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Abstract

When collecting annotations and labeled data
from humans, a standard practice is to use
inter-rater reliability (IRR) as a measure of
data goodness (Hallgren, 2012). Metrics such
as Krippendorff’s alpha or Cohen’s kappa are
typically required to be above a threshold of
0.6 (Landis and Koch, 1977). These abso-
lute thresholds are unreasonable for crowd-
sourced data from annotators with high cul-
tural and training variances, especially on sub-
jective topics. We present a new alternative
to interpreting IRR that is more empirical and
contextualized. It is based upon benchmarking
IRR against baseline measures in a replication,
one of which is a novel cross-replication relia-
bility (xRR) measure based on Cohen’s (1960)
kappa. We call this approach the xRR frame-
work. We opensource a replication dataset of
4 million human judgements of facial expres-
sions and analyze it with the proposed frame-
work. We argue this framework can be used to
measure the quality of crowdsourced datasets.

1 Introduction

Much content analysis and linguistics research is
based on data generated by human beings (hence-
forth, annotators or raters) asked to make some kind
of judgment. These judgments involve systematic
interpretation of textual, visual, or audible mat-
ter (e.g. newspaper articles, television programs,
advertisements, public speeches, and other multi-
modal data). When relying on human observers,
researchers must worry about the quality of the
data — specifically, their reliability (Krippendorff,
2004). Are the annotations collected reproducible,
or are they the result of human idiosyncrasies?

Respectable scholarly journals typically require
reporting quantitative evidence for the inter-rater
reliability (IRR) of the data (Hallgren, 2012). Co-
hen’s kappa (Cohen, 1960) or Krippendorff’s alpha
(Hayes and Krippendorff, 2007) is expected to be

Figure 1: Agreement measures for categorical data (Landis
and Koch, 1977)

above a certain threshold to be worthy of publica-
tion, typically 0.6 (Landis and Koch, 1977). Simi-
lar IRR requirements for human annotations data
have been followed across many fields. In this pa-
per we refer to this absolute interpretation of IRR
as the Landis-Koch approach (Fig. 1).

This approach has been foundational in guid-
ing the development of widely used and shared
datasets and resources. Meanwhile, the landscape
of human annotations collection has witnessed a
tectonic shift in recent years. Driven by the data-
hungry success of machine learning (LeCun et al.,
2015; Schaekermann et al., 2020), there has been
an explosive growth in the use of crowdsourcing
for building datasets and benchmarks (Snow et al.,
2008; Kochhar et al., 2010). We identify three
paradigm shifts in the scope of and methodologies
for data collection that make the Landis-Koch ap-
proach not as useful in today’s settings.

A rise in annotator diversity In the pre-
crowdsourcing era lab settings, data were typically
annotated by two graduate students following de-
tailed guidelines and working with balanced cor-
pora. Over the past two decades, however, the bulk
of data are annotated by crowd workers with high
cultural and training variances.

A rise in task diversity There has been an in-
creasing amount of subjective tasks with genuine
ambiguity: judging toxicity of online discussions
(Aroyo et al., 2019), in which the IRR values range
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between 0.2 and 0.4; judging emotions expressed
by faces (Cowen and Keltner, 2017), in which more
than 80% of the IRR values are below 0.6; and A/B
testing of user satisfaction or preference evalua-
tions (Kohavi and Longbotham, 2017), where IRR
values are typically between 0.3 and 0.5.

A rise in imbalanced datasets Datasets are no
longer balanced intentionally. Many high-stakes
human judgements concern rare events with sub-
stantial tail risks: event security, disease diagnos-
tics, financial fraud, etc. In all of these cases, a
single rare event can be the source of considerable
cost. High class imbalance has led to many com-
plaints of IRR interpretability (Byrt et al., 1993;
Feinstein and Cicchetti, 1990; Cicchetti and Fein-
stein, 1990).

Each of these changes individually has a pro-
found impact on data reliability. Together, they
have caused a shift from data-from-the-lab to data-
from-the-wild, for which the Landis-Koch approach
to interpreting IRR is admittedly too rigid and too
stringent. Meanwhile, we have seen a drop in the
reliance on reliability. Machine learning, crowd-
sourcing, and data research papers and tracks have
abandoned the use and reporting of IRR for human
labeled data, despite calls for it (Paritosh, 2012).
The most cited recent datasets and benchmarks
used by the community such as SQuAD (Rajpurkar
et al., 2016), ImageNet (Deng et al., 2009), Free-
base (Bollacker et al., 2008), have never reported
IRR values. This would have been unthinkable
twenty years ago. More importantly, this is happen-
ing against the backdrop of a reproducibility crisis
in artificial intelligence (Hutson, 2018).

With the decline of the usage of IRR, we have
seen a rise of ad hoc, misguided quality metrics
that took its place, including 1) agreement-%, 2)
accuracy relative to consensus, 3) accuracy relative
to “ground truth.” This is dangerous, as IRR is still
our best bet for ensuring data reliability. How can
we ensure its continued importance in this new era
of data collection?

This paper is an attempt to address this problem
by proposing an empirical alternative to interpret-
ing IRR. Instead of relying on an absolute scale, we
benchmark an experiment’s IRR against two base-
line measures, to be found in a replication. Repli-
cation here is defined as re-annotating the same set
of items with a slight change in the experimental
setup, e.g., annotator population, annotation guide-
lines, etc. By fixing the underlying corpus, we can

ensure the baseline measures are sensitive to the
experiment on hand. The first baseline measure
is the annotator reliability in the replication. The
second measure is the annotator reliability between
the replications. In Section 3, we present a novel
way of measuring this. We call it cross-kappa (κx).
It is an extension of Cohen’s (1960) kappa and is
designed to measure annotator agreement between
two replications in a chance-corrected manner.

We present in Appendix A the International
Replication (IRep) dataset,1 a large-scale crowd-
sourced dataset of four million judgements of hu-
man facial expressions in videos. The dataset con-
sists of three replications in Mexico City, Budapest,
and Kuala Lumpur.2 Our analysis in Section 4
shows this empirical approach enables meaning-
ful interpretation of IRR. In Section 5, we argue
xRR is a sensible way of measuring the goodness
of crowdsourced datasets, where high reliability is
unattainable. While we only illustrate comparing
annotator populations in this paper, the method-
ology behind the xRR framework is general and
can apply to similarly replicated datasets, e.g., via
change of annotation guidelines.

2 Related Work

To position our research, we present a brief sum-
mary of the literature in two areas: metrics for
measuring annotator agreement and their shortcom-
ings (Section 2.1), comparing replications of an
experiment (Section 2.2).

2.1 Annotator Agreement

Artstein and Poesio (2008) present a comprehen-
sive survey of the literature on IRR metrics used in
linguistics. Popping (1988) compare an astounding
43 measures for nominal data (mostly applicable to
reliability of data generated by only two observers).
Since then, Cohen’s (1960) kappa and its variants
(Carletta et al., 1997; Cohen, 1968) have become
the de facto standard for measuring agreement in
computational linguistics.

One of the strongest criticisms of kappa is its
lack of interpretability when facing class imbal-
ance. This problem is known as the kappa paradox
(Feinstein and Cicchetti, 1990; Byrt et al., 1993;

1https://github.com/google-research-datasets/replication-
dataset

2On this task, raters received average hourly wages of
$12, $20, and $14 USD in Mexico City, Budapest, and Kuala
Lumpur respectively. See Appendix A for annotation setup.
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Warrens, 2010), or the ‘base rates’ problem (Ue-
bersax, 1987). Bruckner and Yoder (2006) show
class imbalance imposes practical limits on kappa
and suggest one to interpret kappa in relation to
the class imbalance of the underyling data. Oth-
ers have proposed measures that are more robust
against class imbalance (Gwet, 2008; Spitznagel
and Helzer, 1985; Stewart and Rey, 1988). Pon-
tius Jr and Millones (2011) even suggest abandon-
ing the use of kappa altogether.

2.2 Agreement Between Replications

Replications are often being compared, but it is
done at the level of per-item mean scores. Cowen
and Keltner (2017) measure the correlation be-
tween the mean scores of two geographical rater
pools. They use Spearman’s (1904) correction for
attenuation (discussed later in this paper) with split-
half reliability. Snow et al. (2008) measure the
Pearson correlations between the score of a sin-
gle expert and the mean score of a group of non-
experts, and vice versa. In this comparison the
authors do not correct for correlation attenuation,
hence the reported correlations may be strongly bi-
ased. Bias aside, correlation is not suitable for tasks
with non-interval data or task with missing data. In
this paper, we propose a general methodology for
measuring rater agreement between replications
with the same kind of generality, flexibility, and
ease of use as IRR.

3 Cross-replication Reliability (xRR)

Data reliability can be assessed when a set of items
are annotated multiple times. When this is done by
a single rater, intra-rater reliability assesses a per-
son’s agreement with oneself. When this is done
by two or more raters, inter-rater reliability (IRR)
assesses the agreement between raters in an exper-
iment. We propose to extend IRR to measure a
similar notion of rater-rater agreement, but where
the raters are taken from two different experiments.
We call it cross-replication reliability (xRR). These
replications can be a result of re-labeling the same
items with a different rater pool, annotation tem-
plate, or on a different platform, etc.

We begin with a general definition of Cohen’s
(1960) kappa. We extend it to cross-kappa (κx) to
measure cross-replication reliability. We then use
this foundation to define normalized κx to measure
similarity between two replications.

3.1 Kappa and Its Generalizations

The class of IRR measures is quite diverse, cover-
ing many different experimental scenarios, e.g., dif-
ferent numbers of raters, rating scales, agreement
definitions, assumptions about rater interchange-
ability, etc. Out of all such coefficients, Cohen’s
(1960) kappa has a distinct property that makes it
most suitable for the task on hand. Unlike Scott’s
pi (Scott, 1955), Fleiss’s kappa (Fleiss, 1971), Krip-
pendorf’s alpha (Krippendorff, 2004), and many
others, Cohen’s (1960) kappa allows for two dif-
ferent marginal distributions. This stems from Co-
hen’s belief that two raters do not necessarily share
the same marginal distribution, hence they should
not be treated interchangeably. When we compare
replications, e.g., two rater populations, we are
deliberately changing some underlying conditions
of the experiment, hence it is safer to assume the
marginal distributions will not be the same. Within
either replication, however, we rely on the rater
interchangeability assumption. We think this more
accurately reflects the current practice in crowd-
sourcing, where each rater contributes a limited
number of responses in an experiment, and hence
raters are operationally interchangeable.

Cohen’s (1960) kappa was invented to compare
two raters classifying n items into a fixed number
of categories. Since its publication, it has been
generalized to accommodate multiple raters (Light,
1971; Berry and Mielke Jr, 1988), and to cover
different types of annotation scales: ordinal (Co-
hen, 1968), interval (Berry and Mielke Jr, 1988;
Janson and Olsson, 2001), multivariate (Berry and
Mielke Jr, 1988), and any arbitrary distance func-
tion (Artstein and Poesio, 2008). In this paper we
focus on Janson and Olsson’s (2001) generaliza-
tion, which the authors denote with the lowercase
Greek letter iota (ι). It extends kappa to accom-
modate interval data with multiple raters, and is
expressed in terms of pairwise disagreement:

ι = 1− do
de
. (1)

do in this formula represents the observed portion
of disagreement and is defined as:

do =

[
n

(
b

2

)]−1∑
r<s

n∑
i

D(xri, xsi), (2)

where n is the number of items, b the number of
annotators, i the item index, r and s the annotator
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indexes;
∑

r<s is the sum over all r and s such that
1 <= r < s <= b. D() is a pairwise disagreement
defined as:

D(xri, xsi) = (xri − xsi)2 (3)

for interval data, and

D(xri, xsi) =

{
0, xri = xsi

1, otherwise
(4)

for categorical data. Note we are dropping Jan-
son and Olsson’s multivariate reference in D() and
focusing on the univariate case. de in the denomina-
tor represents the expected portion of disagreement
and is defined as:

de =

[
n2
(
b

2

)]−1∑
r<s

n∑
i

n∑
j

D(xri, xsj). (5)

Janson and Olsson’s expression in Eq. 1 is based
on Berry and Mielke Jr (1988). While the latter use
absolute distance for interval data, the former use
squared distance instead. We follow Janson and
Olsson’s approach because squared distance leads
to desirable properties and familiar interpretation
of coefficients (Fleiss and Cohen, 1973; Krippen-
dorff, 1970). Squared distance is also used in alpha
(Krippendorff, 2004). Berry and Mielke Jr (1988)
show if b = 2 and the scale is categorical, ι in Eq. 1
reduces to Cohen’s (1960) kappa. For other rating
scales such as ratio, rank, readers should refer to
Krippendorff (2004) for additional distance func-
tions. The equations for do and de are unaffected
by the choice of D().

3.2 Definition of κx
Here we present κx as a novel reliability coeffi-
cient for measuring the rater agreement between
two replications. In Janson and Olsson’s general-
ized kappa above, the disagreement is measured
within pairs of annotations taken from the same
experiment. In order to extend it to measure cross-
replication agreement, we construct annotation
pairs such that the two annotations are taken from
different replications. We do not consider anno-
tation pairs from the same replication. We define
cross-kappa, κx(X,Y ), as a reliability coefficient
between replications X and Y :

κx(X,Y ) = 1− do(X,Y )

de(X,Y )
, (6)

where

do(X,Y ) =
1

nRS

n∑
i=1

R∑
r=1

S∑
s=1

D(xri, ysi), (7)

and

de(X,Y ) =
1

n2RS

n∑
i=1

n∑
j=1

R∑
r=1

S∑
s=1

D(xri, ysj),

(8)
where x and y denote annotations from replications
X and Y respectively, n is the number of items,
R and S the numbers of annotations per item in
replications X and Y respectively. In this defi-
nition, the observed disagreement is obtained by
averaging disagreement observed in nRS pairs of
annotations, where each pair contains two annota-
tions on the same item taken from two different
replications. Expected disagreement is obtained by
averaging over all possible n2RS cross-replication
annotation pairs. When each replication has only 1
annotation per item, and the data is categorical, it is
easy to show κx reduces to Cohen’s (1960) kappa.
κx is a kappa-like measure, and will have prop-

erties similar to kappa’s. κx is bounded between
0 and 1 in theory, though in practice it may be
slightly negative for small sample sizes. κx = 0
means there is no discernible agreement between
raters from two replications, beyond what would
be expected by chance. κx = 1 means all raters
between two replications are in perfect agreement
with each other, which also implies perfect agree-
ment within either replication.

3.3 κx with Missing Data
As presented, the two replications can have dif-
ferent numbers of annotations per item. However,
within either replication, the number of annotations
per item is assumed to be fixed. We recognize this
may not always be the case. In practice, items
within an experiment can receive varying numbers
of annotations (i.e., missing data). We now show
how to calculate κx with missing data.

When computing IRR with missing data,
weights can be used to account for varying numbers
of annotations within each item. Janson and Ols-
son (2004) propose a weighting scheme for iota in
Eq. 1. Instead, we follow the tradition of Krippen-
dorff (2004) in weighting each annotation equally
in computing do and de. That amounts to the fol-
lowing scheme. In do, we first normalize within
each item, then we take a weighted average over
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all items, with weights proportional to the com-
bined numbers of annotations per item. In de, no
weighting is required.

Since R and S can now vary from item to item,
we index them using R(∗) and S(∗) to denote that
they are functions of the underlying items. We
rewrite do and de as:

do(X,Y ) =

n∑
i=1

R(i) + S(i)

R+ S

R(i)∑
r=1

S(i)∑
s=1

D(xri, ysi)

R(i) · S(i)
(9)

and

de(X,Y ) =
1

R · S

n∑
i=1

n∑
j=1

R(i)∑
r=1

S(j)∑
s=1

D(xri, ysj),

(10)
with

R =
n∑
i

R(i), S =
n∑
j

S(j), (11)

where R is the total number of annotations in repli-
cations X , R(i) the number annotations on item
i in replication X , r = 1, 2, . . . , R(i) (on item i
in replication X); and similarly for S, S(j), and s
with respect to replication Y .

∑R(i)
r=1 and

∑S(j)
s=1 in

Eq. 9 and 10 are inner summations, where i and j
are indexes from the outer summations. Without
missing data, R(i) = R for all i, and S(j) = S for
all j, then R = nR, S = nS, reducing Eq. 9 and
10 to Eq. 7 and 8.

3.4 Normalization of κx
xRR is modeled closely after IRR in order to serve
as its baseline. As IRR measures the agreement
between raters, so does xRR. In other words, κx is
really a measure of rater agreement, not a measure
of experimental similarity per se. This distinction
is important. If we want to measure how well we
replicate an experiment, we need to measure its
disagreement with the replication in relationship
to their own internal disagreements. The departure
between inter-experiment and intra-experiment dis-
agreements is important in measuring experimental
similarity.

This calls for a normalization that considers κx
in relation to IRR. First, we take inspirations from
Spearman’s correction for attenuation (Spearman,
1904):

ρxy =
rxy√

reliabilityx
√
reliabilityy

, (12)

where rxy is the observed Pearson product-moment
correlation between x and y (variables observed
with measurement errors), ρxy is an estimate
of their true, unobserved correlation (in the ab-
sence of measurement errors), and reliabilityx and
reliabilityy are the reliabilities of x and y respec-
tively. Eq. 12 is Spearman’s attempt to correct for
the negative bias in rxy caused by the observation
errors in x and y.3

Eq. 12 is relevant here because of the close
connection between Cohen’s (1960) kappa and the
Pearson correlation, rxy. In the dichotomous case,
if the two marginal distributions are the same, Co-
hen’s (1960) kappa is equivalent to the Pearson
correlation (Cohen, 1960, 1968). In the multi-
category case, Cohen (1968) generalizes this equiv-
alence to weighted kappa, under the conditions of
equal marginals and a specific quadratic weighting
scheme.

Based on this strong connection, we propose
replacing rxy in Eq. 12 with κx and define normal-
ized κx as:

normalizedκx =
κx(X,Y )√

IRRX

√
IRRY

. (13)

Defined this way, one would expect normalized
κx to behave like ρxy. That is indeed the case.
When we apply both measures to the IRep dataset,
we obtain a Pearson correlation of 0.99 between
them (see Section 4.5). This leads to two insights.
First, we can interpret normalized κx like a disat-
tenuated correlation, ρxy (see (Muchinsky, 1996)
for a rigorous interpretation). Second, normalized
κx approximates the true correlation between two
experiments’ item-level mean scores.

Despite their affinity, ρxy is not a substitute for
normalized κx for measuring experimental simi-
larity. Normalized κx is more general as it can
accommodate non-interval scales and missing data.

3.5 Connection between xRR and IRR
By connecting normalized κx to ρxy, we can also
learn a lot about κx itself. To the extent that nor-
malized κx approximates ρxy, we can rewrite Eq.
13 as:

κx(X,Y ) ≈ ρxy
√

IRRX

√
IRRY . (14)

This formulation shows κx behaves like a prod-
uct of ρxy and the geometric mean of the two IRRs.

3Spearman relied on the assumption that the errors are
uncorrelated with each other and with x and y.
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This has important consequences, as we can deduce
the following. 1) Holding constant the mean scores,
and hence ρxy, the lower the IRRs, the lower the
κx. Intra-experiment disagreement inflates inter-
experiment disagreement. 2) In theory ρxy ≤ 1.0,4

hence κx is capped by the greater of the two IRRs.
I.e., Intra-experiment agreement presents a ceiling
to inter-experiment agreement. 3) If x and y are
identically distributed, e.g., in a perfect replication,
ρxy = 1 and κx(X,Y ) = IRRX = IRRY . Thus,
when a low reliability experiment is replicated per-
fectly, κx will be as low, whereas normalized κx
will be 1. This explains why normalized κx is more
suitable for measuring experimental similarity.

In this section, we propose κx as a measure of
rater agreement between two replications, and nor-
malized κx is as an experimental similarity metric.
In the next section, we apply them in conjunction
with IRR to illustrate how we can gain deeper in-
sights into experiment reliabilities by triangulating
these measures.

4 Applying xRR to the IRep Dataset

As a standalone measure, IRR captures the reliabil-
ity of an experiment by encapsulating many of its
facets: class imbalance, item difficulty, guideline
clarity, rater qualification, task ambiguity, etc. As
such, it is difficult to compare the IRR of different
experiments, or to interpret their individual values,
because IRR is tangled with all the aforementioned
design parameters. For example, we cannot at-
tribute a low IRR to rater qualification without first
isolating other design parameters. This is the prob-
lem we try to solve with xRR by contextualizing
IRR with meaningful baselines via a replication.
We will demonstrate this by applying this tech-
nique to the IRep Dataset (Appendix A). We focus
on a subset of 5 emotions for illustration purposes,
with the rest of the reliability values provided in
Appendix B. In our analysis, IRR is measured with
Cohen’s (1960) kappa and xRR with κx. We will
refer to them interchangeably.

4.1 IRR Variability Across Emotions

First we illustrate in Fig. 2 that different emotions
within the same city can have very different IRR.
For instance, the labels awe and love in Mexico
City have an IRR of 0.1208 and 0.597 respectively
(Table 1). Awe and love are completely different

4Spearman’s correction can occasionally produce a corre-
lation above 1.0 (Muchinsky, 1996).

emotions with different levels of class imbalance
and ambiguity, and without controlling for these
differences, the gap in their reliabilities is not unex-
pected. That is exactly the problem about compar-
ing IRRs – such comparisons are not meaningful.
We need something directly comparable to awe in
order to interpret its low IRR. If we do not compare
emotions, and just consider awe using the Landis-
Koch scale, that would not be helpful either. We
would not be able to tell if its low IRR is a result
of poor guidelines, general ambiguity in emotion
detection, or ambiguity specific to awe. It’s more
meaningful to compare replications of awe itself.

Figure 2: Histograms of 31 emotion labels’ IRR in 3 cities.
The x-axis denotes buckets of IRR values. The y-axis denotes
the number of emotion labels in each of those buckets. There
is a lot of variation between emotion labels within each city.

Table 1: IRR values of 5 emotion labels in 3 cities.

4.2 IRR Variability Across Replications
While the aforementioned variation in IRR between
emotions is expected, IRR of the same emotion can
vary greatly between replications as well. Fig. 3
shows two contrasting examples. On the one hand,
the IRR of love is consistent across replications. On
the other hand, the IRR of contemplation varies a
lot. We know the IRR variation in contemplation is
strictly attributed to rater pool differences because
the samples, platforms and annotation templates
are the same across experiments. Such variation
in IRR will be missed entirely by sampling based
approaches for error-bars (e.g. standard error, boot-
strap), which assume a fixed rater population.

4.3 Cross-replication Rater Agreement
As shown, replication can facilitate comparisons of
IRR by producing meaningful baselines. However,
IRR is an internal property of a dataset, it does
not allow us to compare two datasets directly. To
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Figure 3: IRR values for label love (left) and contemplation
(right) across the 3 cities. There are different degrees of IRR
variability in the two emotion labels.

that end, we can apply κx to quantify the rater
agreement between two datasets, as IRR quantifies
the rater agreement within a dataset. Interestingly,
not only is κx useful for comparing two datasets,
but it also serves as another baseline for interpreting
their IRRs.

IRR is a step toward ensuring reproducibility, so
naturally we wonder how much of the observed
IRR is tied to the specific experiment and how
much of it generalizes? This is of particular con-
cern when raters are sampled in a clustered manner,
e.g., crowd workers from the same geographical
region, grad students sharing the same office. We
rarely make sure raters are diverse and represen-
tative of the larger population. High IRR can be
the result of a homogeneous rater group, limiting
the generality of the results. In the context of the
IRep dataset, that two cities having similar IRRs
does not imply their raters agree with each other at
a comparable level, or at all. We will demonstrate
this with two contrasting examples.

Figure 4: IRR values of sadness in Mexico City and Bu-
dapest and their κx value. Both cities have as much internal
agreement as cross-replication agreement.

Figure 5: IRR of contentment in Kuala Lumpur and Mexico
City and their κx. Both cities have high internal agreement,
but no discernible cross-replication agreement.

Mexico City and Budapest both have a moder-
ate IRR for sadness, 0.5147 and 0.5175 respec-
tively, and their κx is nearly the same at 0.4709
(Fig. 4). This gives us confidence that the high
IRR of sadness generalizes beyond the specific
rater pools. In contrast, on contentment Mexico
City and Kuala Lumpur have comparable levels of
IRR, 0.4494 and 0.6363 respectively, but their κx
is an abysmal -0.0344 5 (Fig. 5). In other words,
the rater agreement on contentment is limited to
within-pool observations only. This serves as an im-
portant reminder that IRR is a property of a specific
experimental setup and may or may not generalize
beyond that. κx allows us to ensure the internal
agreement has external validity.

4.4 Replication Similarity

κx is a step towards comparing two replications,
but it is not a good standalone measure of replica-
tion similarity. To do that, we must also account
for both replications’ internal agreements, e.g., via
normalized κx in Eq. 13. Fig. 6 shows an example.
Mexico City and Budapest have a low κx of 0.0817
on awe. On the surface, this low agreement may
seem attributable to differences between the rater
pools. However, there is a similarly low IRR in
either city: 0.1208 in Mexico City, and 0.117 in
Budapest. After accounting for IRR, normalized
κx is much higher at 0.6872 (Table 2), indicating a
decent replication similarity between the two cities.

Figure 6: IRR of awe in Mexico City and Budapest and their
xRR. The low xRR is primarily a reflection of their low IRRs.

Table 2: κx and normalized κx (in parentheses) of 5 emotion
labels in 3 replication pairs.

5Negative xRR value due to estimation error.
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4.5 Connection to ρxy
We apply Spearman’s correction for attenuation in
Eq. 12 to all 31 emotion labels in 3 replication
pairs. The resulting ρxy is plotted against the corre-
sponding normalized κx in Fig. 7. Both measures
are strongly correlated with a Pearson correlation
of 0.99. This justifies interpreting normalized κx
as a disattenuated correlation like ρxy.

Figure 7: Scatter plot of ρxy (y-axis) and normalized κx

(x-axis). Each dot is an emotion label in a pair of replications.

5 Measuring the Quality of a
Crowdsourced Dataset

The IRep dataset is replicated and is conducive to
xRR analysis. However, in practice most datasets
are not replicated. Is xRR still useful? We present
a specific use case of xRR in this section and argue
that it is worth replicating a crowdsourced dataset
in order to evaluate its quality.

5.1 Data Target
Given a set of items, it is possible that annotations
of the highest attainable quality still fail to meet the
Landis-Koch requirements. Task subjectivity and
class imbalance together impose a practical limit
on kappa (Bruckner and Yoder, 2006). In these
situations, the experimenter can forgo a data collec-
tion effort for reliability reasons. Alternatively, the
experimenter may believe that data of sufficiently
high quality can still have scientific merits, regard-
less of reliability. If so, what guidance can we use
to ensure the highest quality data, especially when
collecting data via crowdsourcing? This paper is
heavily motivated by this question.

xRR allows us to interpret IRR not on an abso-
lute scale, but against a replication, a reference of
sorts. By judging a crowdsourced dataset against a
reference, we can decide if its meets a certain qual-
ity bar, albeit a relative one. In the IRep dataset,

all replications are of equal importance. However,
in practice, we can often define a trusted source
as our target. This trusted source can consist of
linguists, medical experts, calibrated crowd work-
ers, or the experimenters themselves. They should
have enough expertise knowledge and an adequate
understanding of the task. The critical criterion
in choosing a target is its ability to remove com-
mon quality concerns such as rater qualification
and guideline effectiveness.

5.2 Internal Agreements

By replicating a random subset of a crowdsourced
dataset with trusted annotators,6 one can compare
the two IRRs and make sure they are at a simi-
lar level. If the crowd IRR is much higher, that
may be an indication of collusion, or a set of overly
simplistic guidelines that have deviated from the ex-
periment fidelity (Sameki et al., 2015). If the crowd
IRR is much lower, it may just be a reflection of
annotator diversity, or it can mean under-defined
guidelines, unequal annotator qualifications, etc.
Further investigation is needed to ensure the dis-
crepancy is reasonable and appropriate.

5.3 Mutual Agreement

Suppose the two IRRs are similar, that is not to say
that both datasets are similar. Both groups of an-
notators can have high internal agreement amongst
themselves, but the two groups can agree on differ-
ent sets of items. If our goal is to collect crowd-
sourced data that closely mirror the target, then we
have to measure their mutual agreement, in addi-
tion to comparing their internal agreements. Recall
from Section 3.5 that if an experiment is replicated
perfectly, κx should be identical to the two IRRs.
Or more concisely, normalized κx should be equal
to 1. Thus a high normalized κx can assure us that
the crowdsourced annotators are functioning as an
extension of the trusted annotators, based on which
we form our expectations.

5.4 Relation to Gold Data

At a glance, this approach seems similar to the
common practice of measuring the accuracy of
crowdsourced data against the ground truth (Resnik
et al., 2006; Hripcsak and Wilcox, 2002). How-
ever, they are actually fundamentally different ap-
proaches. κx is rooted in the reliability literature
that does not rely on the existence of a correct

62 or more ratings per item are needed to measure the IRR.
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answer. The authors argue this is an unrealistic
assumption for many crowdsourcing tasks, where
the input involves some subjective judgement. Ac-
curacy itself is also a flawed metric for annotations
data due to its inability to handle data uncertainty.
For instance, when the reliability of the gold data
is less than perfect, accuracy can never reach 1.0.
Furthermore, accuracy is not chance-corrected, so
it tends to inflate with class imbalance.

5.5 Extending an Existing Dataset

The aforementioned technique can also measure the
quality of a dataset extension. The main challenge
in extending an existing dataset is to ensure the new
data is consistent with the old. The state-of-the-art
method in computer vision is frequency matching
– ensuring the same proportion of yes/no votes in
each image class. Recht et al. (2019) extended
ImageNet7 using this technique, concluding there is
a 11% - 14% drop in accuracy across a broad range
of models. While frequency matching controls
the distribution of some statistics, the impact of
the new platform is uncontrolled for. Engstrom
et al. (2020) pointed out a bias in this sampling
technique. Overall, it is difficult to assess how well
we are extending a dataset. To that end, xRR can be
of help. A high normalized κx and a comparable
IRR in the new data can give us confidence in the
uniformity and continuity in the data collection.

6 Discussion

There has been a tectonic shift in the scope of and
methodologies for annotations data collection due
to the rise of crowdsourcing and machine learning.
In many of these tasks, a high reliability is often dif-
ficult to attain, even under favorable circumstances.
The rigid Landis-Koch scale has resulted in a de-
crease in the usage and reporting of IRR in most
widely used datasets and benchmarks. Instead of
abandoning IRR, we should adapt it to new ways
of measuring data quality. The xRR framework
presents a first-principled way of doing so. It is a
more empirical approach that utilizes a replication
as a reference point. It is based on two metrics –
κx for measuring cross-replication rater agreement
– and normalized κx for measuring replication sim-
ilarity.

We opensource a large-scale replication dataset
of facial expression judgements analyzed with the
proposed framework. We show this framework can

7http://www.image-net.org/

be used to guide our crowdsourcing data collection
efforts. This is the beginning of a long line of
inquiry. We outline future work and limitations
below:

Confidence intervals for κx Confidence inter-
vals for κx and normalized κx are required for hy-
pothesis testing. Though one can use the block-
bootstrap for an empirical estimate, large sample
behavior of these metrics needs to be studied.

Sensitivity of κx with high class-imbalance
The xRR framework sidesteps the effect of class-
imbalance by comparing replications on the same
item set. Further analysis needs to confirm the
sensitivity of κx metrics in high class-imbalance.

Optimization of κx computation Our method
requires constructing many pairs of observations:
n2RS. This may get prohibitively expensive, when
the number of items is large. Using algebraic sim-
plification and dynamic programming, this can be
made much more efficient.

Alternative normalizations of κx We provided
one particular normalization technique, but it may
not suit all applications. For example, when com-
paring crowd annotations to expert annotations, one
can consider, κx/IRRexpert.

Alternative xRR coefficients Our proposed
xRR coefficient, κx, is based on Cohen’s
(1960) kappa for its assumption about rater non-
interchangeability. It may be useful to consider
Krippendorff’s alpha and other agreement statistics
as alternatives for other assumptions and statistical
characteristics.

We hope this paper and dataset will spark re-
search on these questions and increase reporting of
reliability measures for human annotated data.
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Appendices
A The IRep Dataset: Facial Expressions

Replication Dataset

The IRep Dataset is a human annotated dataset
with a list of 30 emotion labels from a set of emo-
tion classes defined in Cowen and Keltner (2017)
plus one additional label ‘unsure’. During the data
collection process, raters used the set of 30 facial
expression labels to annotate their perception of the
facial expression present in a video. As the purpose
of this dataset is to illustrate how replications of hu-
man labeling experiments can be used to determine
the overall quality of the resulting annotations, we
have omitted the reference to the actual video con-
tent. The annotated videos are thus referred to as
‘items’ with a set of indices (item IDs), e.g. item 1,
item 2, etc, stored in a CSV format. Raters are
referred to as Rater 1 or Rater 2 across all rater
pools. They are just placeholders and do not imply
particular individuals (Table 3).

The dataset contains 3,939,418 annota-
tions on 38,499 unique items. The size
of the dataset is 15MB, and the dataset is
released on GitHub: https://github.
com/google-research-datasets/
replication-dataset. To produce the repli-
cations for this labeling experiment, we used rater
pools in three different cities - Budapest, Kuala
Lumpur and Mexico City - on the same labeling
platform. In Table 4 we show the distribution of
items and ratings across the different rater pools.
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B IRR, xRR, and normalized xRR values
for the IRep dataset

In Table 5 we report the IRR, κx, and normalized
κx obtained from the entire IRep dataset.
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Table 3: Schema of the CSV file: Each line in the IRep csv file corresponds to one item ID annotated by Rater 1 and Rater 2
with some of the emotion labels (Label 1 . . . Label 30) annotated on the corresponding. There is one additional column for
“unsure” indicating when it was not possible to determine which expression was expressed.

Table 4: Distribution of items and ratings across different rater pools, where every item is annotated by a maximum of 2 raters
from each pool. Here we show what fraction of the unique items were annotated by one or two raters in each rating pool.

Table 5: The fist column shows the 30 emotion labels + “unsure” in the IRep dataset. The next 3 columns are their IRR measured
by Cohen’s (1960) kappa in Mexico City (MC), Kuala Lumpur (KL), and Budapest (Bud). The next 3 columns are the κx in the
3 pairs of cities, and the last 3 columns are the corresponding normalized κx.


