashions.

5.2.1 Voting-based Approaches

Voting, as an unsupervised method, has been
commonly used in existing works:

Majority voting (VM): All the individual classi-
fiers are combined into a final system based on the
majority voting.

Weighted voting base on overall Fl-score
(VOF1): The taggers are combined according to

“We view BERT as the subword-sensitive representation
because we get the representation of each subword.

indicates not applicable.?

the weights, which is the overall F1-score on the
testing set.

Weighted voting base on class F1-score (VCF1):
Also weighted voting, the weights are the cate-
gories’ Fl-score.

5.2.2 Stacking-based Approaches

Stacking (a.k.a, Stacked Generalization) is a gen-
eral method of using a high-level model to combine
lower-level models to achieve greater predictive
accuracy (Ting and Witten, 1997). To make a com-
prehensive evaluation, we investigated three popu-
lar methods that are supervised learning, thereby
requiring additional training samples. Specifically,
there are:
Support Vector Machines (SVM) (Hearst et al.,
1998) is a supervised machine learning algorithm,
which can train quickly over large datasets. There-
fore, the ensemble classifier is usually SVM.
Random Forest (RF) (Breiman, 2001) is a com-
mon ensemble classifier that randomly selects a
subset of training samples and variables to make
multiple decision trees.
Extreme Gradient Boosting (XGB) (Chen and
Guestrin, 2016) is also an ensemble machine
learning algorithm. It is based on the decision-
tree and the gradient boosting decision (Friedman
et al., 2000).

Notably, compared to our model, these methods
are computationally expensive since they require
external training samples for system combiners,
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Voting-based

Stacking-based

Best SpNER

Cm

VM; VOFl; VCF1; SVM; RF; XGBj

Voting-based Stacking-based

Best SPNER v\, VOFI; VCFI; SYM; RF; XGBj

CoNLL-2003 (EN)

OntoNotes5.0-BN (BN)

all 93.02
m[:10] 93.02
m[:9] 93.02
m[:8] 93.02
m[:7] 93.02
m[:6] 93.02
m[:5] 93.02
m[:4] 93.02
m[:3] 93.02
m[:2] 93.02
m[2:4] 92.41
m[4:6] 92.11
m[3:6] 92.28
m[1:] 92.46
m[2:] 92.41
m[3:] 92.28
mi4:] 92.11
m[5:] 92.01
m[6:] 91.99
m(7:] 91.57
m[8:] 90.88
m[9:] 89.71
m[10:] 83.03

93.80
93.78
93.81
93.81
93.72
93.71
93.80
93.70
93.75
93.01
93.66
93.39
93.04
93.68
93.58
93.58
93.50
93.54
93.32
92.66
91.29
91.21
85.65

93.62
93.48
93.57
93.41
93.41
93.21
93.46
93.29
93.66
93.02
92.41
92.01
92.97
93.59
93.43
93.35
92.86
92.67
91.85
90.92
87.39
85.97
78.49

93.57
93.55
93.59
93.52
93.47
93.63
93.54
93.69
93.75
92.99
92.46
92.11
92.92
93.54
93.40
93.41
93.21
92.84
92.51
91.55
90.65
87.31
83.03

93.60
93.54
93.51
93.54
93.41
93.53
93.52
93.61
93.61
92.95
92.78
92.31
92.95
93.55
93.34
93.35
93.10
92.78
92.34
91.29
90.32
86.27
81.83

93.28
93.21
93.33
93.28
93.26
93.20
93.33
93.47
93.30
92.74
92.32
92.01
92.18
93.07
93.06
93.09
92.88
92.81
92.16
91.93
90.98
89.68
83.06

93.04
93.03
93.26
93.17
92.98
93.27
93.19
93.20
93.38
92.86
92.37
92.15
92.52
92.83
92.96
92.81
92.79
92.85
92.58
92.20
90.90
89.50
83.17

92.93
93.18
93.35
93.14
93.00
93.21
93.28
93.28
93.43
92.86
92.51
92.17
92.46
93.00
92.89
92.81
92.68
92.65
92.51
92.02
90.83
89.56
83.17

90.93
90.93
90.93
90.93
90.93
90.93
90.93
90.93
90.93
90.93
90.53
89.43
89.66
90.70
90.53
89.66
89.43
89.33
89.21
89.03
86.84
86.18
83.87

91.14
91.48
91.64
91.74
91.86
91.95
90.65
90.30
91.13
89.81
90.23
90.80
90.98
91.21
90.97
90.71
90.70
90.39
89.94
89.42
88.52
88.36
86.52

90.92
91.03
91.16
91.17
91.60
91.42
91.69
91.18
91.07
90.70
88.54
89.33
90.82
90.81
90.54
90.25
89.46
89.46
88.51
88.33
86.50
85.87
81.05

91.29
91.41
91.24
91.59
91.66
91.74
91.77
91.13
91.13
89.78
90.53
89.43
90.96
90.94
90.86
90.38
89.89
89.42
89.27
88.33
87.61
86.27
83.87

91.12
91.27
91.22
91.39
91.57
91.67
91.97
90.32
91.13
90.01
89.10
89.77
90.90
90.91
90.74
90.31
89.84
89.58
89.08
88.62
87.19
86.20
83.39

89.67
89.97
90.16
90.16
90.16
90.34
90.54
90.02
90.89
90.61
89.38
89.66
89.48
89.50
89.29
89.05
89.10
88.61
88.56
88.00
86.35
85.34
82.25

90.95
90.92
90.75
90.69
90.80
91.09
90.72
90.93
90.98
90.98
90.26
89.49
90.59
90.90
90.72
90.26
89.20
89.32
88.75
87.87
87.14
86.20
83.94

90.50
90.91
90.76
90.81
90.73
91.04
90.69
90.77
91.08
90.81
90.18
89.99
90.56
90.56
90.53
90.10
89.05
88.93
88.57
87.86
87.10
86.01
83.86

Std. 1.76  3.50 248 278 2.19 215

2.16

128 244 195 201 197 184 1.85

Avg. 9198 93.00 91.83 9236 9222 92.24 92.22

92.21 89.73

90.45 89.63 90.02 89.88 89.00 89.72 89.63

Table 4: System combination results on CoNLL-2003 (EN) and OntoNotes5.0-BN (BN) datasets. SpNER denotes
SPANNER while all setting denotes that all the models are putting together. Avg. and Std. represents the Average

and Standard Deviation, respectively. m[i :

k] is a group of models whose performance descending ranking are

located on [i, k). Best denotes the best performance of the single model on a model group m[i : k]. T shows that
the combined result of the baseline is significantly worse than the SPANNER (with Wilcoxon Signed-Rank Test at
p < 0.05). The values in bold indicate the best-combined results.

which is achieved by (i) collecting training data
by performing five-fold cross-validation (Wu et al.,
2003; Florian et al., 2003) on the original training
samples of each dataset (ii) training a system
combiner based on collected samples.

5.3 Exp-III: Nuanced View

Setup Most previous works on system combi-
nation only consider one combination case where
all base systems are put together. In this setting,
we aim to explore more fine-grained combination
cases. Specifically, we first sort systems based
on their performance in a descending order to
get a list m. We refer to m[i : k] as one com-
bination case, dubbed combined interval, which
represents systems whose ranks are between 1
and k. In practice, we consider 23 combination
cases showing in Tab. 4. To examine whether the
SPANNNER is significantly better than the other
baseline methods, we conduct the significance test
with Wilcoxon Signed-RankTest (Wilcoxon et al.,
1970) at p < 0.05.

Results Tab. 4 shows results of our SPANNER
against six baseline combiner methods on
CoNLL-2003 and OntoNotes5.0-BN under
a nuanced view. We can observe that:

(1) Overall, our proposed SPANNER outperforms
all other competitors significantly (p-value < 0.05)
on most of the combination cases include the one
(“all”) that most previous works have explored.
(2) As more base systems are introduced in de-
scending order, the combined performance will be
improved gradually. The combination performance
will decrease with the reduction of the best single
system, which holds for all the combiners.

(3) The best performance is always achieved on
the combination case with more models, instead of
the one with a small number of top-scoring base
models. This suggests that introducing more base
models with diverse structures will provide richer
complementary information.

5.4 Exp-IV: Aggregated View

Setup To also explore the effectiveness of SPAN-
NER on the other datasets, we calculate the average
performance of each system combination method
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over 23 combination cases.

Results Tab. 5 shows the results, and we can
observe that: comparing with the three voting
combiner, SPANNER achieves the best average
combination performance with the lowest stan-
dard deviation, which holds for seven of nine
testing datasets with statistical significance p<0.05.
Specifically, the performance gap between SPAN-
NER and other combiners is larger on datasets from
web domain: WB and Twitter: W16, W17.

SPANNER VM
Avg. Std. Avg. Std.

NW 90.78" 1.1 9030 1.4 90.42 1.4 9044 13
BC 81.547 1.7 80.04 3.6 80.51 3.1 80.65 3.0
MZ 89.17 1.3 88.43 3.2 88.96 2.0 89.57 22
WB 67457 2.5 64.57 53 6533 5.0 66.14 4.6
TC 6825 3.8 66.16 6.5 67.54 5.6 68.73 5.5
W16 41.607 6.4 3323 9.2 36.19 89 39.92 7.9
W17 45971 6.1 41.27 9.3 4332 82 44.45 7.7
ES 87.26" 2.6 86.23 4.3 87.24 2.8 87.00 2.8
NL 89.927 34 87.59 6.5 8893 4.7 88.66 5.0

VOF1 VCF1
Avg. Std. Avg. Std.

Data

Table 5: The average system combination results on
23 combination cases of nine datasets. Avg. and Std.
denotes Average and Standard Deviation, respectively.
1 denotes that the SPANNER is better than the best
baseline combiner significantly (p < 0.05). The values
in bold represent the best combination results.

5.5 Exp-VI: Interpretable Analysis

Setup The above experiments have shown the
superior performance of SPANNER on system
combination. To further investigate where the gains
of the SPANNER come from, similar to §3.3, we
perform fine-grained evaluation on CONLL-2003
dataset using one combination case to interpret how
SPANNER outperform other (i) base systems and
(i1) other baseline combiners. The combination
case contains base systems: sq0-5 together with
spl, sp2 (model’s detail can refer to Tab.3).

Results As shown in Tab. 6, we can find:

(1) SPANNER v.s. Base systems: the im-
provements of all base systems largely come from
entities with low label consistency (eCon: XS, S).
Particularly, base systems with SEQLAB benefit
a lot from short entities while base systems with
SPANNER gain mainly from long entities.

(2) SPANNER v.s. Other combiners: as a
system combiner, the improvement of SPANNER
against other baselines mainly comes from low
label consistency (eCon: XS, S). By contrast,

traditional combiners surpass SPANNER when
dealing with long sentences (sLen: XL).

SPANNER v.s. Base systems

eCon sLen elLen oDen
ForE FourE ForE  ForX

sq0 | |
sql u [ ] 0.02
sq2 1l | | [ |
sq3 HE B .
sq4 M || [ || :
sq5 [ ] [
spl N . ’m M -0.02
sp2 - W

SPANNER v.s. Other combiners

eCon sLen elLen oDen

ForE Forcx
VM -

VOF1 -

VCF1 -

SVM
RF - B

XGB -

> x X >
KT E G e

-0.02

Table 6: Performance heatmap driven diagnosis
analysis over different entity attributes. Each entry
value is the F1 difference between the proposed
SPANNER combiner against the Base systems
(e.g., seq2 in Tab.3 ) or other combiners (e.g.,
VM: majority voting in §5.2.1) respectively. The green
area indicates SPANNER combiner perform better.

6 Related Work

NER as Different Tasks Although NER is com-
monly formulated as a sequence labeling task (Chiu
and Nichols, 2015; Huang et al., 2015; Ma and
Hovy, 2016; Lample et al., 2016; Akbik et al., 2018;
Peters et al., 2018; Devlin et al., 2018; Xia et al.,
2019; Akbik et al., 2019; Luo et al., 2020; Lin et al.,
2020), recently other new forms of frameworks
have been explored and have shown impressive
results. For example, (Jiang et al., 2020; Ouchi
et al., 2020; Yu et al., 2020) shift NER from token-
level tagging to span-level prediction task while
(Li et al., 2020; Mengge et al., 2020) conceptualize
it as reading comprehension task. In this work
we aim to interpret the complementarity between
sequence labeling and span prediction.

System Combination Traditionally, system
combination was used to improve the performance
of statistical MT systems (Gonzalez-Rubio et al.,
2011; Watanabe and Sumita, 2011; Duh et al.,
2011; Mizumoto and Matsumoto, 2016). Some
recent work (Zhou et al., 2017; Huang et al., 2020)
also extended this method to neural MT where
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the meta-model and base systems are all neural
models. There is a handful of works about system
combination for NER. (Wu et al., 2003; Florian
et al., 2003) investigated stacking and voting
methods for combining strong classifiers. Ekbal
and Saha (2011); Zhang et al. (2014) proposes a
weighted voting approach based on differential
evolution. These works commonly require training
samples and rely heavily on feature engineering.

7 Implications and Future Directions

Co-evolution of NLP Systems and their combin-
ers Systems for NLP tasks (e.g., NER model)
and their combiners (e.g., ensemble learning for
NER) are developing in two parallel directions.
This paper builds the connection between them
and proposes a model that can be utilized as both a
base NER system and a system combiner. Our
work opens up a direction toward making the
algorithms of NLP models and system combination
co-evolved. The unified idea can be applied to other
NLP tasks, and some traditional methods like re-
ranking in syntactic parsing can be re-visited. For
example, we can formulate constituency parsing
(Jiang et al., 2020) as well as its re-ranking (Collins
and Koo, 2005; Huang, 2008) as a span prediction
(Stern et al., 2017) problem, which is be unified
and parameterized with the same form.

CombinaBoard It has become a trend to use
a Leaderboard (e.g., paperwithcode!?) to track
current progress in a particular field, especially
with the rapid emergence of a plethora of models.
Leaderboard makes us pay more attention to
and even obsess over the state-of-the-art systems
(Ethayarajh and Jurafsky, 2020). We argue that
Leaderboard with an effective system combination
(dubbed COMBINABOARD) feature would allow
researchers to quickly find the complementarities
among different systems. As a result, the value
of a worse-ranked model still could be observed
through its combined results. In this paper, we
make the first step towards this by releasing a
preliminary COMBINABOARD for the NER task
http://spanner.sh. Our model also has been
deployed into the EXPLAINABOARD (Liu et al.,
2021) platform, which allows users to flexibly per-
form system combination of top-scoring systems
in an interactive way: http://explainaboard.

nlpedia.ai/leaderboard/task-ner/

"%https://paperswithcode.com/
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A Attribute Interval

The detailed attribute interval for attributes: eCon,
sLen, eLen, and oDen.

Bucket eCon sLen elen oDen
XS [0.0] [1,7] [1] [0]
S [0, 0.5] [7,16] [2] [0, 0.067]

L [0.5,0.999] [16,31] [3]  [0.067,0.203]
XL [1.0] [31, 124] [3, 6.0] [0.203, 1.0]

Table 7: The attribute interval of bucket XS, S, L, and
XL for attributes eCon, sLen, eLen, and oDen.

Char/Sub. Word  Sent

v TEEELEEEE

S0 oxm oS Sl o
CflairWglove_IstmCrf (sq0) Vv v
CflairWnone_stmCrf (sq1) v WV Vv
CbertWglove_IstmCrf (sq2) Vv vV
CbertWnon_lstmCrf (sq3) v Vv v
CelmoWglove_lstmCrf (sq4) V4 vV vV
CelmoWnone_IstmCrf (sq5) Vv Vv 4
CennWglove_lstmCrf (sq6) Vv v

CennWglove_cnnCrf (sq7) 4 NV
CcnnWrand_IstmCrf (sp8) Vv NV
CnoneWrand_IstmCrf (sp9) +/ VARV

Table 8: The illustration of SEQLAB’s model name
and its structures. “Sub”, “sent.” and “Dec.”
denotes the subword embedding, sentence encoder, and
decoder, respectively. All the ten sequence labeling
models use the CRF as the decoder. / indicates the
embedding/structure is utilized in the current SEQLAB
system.

B Model Name illustration of SEQLAB

Tab. 8 illustrates the full model name and the
detailed structure of the SEQLAB models. All
the SEQLAB models use the CRF as the decoder.
For example, the full model name of “sq0” is
“CflairWglove_1stmCrf”, representing a sequence
labeling model that uses the Flair as character-
level embedding, GloVe as word-level embedding,
LSTM as the sentence-level encoder, and CRF
as the decoder. For “sq3”, its full model name
is “CbertWnon_IstmCrf™, representing a sequence
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labeling model that uses the BERT as character-
level embedding, LSTM as the sentence-level
encoder, and CRF as the decoder.
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