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Abstract

If two sentences have the same meaning,
it should follow that they are equivalent in
their inferential properties, i.e., each sen-
tence should textually entail the other. How-
ever, many paraphrase datasets currently in
widespread use rely on a sense of paraphrase
based on word overlap and syntax. Can we
teach them instead to identify paraphrases in
a way that draws on the inferential properties
of the sentences, and is not over-reliant on
lexical and syntactic similarities of a sentence
pair? We apply the adversarial paradigm to
this question, and introduce a new adversarial
method of dataset creation for paraphrase iden-
tification: the Adversarial Paraphrasing Task
(APT), which asks participants to generate se-
mantically equivalent (in the sense of mutually
implicative) but lexically and syntactically dis-
parate paraphrases. These sentence pairs can
then be used both to test paraphrase identifi-
cation models (which get barely random accu-
racy) and then improve their performance. To
accelerate dataset generation, we explore au-
tomation of APT using T5, and show that the
resulting dataset also improves accuracy. We
discuss implications for paraphrase detection
and release our dataset in the hope of making
paraphrase detection models better able to de-
tect sentence-level meaning equivalence.

1 Introduction

Although there are many definitions of ‘paraphrase’
in the NLP literature, most maintain that two sen-
tences that are paraphrases have the same mean-
ing or contain the same information. Pang et al.
(2003) define paraphrasing as “expressing the same
information in multiple ways” and Bannard and
Callison-Burch (2005) call paraphrases “alternative
ways of conveying the same information.” Ganitke-
vitch et al. (2013) write that “paraphrases are dif-
fering textual realizations of the same meaning.” A

definition that seems to sufficiently encompass the
others is given by Bhagat and Hovy (2013): “para-
phrases are sentences or phrases that use different
wording to convey the same meaning.” However,
even that definition is somewhat imprecise, as it
lacks clarity on what it assumes ‘meaning’ means.

If paraphrasing is a property that can hold be-
tween sentence pairs,1 then it is reasonable to as-
sume that sentences that are paraphrases must have
equivalent meanings at the sentence level (rather
than exclusively at the levels of individual word
meanings or syntactic structures). Here a useful
test is that recommended by inferential role se-
mantics or inferentialism (Boghossian, 1994; Pere-
grin, 2006), which suggests that the meaning of a
statement s is grounded in its inferential properties:
what one can infer from s and from what s can be
inferred.

Building on this concept from inferentialism, we
assert that if two sentences have the same inferen-
tial properties, then they should also be mutually
implicative. Mutual Implication (MI) is a binary re-
lationship between two sentences that holds when
each sentence textually entails the other (i.e., bidi-
rectional entailment). MI is an attractive way of
operationalizing the notion of two sentences hav-
ing “the same meaning,” as it focuses on inferential
relationships between sentences (properties of the
sentences as wholes) instead of just syntactic or
lexical similarities (properties of parts of the sen-
tences). As such, we will assume in this paper
that two sentences are paraphrases if and only if
they are MI .2 In NLP, modeling inferential re-
lationships between sentences is the goal of the
textual entailment, or natural language inference
(NLI) tasks (Bowman et al., 2015). We test MI

1In this paper we study paraphrase between sentences, and
do not address the larger scope of how our work might extend
to paraphrasing between arbitrarily large text sequences.

2The notations used in this paper are listed in Table 1.
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using the version of RoBERTalarge released by Nie
et al. (2020) trained on a combination of SNLI
(Bowman et al., 2015), multiNLI (Williams et al.,
2018), FEVER-NLI (Nie et al., 2019), and ANLI
(Nie et al., 2020).

Owing to expeditious progress in NLP research,
performance of models on benchmark datasets is
‘plateauing’ — with near-human performance often
achieved within a year or two of their release —
and newer versions, using a different approach,
are constantly having to be created, for instance,
GLUE (Wang et al., 2019) and SuperGLUE (Wang
et al., 2020). The adversarial paradigm of dataset
creation (Jia and Liang, 2017a,b; Bras et al., 2020;
Nie et al., 2020) has been widely used to address
this ‘plateauing,’ and the ideas presented in this
paper draw inspiration from it. In the remainder of
this paper, we apply the adversarial paradigm to the
problem of paraphrase detection, and demonstrate
the following novel contributions:

• We use the adversarial paradigm to create
a new benchmark examining whether para-
phrase detection models are assessing the
meaning equivalence of sentences rather than
being over-reliant on word-level measures.
We do this by collecting paraphrases that
are MI but are as lexically and syntactically
disparate as possible (as measured by low
BLEURT scores). We call this the Adversarial
Paraphrasing Task (APT).

• We show that a SOTA language model trained
on paraphrase datasets perform poorly on our
benchmark. However, when further trained
on our adversarially-generated datasets, their
MCC scores improve by up to 0.307.

• We create an additional dataset by training a
paraphrase generation model to perform our
adversarial task, creating another large dataset
that further improves the paraphrase detection
models’ performance.

• We propose a way to create a machine-
generated adversarial dataset and discuss
ways to ensure it does not suffer from the
plateauing that other datasets suffer from.

2 Related Work

Paraphrase detection (given two sentences, predict
whether they are paraphrases) (Zhang and Patrick,

MI
Concept of mutual implication

/ bidirectional textual entailment)

MI
Property of being mutually implicative,

as determined by our NLI model
APT Adversarial Paraphrasing Task

APT
Property of passing the adversarial

paraphrase test (see §3)
APH Human-generated APT dataset

APT5
T5base-generated APT dataset

(Note that APT5 = APM
T5 ∪AP Tw

T5 )
APM

T5 MSRP subset of APT5

AP Tw
T5 TwitterPPDB subset of APT5

Table 1: Notations used in the paper.

2005; Fernando and Stevenson, 2008; Socher et al.,
2011; Jia et al., 2020) is an important task in the
field of NLP, finding downstream applications in
machine translation (Callison-Burch et al., 2006;
Apidianaki et al., 2018; Mayhew et al., 2020), text
summarization, plagiarism detection (Hunt et al.,
2019), question answering, and sentence simplifi-
cation (Guo et al., 2018). Paraphrases have proven
to be a crucial part of NLP and language educa-
tion, with research showing that paraphrasing helps
improve reading comprehension skills (Lee and
Colln, 2003; Hagaman and Reid, 2008). Question
paraphrasing is an important step in knowledge-
based question answering systems for matching
questions asked by users with knowledge-based
assertions (Fader et al., 2014; Yin et al., 2015).

Paraphrase generation (given a sentence, gener-
ate its paraphrase) (Gupta et al., 2018) is an area
of research benefiting paraphrase detection as well.
Lately, many paraphrasing datasets have been in-
troduced to be used for training and testing ML
models for both paraphrase detection and genera-
tion. MSRP (Dolan and Brockett, 2005) contains
5801 sentence pairs, each labeled with a binary hu-
man judgment of paraphrase, created using heuris-
tic extraction techniques along with an SVM-based
classifier. These pairs were annotated by humans,
who found 67% of them to be semantically equiva-
lent. The English portion of PPDB (Ganitkevitch
et al., 2013) contains over 220M paraphrase pairs
generated by meaning-preserving syntactic trans-
formations. Paraphrase pairs in PPDB 2.0 (Pavlick
et al., 2015) include fine-grained entailment rela-
tions, word embedding similarities, and style an-
notations. TwitterPPDB (Lan et al., 2017) con-
sists of 51,524 sentence pairs captured from Twitter
by linking tweets through shared URLs. This ap-



7108

proach’s merit is its simplicity as it involves neither
a classifier nor a human-in-the-loop to generate
paraphrases. Humans annotate the pairs, giving
them a similarity score ranging from 1 to 6.

ParaNMT (Wieting and Gimpel, 2018) was cre-
ated by using neural machine translation to trans-
late the English side of a Czech-English parallel
corpus (CzEng 1.6 (Bojar et al., 2016)), generat-
ing more than 50M English-English paraphrases.
However, ParaNMT’s use of machine translation
models that are a few years old harms its utility
(Nighojkar and Licato, 2021), considering the rapid
improvement in machine translation in the past few
years. To rectify this, we use the google-translate
library to translate the Czech side of roughly 300k
CzEng2.0 (Kocmi et al., 2020) sentence pairs our-
selves. We call this dataset ParaParaNMT (PP-
NMT for short, where the extra para- prefix re-
flects its similarity to, and conceptual derivation
from, ParaNMT).

Some work has been done in improving the qual-
ity of paraphrase detectors by training them on a
dataset with more lexical and syntactic diversity.
Thompson and Post (2020) propose a paraphrase
generation algorithm that penalizes the production
of n-grams present in the source sentence. Our
approach to doing this is with the APT, but this
is something worth exploring. Sokolov and Fil-
imonov (2020) use a machine translation model
to generate paraphrases much like ParaNMT. An
interesting application of paraphrasing has been
discussed by Mayhew et al. (2020) who, given a
sentence in one language, generate a diverse set
of correct translations (paraphrases) that humans
are likely to produce. In comparison, our work
is focused on generating adversarial paraphrases
that are likely to deceive a paraphrase detector, and
models trained on the adversarial datasets we pro-
duce can be applied to Mayhew et al.’s work too.

ANLI (Nie et al., 2020), a dataset designed for
Natural Language Inference (NLI) (Bowman et al.,
2015), was collected via an adversarial human-and-
model-in-the-loop procedure where humans are
given the task of duping the model into making a
wrong prediction. The model then tries to learn how
not to make the same mistakes. AFLite (Bras et al.,
2020) adversarially filters dataset biases making
sure that the models are not learning those biases.
They show that model performance on SNLI (Bow-
man et al., 2015) drops from 92% to 62% when
biases were filtered out. However, their approach is

to filter the dataset, which reduces its size, making
model training more difficult. Our present work
tries instead to generate adversarial examples to
increase dataset size. Other examples of adversar-
ial datasets in NLP include work done by Jia and
Liang (2017a); Zellers et al. (2018, 2019). Per-
haps the closest to our work is PAWS (Zhang et al.,
2019), short for Paraphrase Adversaries from Word
Scrambling. The idea behind PAWS is to create
a dataset that has a high lexical overlap between
sentence pairs without them being ‘paraphrases.’ It
has 108k paraphrase and non-paraphrase pairs with
high lexical overlap pairs generated by controlled
word swapping and back-translation, and human
raters have judged whether or not they are para-
phrases. Including PAWS in the training data has
shown the state-of-the-art models’ performance to
jump from 40% to 85% on PAWS’s test split. In
comparison to the present work, PAWS does not
explicitly incorporate inferential properties, and we
seek paraphrases minimizing lexical overlap.

3 Adversarial Paraphrasing Task (APT)

Semantic Textual Similarity (STS) measures the
degree of semantic similarity between two sen-
tences. Popular approaches to calculating STS
include BLEU (Papineni et al., 2002), BertScore
(Zhang et al., 2020), and BLEURT (Sellam et al.,
2020). BLEURT is a text generation metric build-
ing on BERT’s (Devlin et al., 2019) contextual
word representations. BLEURT is warmed-up us-
ing synthetic sentence pairs and then fine-tuned on
human ratings to generalize better than BERTScore
(Zhang et al., 2020). Given any two sentences,
BLEURT assigns them a similarity score (usually
between -2.2 to 1.1). However, high STS scores do
not necessarily predict whether two sentences have
equivalent meanings. Consider the sentence pairs
in Table 3, highlighting cases where STS and para-
phrase appear to misalign. The existence of such
cases suggests a way to advance automated para-
phrase detection: through an adversarial bench-
mark consisting of sentence pairs that have the
same MI-based meaning, but have BLEURT scores
that are as low as possible. This is the motivation
behind what we call the Adversarial Paraphrasing
Task (APT), which has two components:

1. Similarity of meaning: Checked through MI
(Section 1). We assume if two sentences are
MI (Mutually Implicative), they are seman-
tically equivalent and thus paraphrases. Note
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Figure 1: The mTurk study and the reward calculation. We automatically end the study when a subject earns a
total of $20 to ensure variation amongst subjects.

that MI is a binary relationship, so this APT
component does not bring any quantitative
variation but is more like a qualifier test for
APT. All APT sentence pairs are MI .

2. Dissimilarity of structure: Measured through
BLEURT, which assigns each sentence pair a
score quantifying how lexically and syntacti-
cally similar the two sentences are.

3.1 Manually Solving APT

To test the effectiveness of APT in guiding the gen-
eration of mutually implicative but lexically and
syntactically disparate paraphrases for a given sen-
tence, we designed an Amazon Mechanical Turk
(mTurk) study (Figure 1). Given a starting sentence,
we instructed participants to “[w]rite a sentence
that is the same in meaning as the given sentence
but as structurally different as possible. Your sen-
tence should be such that you can infer the given
sentence from it AND vice-versa. It should be suffi-
ciently different from the given sentence to get any
reward for the submission. For example, a simple
synonym substitution will most likely not work.”
The sentences given to the participants came from
MSRP and PPNMT (Section 1). Both of these
datasets have pairs of sentences in each row, and
we took only the first one to present to the par-

ticipants. Neither of these datasets has duplicate
sentences by design. Every time a sentence was se-
lected, a random choice was made between MSRP
and PPNMT, thus ensuring an even distribution of
sentences from both datasets.

Each attempt was evaluated separately using
Equation 1, where mi is 1 when the sentences are
MI and 0 otherwise:

reward =
mi

(1 + e5∗bleurt)2
(1)

This formula was designed to ensure (1) the max-
imum reward per submission was $1, and (2) no
reward was granted for sentence pairs that are non-
MI or have BLEURT > 0.5. Participants were
encouraged to frequently revise their sentences and
click on a ‘Check’ button which showed them the
reward amount they would earn if they submitted
this sentence. Once the ‘Check’ button was clicked,
the participant’s reward was evaluated (see Figure
1) and the sentence pair added to APH (regardless
of whether it was APT ). If ‘Submit’ was clicked,
their attempt was rewarded based on Equation 1.

The resulting dataset of sentence pairs, which
we call APH (Adversarial Paraphrase by Humans),
consists of 5007 human-generated sentence pairs,
both MI and non-MI (see Table 2). Humans were
able to generate APT paraphrases for 75.48% of
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Dataset
Total

attempts
APT

attempts
MI

attempts
non-MI
attempts

Unique
sentences

APT
uniques

MI
uniques

non-MI
uniques

APH 5007
2659

53.10%
3232

64.55%
1775

35.45%
1631

1231
75.48%

1338
82.04%

293
17.96%

APM
T5 62,986

3836
6.09%

37,511
59.55%

25,475
40.44%

4072
2288

56.19%
4045

99.34%
3115

76.50%

AP Tw
T5 75,011

6454
8.60%

17,074
22.76%

57,937
77.24%

4328
3670

84.80%
4131

95.45%
4230

97.74%

Table 2: Proportion of sentences generated by humans (APH ) and T5base (APT5). “Attempts” shows the number
of attempts the participant made and “Uniques” shows the number of source sentences from the dataset that the
performer’s attempts fall in that category on. For instance, 1631 unique sentences were presented to humans, who
made a total of 5007 attempts to pass APT and were able to do so for 2659 attempts which amounted to 1231
unique source sentences that could be paraphrased to pass APT .

the sentences presented to them and only 53.1%
of attempts were APT , showing that the task is
difficult even for humans. Note that ‘MI attempts’
and ‘MI uniques’ are supersets of ‘APT attempts’
and ‘APT uniques,’ respectively.

3.2 Automatically Solving APT

Since human studies can be time-consuming and
costly, we trained a paraphrase generator to per-
form APT. We used T5base (Raffel et al., 2020), as
it achieves SOTA on paraphrase generation (Niu
et al., 2020; Bird et al., 2020; Li et al., 2020) and
trained it on TwitterPPDB (Section 2). Our hy-
pothesis was that if T5base is trained to maximize
the APT reward (Equation 1), its generated sen-
tences will be more likely to be APT . We gener-
ated paraphrases for sentences in MSRP and those
in TwitterPPDB itself, hoping that since T5base is
trained on TwitterPPDB, it would generate better
paraphrases (MI with lower BLEURT) for sen-
tences coming from there. The proportion of sen-
tences generated by T5base is shown in Table 2.
We call this dataset APT5, the generation of which
involved two phases:
Training: To adapt T5base for APT, we imple-
mented a custom loss function obtained from di-
viding the cross-entropy loss per batch by the total
reward (again from Equation 1) earned from the
model’s paraphrase generations for that batch, pro-
vided the model was able to reach a reward of at
least 1. If not, the loss was equal to just the cross-
entropy loss. We trained T5base on TwitterPPDB
for three epochs; each epoch took about 30 hours
on one NVIDIA Tesla V100 GPU due to the CPU
bound BLEURT component. More epochs may
help get better results, but our experiments showed
that loss plateaus after three epochs.
Generation: Sampling, or randomly picking a

next word according to its conditional probabil-
ity distribution, introduces non-determinism in lan-
guage generation. Fan et al. (2018) introduce top-k
sampling, which filters k most likely next words,
and the probability mass is redistributed among
only those k words. Nucleus sampling (or top-p
sampling) (Holtzman et al., 2020) reduces the op-
tions to the smallest possible set of words whose
cumulative probability exceeds p, and the probabil-
ity mass is redistributed among this set of words.
Thus, the set of words changes dynamically ac-
cording to the next word’s probability distribution.
We use a combination of top-k and top-p sampling
with k = 120 and p = 0.95 in the interest of lexi-
cal and syntactic diversity in the paraphrases. For
each sentence in the source dataset (MSRP3 and
TwitterPPDB for APM

T5 and AP Tw
T5 respectively),

we perform five iterations, in each of which, we
generate ten sentences. If at least one of these ten
sentences passes APT , we continue to the next
source sentence after recording all attempts and
classifying them as MI or non-MI . If no sentence
in a maximum of 50 attempts passes APT , we
record all attempts nonetheless, and move on to the
next source sentence. For each increasing iteration
for a particular source sentence, we increase k by
20, but we also reduce p by 0.05 to avoid vague
guesses. Note the distribution of MI and non-MI
in the source datasets does not matter because we
use only the first sentence from the sentence pair.

3.3 Dataset Properties
T5base trained with our custom loss function gen-
erated APT -passing paraphrases for (56.19%) of
starting sentences. This is higher than we initially
expected, considering how difficult APT proved
to be for humans (Table 2). Noteworthy is that

3We use the official train split released by Dolan and Brock-
ett (2005) containing 4076 sentence pairs.
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(a) APH (b) APM
T5 (c) APTw

T5

Figure 2: BLEURT distributions on adversarial datasets. All figures divide the range of observed scores into 100
bins. Note that APT sentence pairs are also MI , whereas those labeled ‘MI’ are not APT .

only 6.09% of T5base’s attempts were APT . This
does not mean that the remaining 94% of attempts
can be discarded, since they amounted to the neg-
ative examples in the dataset. Since we trained
it on TwitterPPDB itself, we expected that T5base
would generate better paraphrases, as measured by
a higher chance of passing APT on TwitterPPDB,
than any other dataset we tested. This is supported
by the data in Table 2, which shows that T5base
was able to generate an APT passing paraphrase
for 84.8% of the sentences in TwitterPPDB.

The composition of the three adversarial datasets
can be found in Table 2. These metrics are useful
to understand the capabilities of T5base as a para-
phrase generator and the “paraphrasability” of sen-
tences in MSRP and TwitterPPDB. For instance,
T5base’s attempts on TwitterPPDB tend to be MI
much less frequently than those on MSRP and hu-
man’s attempts on MSRP + PPNMT. This might
be because in an attempt to generate syntactically
dissimilar sentences, the T5base paraphraser also
ended up generating many semantically dissimilar
ones as well.

To visualize the syntactic and lexical disparity
of paraphrases in the three adversarial datasets, we
present their BLEURT distributions in Figure 2. As
might be expected, the likelihood of a sentence pair
being MI increases as BLEURT score increases
(recall that APT -passing sentence pairs are sim-
ply MI pairs with BLEURT scores <= 0.5), but
Figure 2 shows that the shape of this increase is
not straightforward, and differs among the three
datasets.

As might be expected, humans are much more
skilled at APT than T5base, as shown by the fact
that the paraphrases they generated have much
lower mean BLEURT scores (Figure 2), and the ra-
tio of APT vs non-APT sentences is much higher
(Table 2). As we saw earlier, when T5base wrote

paraphrases that were low on BLEURT, they tended
to become non-MI (e.g., line 12 in Table 3). How-
ever, T5base did generate more APT -passing sen-
tences with a lower BLEURT on Twitter-PPDB
than on MSRP, which may be a result of overfit-
ting T5base on TwitterPPDB. Furthermore, all three
adversarial datasets have a distribution of MI and
non-MI sentence pairs balanced enough to train a
model to identify paraphrases.

Table 3 has examples from APH and APT5

showing the merits and shortcomings of T5,
BLEURT, and RoBERTalarge (the MI detector
used). Some observations from Table 3 include:

• Lines 1 and 3: BLEURT did not recognize the
paraphrases, possibly due to the differences in
words used. RoBERTalarge however, gave the
correct MI prediction (though it is worth not-
ing that the sentences in line 1 are questions,
rather than truth-apt propositions).

• Line 4: RoBERTalarge and BLEURT (to a
large extent since it gave it a score of 0.4) did
not recognize that the idiomatic phrase ‘break
a leg’ means ‘good luck’ and not ‘fracture.’

• Lines 6 and 12: There is a loss of information
going from the first sentence to the second and
BLEURT and MI both seem to have under-
stood the difference between summarization
and paraphrasing.

• Line 7: T5 not only understood the scores
but also managed to paraphrase it in such a
way that was not syntactically and lexically
similar, just as we wanted T5 to do when we
fine-tuned it.

• Line 9: T5base knows that Fort Lauderdale is
in Florida but RoBERTalarge does not.
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No. Source
Dataset

Source Sentence Attempt BLEURT MI

APH

1 PPNMT So, can we please get out of here? So is it okay if we please go? -0.064 1

2 PPNMT You’re crying. I did not cry -1.366 0

3 PPNMT Treatment successful. The treatment was succesful. -0.871 1

4 PPNMT Break a leg! Fracture a leg! 0.408 1

5 MSRP Two years later, the insurance coverage would begin. The insurance will start in two years 0.281 1

6 MSRP Evacuation went smoothly, although passengers
weren’t told what was going on, Hunt said.

Hunt told that Evacuation went smoothly. -0.298 0

APT5

7 MSRP Friday, Stanford (47-15) blanked the Gamecocks 8-0. Stanford (47-15) won 8-0 over the Gamecocks on Friday. 0.206 1

8 MSRP Revenue in the first quarter of the year dropped
15 percent from the same period a year earlier.

Revenue declined 15 percent in the first quarter
of the year from the same period a year earlier.

0.698 1

9 MSRP A federal magistrate in Fort Lauderdale ordered
him held without bail.

In Fort Lauderdale, Florida, a federal magistrate
ordered him held without bail.

0.635 0

10 TP 16 innovations making a difference for poor
communities around the world.

16 innovative ideas that tackle poverty around the world. 0.317 1

11 TP This is so past the bounds of normal or acceptable . This is so beyond the normal or acceptable boundaries. 0.620 1

12 TP The creator of Atari has launched a new VR company
called Modal VR.

Atari creator is setting up a new VR company! 0.106 0

Table 3: Examples from adversarial datasets. The source dataset (TP short for TwitterPPDB) tells which dataset
the sentence pair comes from (and whether it is in APM

T5 or APTw
T5 for APT5). All datasets have APT passing and

failing MI and non-MI sentence pairs.

Dataset Total MI non-MI

APH -train 3746 2433 64.95% 1313 35.05%

APH -test 1261 799 63.36% 462 36.64%

MSRP-train 4076 2753 67.54% 1323 32.46%

MSRP-test 1725 1147 66.50% 578 33.50%

Table 4: Distribution of MI and non-MI pairs.

Test Set RoBERTabase Random
MCC F1 MCC F1

MSRP-train 0.349 0.833 0 0.806

MSRP-test 0.358 0.829 0 0.799

APH 0.222 0.746 0 0.784

APH -test 0.218 0.743 0 0.777

Table 5: Performance of RoBERTabase trained on just
TwitterPPDB (no adversarial datasets) vs. random pre-
diction.

4 Experiments

To quantify our datasets’ contributions, we de-
signed experiment setups wherein we trained
RoBERTabase (Liu et al., 2019) for paraphrase de-
tection on a combination of TwitterPPDB and our
datasets as training data. RoBERTa was chosen for
its generality, as it is a commonly used model in
current NLP work and benchmarking, and currently
achieves SOTA or near-SOTA results on a majority
of NLP benchmark tasks (Wang et al., 2019, 2020;

Training Dataset
TwitterPPDB +

Size APH APH -test
MCC F1 MCC F1

APH -train 46k 0.440 0.809

APM
T5 106k 0.410 0.725 0.369 0.705

APH -train + APM
T5 109k 0.516 0.828

AP Tw
T5 117k 0.433 0.772 0.422 0.765

APH -train + AP Tw
T5 121k 0.488 0.812

APT5 180k 0.461 0.731 0.437 0.716

APH -train + APT5 184k 0.525 0.816

Table 6: Performance of RoBERTabase trained on ad-
versarial datasets. Size is the number of training exam-
ples in the dataset rounded to nearest 1000.

Chen et al., 2021).

For each source sentence, multiple paraphrases
may have been generated. Hence, to avoid data
leakage, we created a train-test split on APH such
that all paraphrases generated using a given source
sentence will be either in APH -train or in APH -
test, but never in both. Note that APH is not bal-
anced as seen in Table 2. Table 4 shows the dis-
tribution of MI and non-MI pairs in APH -train
and APH -test and ‘MI attempts’ and ‘non-MI
attempts’ columns of Table 2 show the same for
other adversarial datasets. The test sets used were
APH wherever APH -train was not a part of the
training data and APH -test in every case.
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Does RoBERTabase do well on APH?
RoBERTabase was trained on each training
dataset (90% training data, 10% validation data)
for five epochs with a batch size of 32 with the
training and validation data shuffled, and the
trained model was tested on APH and APH -test.
The results of this are shown in Table 6. Note that
since the number of MI and non-MI sentences
in all the datasets is imbalanced, Matthew’s Cor-
relation Coefficient (MCC) is a more appropriate
performance measure than accuracy (Boughorbel
et al., 2017).

Our motivation behind creating an adversarial
dataset was to improve the performance of para-
phrase detectors by ensuring they recognize para-
phrases with low lexical overlap. To demonstrate
the extent of their inability to do so, we first com-
pare the performance of RoBERTabase trained only
on TwitterPPDB on specific datasets as shown Ta-
ble 5. Although the model performs slightly well
on MSRP, it does barely better than a random pre-
diction on APH , thus showing that identifying ad-
versarial paraphrases created using APT is non-
trivial for paraphrase identifiers.

Do human-generated adversarial paraphrases
improve paraphrase detection? We introduce
APH -train to the training dataset along with Twit-
terPPDB. This improves the MCC by 0.222 even
though APH -train constituted just 8.15% of the
entire training dataset, the rest of which was Twit-
terPPDB (Table 6). This shows the effectiveness
of human-generated paraphrases, as is especially
impressive given the size of APH -train compared
to TwitterPPDB.

Do machine-generated adversarial para-
phrases improve paraphrase detection? We
set out to test the improvement brought by APT5,
of which we have two versions. Adding APM

T5

to the training set was not as effective as adding
APH -train, increasing MCC by 0.188 on APH

and 0.151 on APH -test, thus showing us that
T5base, although was able to clear APT , lacked
the quality which human paraphrases possessed.
This might be explained by Figure 2 — since
APM

T5 does not have many sentences with low
BLEURT, we cannot expect a vast improvement
in RoBERTabase’s performance on sentences with
BLEURT as low as in APH .

Since we were not necessarily testing T5base’s
performance — and we had trained T5base on Twit-

terPPDB — we used the trained model to perform
APT on TwitterPPDB itself. Adhering to expec-
tations, training RoBERTabase (the paraphrase de-
tector) with AP Tw

T5 yielded higher MCCs. Note
that none of the sentences are common between
AP Tw

T5 and APH since APH is built on MSRP and
PPNMT and the fact that the model got this per-
formance when trained on AP Tw

T5 is a testimony to
the quality and contribution of APT.

Combining these results, we can conclude that
although machine-generated datasets like APT5

can help paraphrase detectors improve themselves,
a smaller dataset of human-generated adversarial
paraphrases improved performance more. Overall,
however, the highest MCC (0.525 in Table 6) is
obtained when TwitterPPDB is combined with all
three adversarial datasets, suggesting that the two
approaches nicely complement each other.

5 Discussions and Conclusions

This paper introduced APT (Adversarial Paraphras-
ing Task), a task that uses the adversarial paradigm
to generate paraphrases consisting of sentences
with equivalent (sentence-level) meanings, but dif-
fering lexical (word-level) and syntactical similar-
ity. We used APT to create a human-generated
dataset / benchmark (APH ) and two machine-
generated datasets (APM

T5 and AP Tw
T5 ). Our goal

was to effectively augment how paraphrase detec-
tors are trained, in order to make them less reliant
on word-level similarity. In this respect, the present
work succeeded: we showed that RoBERTabase
trained on TwitterPPDB performed poorly on APT
benchmarks, but this performance was increased
significantly when further trained on either our
human- or machine-generated datasets. The code
used in this paper along with the dataset has been
released in a publicly-available repository.4

Paraphrase detection and generation have broad
applicability, but most of their potential lies in ar-
eas in which they still have not been substantially
applied. These areas range from healthcare (im-
proving accessibility to medical communications
or concepts by automatically generating simpler
language), writing (changing the writing style of
an article to match phrasing a reader is better able
to understand), and education (simplifying the lan-
guage of a scientific paper or educational lesson to

4https://github.com/
Advancing-Machine-Human-Reasoning-Lab/
apt

https://github.com/Advancing-Machine-Human-Reasoning-Lab/apt
https://github.com/Advancing-Machine-Human-Reasoning-Lab/apt
https://github.com/Advancing-Machine-Human-Reasoning-Lab/apt
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make it easier for students to understand). Thus,
future research into improving their performance
can be very valuable. But approaches to paraphrase
that treat it as no more than a matter of detecting
word similarity overlap will not suffice for these
applications. Rather, the meanings of sentences
are properties of the sentences as a whole, and
are inseparably tied to their inferential properties.
Thus, our approaches to paraphrase detection and
generation must follow suit.

The adversarial paradigm can be used to dive
deeper into comparing how humans and SOTA lan-
guage models understand sentence meaning, as
we did with APT. Furthermore, automatic gener-
ation of adversarial datasets has much unrealized
potential; e.g., different datasets, paraphrase gen-
erators, and training approaches can be used to
generate future versions of APT5 in order to pro-
duce APT passing sentence pairs with lower lexi-
cal and syntactic similarities (as measured not only
by BLEURT, but also by future state-of-the-art STS
metrics). The idea of more efficient automated ad-
versarial task performance is particularly exciting,
as it points to a way language models can improve
themselves while avoiding prohibitively expensive
human participant fees.

Finally, the most significant contribution of this
paper, APT, presents a dataset creation method for
paraphrases that will not saturate because as the
models get better at identifying paraphrases, we
will improve paraphrase generation. As models get
better at generating paraphrases, we can make APT
harder (e.g., by reducing the BLEURT threshold
of < 0.5). One might think of this as students in
a class who come up with new ways of copying
their assignments from sources as plagiarism detec-
tors improved. That brings us to one of the many
applications of paraphrases: plagiarism generation
and detection, which inherently is an adversarial
activity. Until plagiarism detectors are trained on
adversarial datasets themselves, we cannot expect
them to capture human levels of adversarial para-
phrasing.
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