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Abstract

Humans create things for a reason. Ancient
people created spears for hunting, knives for
cutting meat, pots for preparing food, etc. The
prototypical function of a physical artifact is
a kind of commonsense knowledge that we
rely on to understand natural language. For
example, if someone says “She borrowed the
book” then you would assume that she intends
to read the book, or if someone asks “Can
I use your knife?” then you would assume
that they need to cut something. In this pa-
per, we introduce a new NLP task of learning
the prototypical uses for human-made physical
objects. We use frames from FrameNet to rep-
resent a set of common functions for objects,
and describe a manually annotated data set of
physical objects labeled with their prototypi-
cal function. We also present experimental re-
sults for this task, including BERT-based mod-
els that use language model predictions from
masked patterns as well as artifact sense def-
initions from WordNet and frame definitions
from FrameNet.

1 Introduction

Humans are a creative species. New objects are
invented by people every day, and most are cre-
ated for a reason. Knives were created for cutting,
bicycles were created for transportation, and tele-
phones were created for communication. Some
objects can perform multiple functions (e.g., smart
phones) and humans are also creative at finding
secondary uses for objects (e.g., heavy objects are
often used as makeshift paperweights). But when
we mention physical objects in conversation or in
writing, people generally infer that the object will
be used in the most prototypical way, unless they
are told otherwise.

The prototypical function of human-made physi-
cal artifacts is a kind of commonsense knowledge

that often plays a role in natural language under-
standing. Consider the following examples of in-
ferences that arise from physical artifacts.

Example 1
a) He killed the mayor with a gun.
b) He killed the mayor with a knife.
c) He killed the mayor with a bomb.

Example 1 describes a killing with three differ-
ent types of instruments. Most readers would as-
sume that a) describes a shooting, b) describes a
stabbing, and c) describes an explosion. But ex-
actly how each instrument was used is implicit.
We make different inferences about how they were
used based on our knowledge of the objects.

Example 2
a) She finished the cigarette.
b) She finished the puzzle.
c) She finished the movie.

Example 2 illustrates how we infer different ac-
tions based on the object when the main action is
elided (i.e., “finished” means that some action has
ended but the action itself is implicit). Most people
would assume that the cigarette was smoked, the
puzzle was solved, and the movie was watched.

Example 3
a) She put the cake in the box.
b) She put the cake in the oven.
c) She put the cake in the refrigerator.

Example 3 illustrates second-order inferences
that can follow from a sentence. The verb “put”
means that the cake was placed somewhere, but the
object of “in” leads to different inferences about
intention. Putting a cake in an oven implies that it
will be baked, but putting a cake in a refrigerator
implies that it will be cooled.
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Example 4
a) He ordered a taxi.
b) He ordered a pizza.
c) He ordered a t-shirt.

Example 4 reveals inferences about motivations
and future plans. If someone orders a taxi then we
infer that they need transportation, if they order a
pizza then we expect they will eat it, and if they
order a t-shirt then we assume it will be worn.

We believe that it is essential for NLP systems to
“read between the lines” and make the same types
of inferences that people do when reading these
sentences. The goal of our research is to explore
methods for learning the prototypical functions of
human-made physical artifacts so that future NLP
systems can benefit from this knowledge. First,
we define a new NLP task to associate physical
objects with frames from FrameNet as a canonical
representation for their prototypical function. We
introduce a gold standard data set of 938 physical
artifacts that have each been labeled with a frame
that represents its prototypical function based on
human judgements. Second, we evaluate baseline
models to assess how well existing resources and
simple methods perform on this task. Third, we
present transformer-based models for this task that
exploit both masked sentence patterns and the def-
initions of physical artifacts and frames. Experi-
ments show that our best model yields substantially
better results than the baseline methods.

2 Related Work

Researchers have known for a long time that com-
monsense knowledge is essential for natural lan-
guage understanding (Charniak, 1972; Schank and
Abelson, 1977). Some of this work specifically
argued that commonsense knowledge about physi-
cal objects, including functional knowledge, plays
an important role in narrative text understanding
(Burstein, 1979; Lehnert and Burstein, 1979).

These observations have led to considerable
work toward constructing commonsense knowl-
edge repositories. The Cyc project (Lenat, 1995)
built a large ontology of commonsense concepts
and facts over many years. More recently, Con-
ceptNet (Speer et al., 2017) captures commonsense
knowledge in the form of predefined relations ex-
pressed in natural language words and phrases.
It was built from Open Mind Common Sense, a
crowd-sourced knowledge project (Singh, 2002),

and later enhanced with other sources such as Wik-
tionary and WordNet (Miller, 1995).

Within the NLP community, a variety of recent
projects have focused on trying to acquire different
types of commonsense knowledge, such as Forbes
and Choi (2017); Collell et al. (2018); Rashkin et al.
(2018); Yang et al. (2018). Sap et al. (2019) pre-
sented a crowd-sourced commonsense reasoning
data set called ATOMIC that focuses on inferential
knowledge related to events, which is organized
as if-then relations. Bosselut et al. (2019) later
proposed COMET, a transformer-based framework
for automatic construction of commonsense knowl-
edge bases that was trained from ATOMIC and
ConceptNet. Both ConceptNet and COMET in-
clude a UsedFor relation that is relevant to our task,
and we evaluate their performance on our data set
in Section 6.

Of relevance to our work, Jiang and Riloff (2018)
learned the prototypical “functions” of locations by
identifying activities that represent a prototypical
reason why people go to a location. For example,
people go to restaurants to eat, airports to catch a
flight, and churches to pray. They referred to the as-
sociated activity as a prototypical goal activity and
presented a semi-supervised method to iteratively
learn the goal activities.

Our work is also related to frame semantics,
which studies how we associate words and phrases
with conceptual structures called frames (Fillmore,
1976), which characterize an abstract scene or sit-
uation. The Berkeley FrameNet project (Baker
et al., 1998; Ruppenhofer et al., 2016) provides an
online lexical database for frame semantics and a
corpus of annotated documents. There has been
substantial work on frame semantic parsing (e.g.,
Das et al., 2014; Peng et al., 2018), which is the task
of automatically extracting frame structures from
sentences. Several efforts have enhanced FrameNet
by mapping it to other lexicons, such as WordNet,
PropBank and VerbNet (Shi and Mihalcea, 2005;
Palmer, 2009; Ferrández et al., 2010). Pavlick et al.
(2015) increased the lexical coverage of FrameNet
through automatic paraphrasing and manual veri-
fication. Yatskar et al. (2016) introduced situation
recognition, which is the problem of producing a
concise summary of the situation that an image
depicts. Similar to our work, they selected a sub-
set of frames from FrameNet to represent possible
situations depicted in an image. Our work uses a
subset of frames from FrameNet to represent the
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prototypical functions for human-made physical
artifacts.

3 Motivation

Our work was motivated by observing sentences
that mention physical objects and realizing that we
often infer a richer meaning for these sentences
than what they explicitly state. We came to ap-
preciate that the prototypical function of an object
was the basis for many of our inferences, but we
also recognized that not all objects have a prototyp-
ical function. In particular, naturally occurring ob-
jects rarely have a prototypical function (e.g., rock,
snake). In contrast, human-made physical objects
usually do have a prototypical function because
they were created for a purpose. Consequently,
we limited the scope of our work to human-made
artifacts. Of course, some objects are commonly
used for multiple purposes, but in most cases there
seems to be one use that is dominant, so for the
sake of tractability we decided to assign a single
(most) prototypical function to each artifact for this
research. We had initially planned to include food
items, but many foods are also naturally occurring
plants or animals (e.g., watermelon, shrimp) so we
omitted them. It may be worth re-examining these
limitations in future work.

Another key decision that we had to make was
how to represent the prototypical functions. Some
recent work on commonsense knowledge acquisi-
tion has opted to generate words and phrases as ex-
pressions of a relation, such as ConceptNet (Speer
et al., 2017) and ATOMIC (Sap et al., 2019). As
an example, ConceptNet includes a relation called
UsedFor that lists the following phrases as uses
for a knife: stabbing, butter, cutting food, carving
wood, slicing, boning.

We chose to adopt a different approach. First,
we wanted a canonical representation for each type
of function that represents a general concept, rather
than a list of phrases. This approach naturally cap-
tures clusters of objects (i.e., those assigned to the
same frame) and avoids evaluation issues arising
from differing phrases that may be learned for sim-
ilar objects (e.g., cut vs. carve vs. slice). Second,
we did not want to reinvent the wheel and develop a
new taxonomy of action types ourselves. For these
reasons, we chose to use the semantic frames in
FrameNet as a canonical representation for our pro-
totypical functions. Although FrameNet is not per-
fect nor complete, it contains many of the actions

that we needed. Overall, it serves as an appropriate
platform for our work.

This approach also opens up new avenues for
research down the road. Although it is beyond the
scope of this paper, we can imagine that sentences
could trigger frames based on inferences originat-
ing from physical objects during semantic parsing.
For example, “She used a pencil” should arguably
be represented as a writing (Text Creation) event.
However we leave that challenge for future work.
This paper focuses on the specific task of learning
the prototypical functions for human-made physi-
cal artifacts using a subset of FrameNet frames as
the set of function types.

4 Creating a Gold Standard Data Set

4.1 Artifact Selection

As explained in Section 3, our work focuses on
artifacts that are 1) physical objects and 2) created
by people. To acquire a list of objects that meet
these criteria, we extracted all terms in synsets
that are descendants of the artifact.n.01 synset1

in WordNet (Miller, 1995). We then removed a
term from the list if the artifact sense was not its
first sense definition.2 This process produced 8,822
entries, many of which met our criteria except that
the list still contained a lot of abstract terms (e.g.,
vocabulary, modernism).

To address this issue, we turned to Brysbaert et al.
(2014) which presents concreteness ratings based
on crowd sourcing for 37,058 English words and
2,896 two-word expressions. They used a 5-point
rating scale ranging from abstract to concrete, so
we extracted words with the part-of-speech “noun”
and a rating ≥ 4.5, which produced a list of 3,462
concrete nouns. We then intersected this list with
the terms extracted from WordNet, producing a set
of 1,017 concrete physical artifacts.

4.2 Frame Selection

FrameNet 1.7 contains 1,221 frame definitions.
However, not all of them are suitable for repre-
senting typical uses of physical artifacts, which
should be actions that involve a physical object.
For example, some frames are intended for abstract
nominal categories (e.g., Calendric unit for tempo-
ral terms), high-level abstractions (e.g., Intention-
ally act which sits above more specific frames),

1Except we removed synsets for buildings and roads.
2Because the first sense definition in WordNet usually,

though not always, represents the most common meaning.
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Artifact Function Frames

Wearing (145) Light movement (16) Hunting (8)
Containing (76) Building (15) Cause fluidic motion (6)
Self motion (69) Dimension (15) Eclipse (5)
Protecting (52) Removing (14) Inhibit movement (5)
Supporting (49) Closure (13) Performing arts (5)
Cause harm (48) Competition (13) Setting fire (5)
Perception experience (44) Create representation (13) Cause to fragment (4)
Make noise (37) Bringing (12) Education teaching (3)
Cause motion (24) Sleep (12) Excreting (3)
Cutting (19) Text creation (12) Cause to be dry (2)
Cooking creation (18) Attaching (11) Agriculture (1)
Ingestion (18) Contacting (10) Commercial transaction (1)
Reading activity (17) Cure (9) Residence (1)
Grooming (16) Cause temperature change (8) Rite (1)

Table 1: Frames for prototypical functions of physical artifacts. The frequency with which they occur in our gold
standard data set is shown in parentheses.

and events or states that are not typically associ-
ated with physical artifacts (e.g., Judgement).

To focus on an appropriate subset of frames, we
manually selected 42 frames in FrameNet that rep-
resent actions that are common functions of human-
made physical artifacts. We intentionally didn’t se-
lect frames that categorize nouns in a general way.
For example, FrameNet contains an Artifact frame
that includes oven, phone and wheel as its lexical
units. This frame only serves to identify terms that
represent physical objects, and we wanted frames
that represent a function. The list of frames that we
used is shown in Table 1 along with the frequency
with which they occur in our gold standard data set,
as described in the next section.

4.3 Human Annotation
To create a gold standard data set with frame assign-
ments for the physical artifacts, we recruited 3 hu-
man annotators. We presented the annotators with
the WordNet definition for each term and asked
them to select one frame that captures the most pro-
totypical use for the artifact. In addition to the 42
function frames, we also gave them a None option if
none of the frames was a good match, and a Not an
artifact option if the term was not in fact a human-
made physical artifact (because our list extracted
from WordNet and Brysbaert et al. (2014) was not
perfect). To prepare the annotators, we asked them
to read the definitions of all the frames beforehand
and we gave them detailed annotation guidelines
to familiarize them with the task. We randomly

Frame Artifact Examples

Wearing hat, shirt
Containing basket, luggage
Self motion bicycle, yacht
Protecting armor, helmet
Supporting chair, scaffolding
Cause harm cannon, spear
Perception exp earphone, eyeglass
Make noise bell, violin
Cause motion engine, propeller
Cutting knife, scissors

Table 2: Examples of artifacts for the top 10 frames.

sorted the artifacts before presenting them to the
annotators.

When the annotations were finished, we mea-
sured the pair-wise inter-annotator agreement
(IAA) using Cohen’s kappa. The IAA scores were
0.75, 0.72 and 0.69, with an average of κ = 0.72.
Given the difficulty of this task (44 possible labels),
we felt that the human agreement was relatively
good.

Finally, we created the gold standard data set3

by using the majority label from the three human
annotators. There were 72 artifacts with no major-
ity label (i.e., the annotators assigned 3 different
labels), and 7 terms with the majority label Not an

3The data set is available at: https://github.com/
tyjiangU/physical_artifacts_function

https://github.com/tyjiangU/physical_artifacts_function
https://github.com/tyjiangU/physical_artifacts_function
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artifact, so we discarded these 79 terms. Conse-
quently, our gold standard data set contains 938
physical artifacts that are each labeled with a frame
representing its most prototypical function, or la-
beled as None when none of our 42 frames was
appropriate.4 Table 2 shows the 10 most frequently
assigned frames and a few examples of artifacts
assigned to each frame.

5 Methods

We explored several approaches for learning the
prototypical functions of human-made physical ar-
tifacts. To assess the difficulty of this task, we first
present baseline models that 1) exploit information
extracted from existing knowledge bases and 2) use
co-occurrence information extracted from a text
corpus. Next, we explore methods that use large
neural language models. We describe a method that
uses masked pattern predictions, and then present
models that also incorporate artifact sense defini-
tions and frame definitions.

5.1 Notation
We model our task as a multiclass classification
problem. The artifacts and frames are denoted
as ai (i = 1..m) and fj (j = 1..n). The task
is to select the fj that represents the most pro-
totypical use for an artifact ai. We will denote
the set of lexical units for fj in FrameNet as
LUj = {lk|lk evokes fj}.5

5.2 ConceptNet and COMET Baselines
ConceptNet (Speer et al., 2017) is a well-known
commonsense knowledge resource that contains a
UsedFor relation, which is potentially relevant to
our task (though it should be noted that an object
can be used in ways that are not prototypical, so
our task of identifying the prototypical use is not
exactly the same). COMET (Bosselut et al., 2019)
is a framework that was trained on ConceptNet
with the goal of improving upon its coverage. Our
first experiments apply these resources to see how
effective they can be for this task.

For each artifact in ConceptNet, we extract the
first word from each phrase listed under its UsedFor
relation. These are typically verbs that describe an
action although sometimes they are nouns. For
COMET, we use its beam-10 setting to generate 10
phrases of the UsedFor relation for each artifact.

483 terms were assigned to the None category.
5We merged lexical units from similar frames in FrameNet.

See details in Appendix A.

use N to V

dobj

xcomp

V N

dobj

V ADP N

prep pobj

Figure 1: Dependency patterns used for co-occurrence.

Next, we want to use the extracted words to rank
candidate frames. FrameNet defines lexical units
that can evoke a specific frame. For example, read
can trigger the Reading activity frame. Suppose
our artifact is a book and one of the extracted words
is read, then Reading activity is a candidate frame.
We then score each frame based on the overlap
between the words extracted from ConceptNet or
COMET and the frame’s lexical units. Specifically,
we define freq(ai, w) as the count of a word w
occurring in the UsedFor relation of artifact ai, and
I(w, fj) = 1 if w ∈ LU j otherwise 0. Then our
score for fj is defined as:

Scn(ai, fj) =
∑
wεW

freq(ai, w) ∗ I(w, fj), (1)

where W is the set of extracted words. Fi-
nally, for each ai, we select fj′ such that j′ =
argmaxj Scn(ai, fj) as its prototypical function.
If Scn(ai, f ′j) equals zero, then we predict None.

5.3 Co-occurrence Baseline
An intuitive idea for potentially learning common
functions associated with physical artifacts is to ex-
tract verbs that frequently co-occur with the artifact
in a large text corpus. We assume that if a verb fre-
quently co-occurs with an artifact, then the frames
associated with the verb are plausible candidates
for the artifact’s prototypical function.

For this approach, we created 3 dependency
parse patterns to extract <noun, verb> pairs, as
depicted in Figure 1. The physical object is the
noun represented by N. The activity is a verb (with
an appended particle if one exists) represented by V.
We included the verb-dobj pattern because some ar-
tifacts and their functions are expressed in this way,
such as “read book” or “wear jacket”. We used
spaCy6 to parse the whole English Wikipedia cor-
pus (as of Feb 20, 2020) and extracted over 3.8 mil-
lion <N, V> pairs (305,055 distinct pairs) for our
938 artifacts. We define the function freq(ai, v)
as the co-occurrence count of artifact ai and verb
v in the corpus. Then we apply the same method
described in Section 5.2 to assign a score to each

6https://spacy.io/
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[CLS] A knife can be used to . [SEP][MASK]

[CLS] If I had a knife , I could . [SEP][MASK]

Figure 2: Overview of the PFmask model. Each pink block that is fed into BERT represents a sentence template
for a given artifact.

frame based on the extracted verbs and select the
best frame.

5.4 Masked Language Model (MLM)
Baseline

Co-occurrence in text is a strong signal of correla-
tion. But an activity that is highly correlated with
an artifact may not be its prototypical use. For ex-
ample, cut frequently co-occurs with rope, but the
purpose of a rope is not to be cut – its prototypical
use is for attaching things.

Recent work has successfully used masked
language models to learn commonsense knowledge
(Davison et al., 2019), so we explored whether
masked language models could be beneficial for
our task. We use the BERT (Devlin et al., 2019)
masked language model to get prediction scores
for every (ai, lk) pair, where ai is one of our
physical artifacts and lk is a lexical unit linked
to one of our 42 candidate frames. We defined
6 sentence templates that represent expressions
describing what an object is used for, which are
shown below. The first blank space is for artifact
ai and the second blank space is for action lk.

(1) can be used to .
(2) I used to .
(3) can be used for .
(4) I used for .
(5) The purpose of is to .
(6) If I had , I could .

Next, we produced a probability distribution
over all of the lexical units based on the second
blank position. Specifically, for the t-th sentence
template st, we obtain Pr(lk|st, ai) by masking
only the second blank space (ai is inserted into the
first blank) and we obtain Pr(lk|st) by masking
both blank space. Then we define the score of lk
as the typical use of artifact ai based on the t-th

template as:

U(ai, lk, st) = logPr(lk|st, ai)− logPr(lk|st).
(2)

The score U(ai, lk) using all templates is computed
as: U(ai, lk) =

1
t

∑
t U(ai, lk, st).

Finally, we define the score for fj being the pro-
totypical function for ai as:

Smlm(ai, fj) =
∑

lk∈LUj

U(ai, lk). (3)

We select fj′ where j′ = argmaxj Smlm(ai, fj)
as the best frame. If Smlm(ai, f ′j) ≤ 0, we predict
None.

5.5 Learning from Masked Patterns

Our MLM baseline uses the discrete output of the
masked language model (i.e., the prediction to-
kens from the vocabulary and their scores). In
order to take advantage of a language model’s fine-
tuning capability, we use the same architecture as
described in Section 5.4, except that instead of us-
ing the predicted lexical units and their probability
Pr(lk|st, ai), we retrieve the last hidden state vec-
tor for the [MASK] token as output. Since there
are 6 masked templates, we have 6 output vectors
for each artifact ai. We compute the average of
these vectors and pass it through a linear layer and
a softmax layer to produce a probability distribu-
tion over all candidate frames plus None. Figure
2 shows the overview of this architecture, which
we will call the PFmask model. We will refer to the
final score for artifact ai with respect to frame fj
as Smask(ai, fj). The loss function is defined as:

L = −
n∑
i=1

logSmask(ai, fj∗), (4)

where fj∗ is the gold label for ai.
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Figure 3: Overview of the PFdef model. Each green block that is fed into BERT represents an artifact and one of
the candidate frames.

5.6 Learning from Definitions

The challenge for our task is obtaining informa-
tion about the intended function of a physical ar-
tifact. We observed that this information is often
described in the dictionary definition of an arti-
fact, although it can be expressed in many different
ways. For example, the first sense definition in
WordNet for knife is “edge tool used as a cutting
instrument...”, and for bus it is “a vehicle carrying
many passengers...”. The definition often provides
a short and precise sentence that describes what the
artifact is as well as what it is typically used for.

FrameNet also provides a definition for each
frame. For example, the definition of the Cutting
frame is “An Agent cuts a Item into Pieces using
an Instrument”. Jiang and Riloff (2021) exploited
both frame and lexical unit definitions for the frame
identification task in a model that assesses the se-
mantic coherence between the meaning of a target
word in a sentence and a candidate frame. Simi-
larly, we hypothesized that a model could poten-
tially learn the semantic relatedness between the
definitions of a physical artifact and the frame that
describes its typical function.

To investigate this idea, we used the BERT
model (Devlin et al., 2019) as the base of our ar-
chitecture and fine-tuned BERT for our task using
both dictionary definitions of artifacts and frame
definitions from FrameNet. Figure 3 shows the
overview of this architecture, which we call the
PFdef model. Each large green block represents an
artifact ai paired with one of the candidate frames.
We encode WordNet’s definition of the artifact as
the first input sequence and the frame’s definition
from FrameNet as the second input sequence to
BERT. We use the last hidden vector of the [CLS]
token as the output. For each artifact ai, we have
n + 1 such pairs where n is the number of candi-
date frames and 1 refers to the None option. On
top of BERT’s output, we apply a linear and a
softmax layer to produce a probability distribution

+

Linear

ℒ

Concat

...

...

Figure 4: Overview of the PFdef+mask model.

over all candidate frames. We will refer to the fi-
nal score for artifact ai with respect to frame fj as
Sdef (ai, fj). The loss function is defined as:

L = −
n∑
i=1

logSdef (ai, fj∗), (5)

where fj∗ is the gold label for ai.

5.7 Learning from Definitions plus Masked
Patterns

Our final model combines the idea of using both
definitions and masked sentence patterns. Figure
4 depicts the combined Pdef+mask model. The left
part is the PFdef model which estimates the relat-
edness between artifact and frame definitions. Its
output is a matrix of dimension (# of frames, hidden
vector size). The right part is the PFmask model,
which predicts the most probable frame for an arti-
fact using our masked patterns. It produces a single
output vector of dimension (1, hidden vector size).
We broadcast it across the rows to have the same
dimension as (# of frames, hidden vector size) and
then we concatenate the matrices of both models
to pass through a linear layer before computing the
loss. The model uses fine-tuning to jointly learn all
parameters so that information from both models
will optimally contribute to the final prediction.
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Model Acc Pre Rec F1

ConceptNet 17.5 33.6 13.5 16.4
Co-occurrence 31.9 24.1 23.9 19.9
COMET 30.7 29.7 35.6 28.2
MLM 42.8 29.5 33.8 28.2

PFmask 58.5 35.7 36.5 35.4
PFdef 74.7 63.5 57.6 59.3
PFdef+mask 76.8 65.2 61.1 62.4

Table 3: Experimental results for different models.

6 Evaluation

6.1 Experiment Settings

Our gold standard data set contains 938 artifacts
that are each paired with one frame that represents
its most prototypical use. We set aside 20% (188)
of the data as a development set and used 80%
(750) as the test set. We evaluated all of the learn-
ing models by performing 5-fold cross validation
on the test set. We use the pre-trained uncased
BERT-base model with the same settings as Devlin
et al. (2019) and fine-tuned BERT on the training
data. We set the max sequence length as 200, batch
size as 1, learning rate started at 2e-5, and train
for 10 epochs. All reported results are averaged
over 3 runs. We report overall accuracy as well
as precision, recall and F1 scores macro-averaged
over the 43 class labels (42 frames + None).

6.2 Results

The first four rows in Table 3 show the performance
of our four baseline methods. ConceptNet and
the Co-occurrence model produced the lowest F1
scores. We see that ConceptNet has better precision
but low recall because only about 1/3 of the arti-
facts in our data set has a UsedFor relation defined
in ConceptNet. We also tried adding the CapableOf
relation, which is defined as what an item can do,
but it is even more sparse than UsedFor and combin-
ing both relations only marginally increased recall.
The performance of COMET shows that COMET
does indeed improve upon the coverage of Con-
ceptNet, although it sacrifices some precision. We
also tried using the beam-5 and greedy settings
of COMET, which produced higher precision but
lower recall and F1 scores.

Compared to COMET, the Co-occurrence base-
line has higher accuracy but a much lower F1 score.
The explanation is that the Co-occurrence model

Figure 5: F1 scores for high & low frequency frames.

performs much better on frames that are associ-
ated with artifacts that are frequently mentioned
in the corpus than for frames associated with less
frequent artifacts. This is intuitive because, in gen-
eral, we expect to extract a more representative
sample of activities when we have more data. This
phenomenon (accuracy much higher than F1) can
also be observed in the MLM model which uses a
pre-trained language model that learns from large
corpora, so it is not surprising that Co-occurrence
and the MLM model behave similarly. In contrast,
ConceptNet and COMET behave more consistently
across the set of frames.

The bottom section of Table 3 shows the results
for our new models, which were trained specifically
for this task. The PFmask model achieves 58.5%
accuracy and a 35.4% F1 score, which outperforms
all of the baselines. The PFdef model performs
substantially better, achieving 74.7% accuracy and
a 59.3% F1 score. This result demonstrates that
the definitions of the artifacts and the frames pro-
vide valuable information that a learner can benefit
from. The last row shows the performance of the
combined model, which performed better than the
individual models. This model saw additional gains
in both precision and recall, increasing the accu-
racy from 74.7% to 76.8% and the F1 score from
59.3% to 62.4%.

6.3 Analysis

To understand the degree to which the number of
training instances for each frame correlated with
performance, we divided the frames into two sets:
high frequency frames assigned to ≥ 15 artifacts
and low frequency frames assigned to < 15 arti-
facts. The results are shown in Figure 5 with the
F1 scores from the PFdef+mask model displayed
on the Y-axis. We conclude that frames with more
training instances generally showed better perfor-
mance, so our model would likely further improve
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ID Artifact PFmask PFdef
MASK 3 DEF 3 1 scissors Cutting Cutting
MASK 3 DEF 7 2 hydrant Cause fluidic motion Cause temperature change
MASK 7 DEF 3 3 bed Supporting Sleep
MASK 7 DEF 3 4 helmet Wearing Protecting
MASK 7 DEF 7 5 snowplow Hunting Self Motion

Table 4: Sample output of PFdef and PFmask models. The correct predictions are in bold.

given more training data.
Table 4 shows some examples of output from the

PFmask and PFdef models to compare their behav-
ior. The correct predictions appear in bold. Both
models are correct for example 1. For example 2,
only the PFmask model is right, which indicates
that the masked pattern can be more useful than the
definition sometimes. For examples 3 and 4, PFdef
was correct and PFmask was wrong. The PFmask
model sometimes generates frames representing
functions that are true but tangential. For exam-
ple, beds do support us and helmets are worn, but
these functions do not sufficiently characterize the
objects (e.g., chairs also support us but are not typ-
ically used for sleeping, and jewelry is also worn
but not used for protection). For example 5, both
models are wrong – the correct frame is Removing.
Though both are wrong, the PFdef model produces
a more reasonable answer than the PFmask model.7

We also observed that the MLM baseline some-
times produces seemingly random answers that are
hard to explain.

Finally, we investigated the 83 instances that
were labeled as None to see what kind of artifacts
fell into this category. The biggest cluster of related
artifacts were 17 types of fabric, such as linen, silk
and canvas. FrameNet does not include a frame for
materials of this kind, probably because they are
an ingredient for making clothes rather than tools
themselves. Artifacts like toy were also labeled as
None presumably because toys are used in a gen-
eral way (for play). This category also included
some artifacts not tied to a single prototypical func-
tion but commonly used for many purposes (e.g.,
computer, laptop).

7 Conclusion

We introduced the new task of learning prototypical
functions for human-made physical artifacts, and

7In fact, snowplow can also refer to a skiing action, al-
though WordNet does not contain that word sense.

used a subset of frames from FrameNet to represent
the set of common functions. We also presented
a manually annotated data set of 938 physical ar-
tifacts for this task. Our experiments showed that
a transformer-based model using both artifact and
frame definitions as well as masked pattern pre-
dictions outperforms several baseline methods. In
future work, we hope to show the value of func-
tional knowledge about objects for sentence-level
understanding tasks as well as narrative document
understanding.
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Óscar Ferrández, Michael Ellsworth, Rafael Muñoz,
and Collin F. Baker. 2010. Aligning FrameNet and
WordNet based on semantic neighborhoods. In Pro-
ceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC 10).

Charles J. Fillmore. 1976. Frame semantics and the
nature of language. In Annals of the New York
Academy of Sciences: Conference on the origin and
development of language and speech, volume 280
(1), pages 20–32.

Maxwell Forbes and Yejin Choi. 2017. Verb physics:
Relative physical knowledge of actions and ob-
jects. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL
2017).

Tianyu Jiang and Ellen Riloff. 2018. Learning proto-
typical goal activities for locations. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL 2018).

Tianyu Jiang and Ellen Riloff. 2021. Exploiting Defi-
nitions for Frame Identification. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics (EACL
2021).

Wendy G. Lehnert and Mark H. Burstein. 1979. The
Role of Object Primitives in Natural Language Pro-
cessing. In Proceedings of the 6th International
Joint Conference on Artificial Intelligence (IJCAI
1979).

Douglas B. Lenat. 1995. Cyc: A large-scale investment
in knowledge infrastructure. Communications of the
ACM, 38(11):33–38.

George A. Miller. 1995. Wordnet: a lexical
database for english. Communications of the ACM,
38(11):39–41.

Martha Palmer. 2009. Semlink: Linking propbank,
verbnet and framenet. In Proceedings of the gen-
erative lexicon conference, pages 9–15. GenLex-09,
Pisa, Italy.

Ellie Pavlick, Travis Wolfe, Pushpendre Rastogi,
Chris Callison-Burch, Mark Dredze, and Benjamin
Van Durme. 2015. FrameNet+: Fast paraphras-
tic tripling of FrameNet. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2015).

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL 2018).

Hannah Rashkin, Maarten Sap, Emily Allaway,
Noah A. Smith, and Yejin Choi. 2018. Event2Mind:
Commonsense inference on events, intents, and reac-
tions. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (ACL
2018).

Josef Ruppenhofer, Michael Ellsworth, Myriam R. L.
Petruck, Christopher R. Johnson, Collin F. Baker,
and Jan Scheffczyk. 2016. FrameNet II: Extended
theory and practice.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI 2019).

Roger C. Schank and Robert P. Abelson. 1977. Scripts,
Plans, Goals and Understanding. Lawrence Erl-
baum Associates, Hillsdale, New Jersey.

Lei Shi and Rada Mihalcea. 2005. Putting pieces to-
gether: Combining framenet, verbnet and wordnet
for robust semantic parsing. In International con-
ference on intelligent text processing and computa-
tional linguistics.

Push Singh. 2002. The public acquisition of common-
sense knowledge. In Proceedings of AAAI Spring
Symposium: Acquiring (and Using) Linguistic (and
World) Knowledge for Information Access.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI 2017).

Yiben Yang, Larry Birnbaum, Ji-Ping Wang, and Doug
Downey. 2018. Extracting Commonsense Proper-
ties from Embeddings with Limited Human Guid-
ance. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (ACL
2018).

https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.lrec-conf.org/proceedings/lrec2010/pdf/636_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/636_Paper.pdf
https://doi.org/10.18653/v1/P17-1025
https://doi.org/10.18653/v1/P17-1025
https://doi.org/10.18653/v1/P17-1025
https://doi.org/10.18653/v1/P18-1120
https://doi.org/10.18653/v1/P18-1120
https://www.aclweb.org/anthology/2021.eacl-main.206
https://www.aclweb.org/anthology/2021.eacl-main.206
https://doi.org/10.3115/v1/P15-2067
https://doi.org/10.3115/v1/P15-2067
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/P18-1043
https://doi.org/10.18653/v1/P18-1043
https://doi.org/10.18653/v1/P18-1043


6951

Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi.
2016. Situation recognition: Visual semantic role
labeling for image understanding. In Proceedings of
the IEEE conference on computer vision and pattern
recognition.

A Appendix

When selecting frames to represent the prototypi-
cal functions of physical artifacts, we observed that
some frames in FrameNet share similar meanings
(e.g., Reading activity and Reading perception) or
related functions (e.g., Create representation and
Recording). However, these frames often have com-
plementary sets of lexical units.

Since our baselines (ConceptNet, COMET, Co-
occurrence, and MLM) rely on the lexical units
of frames to make predictions, increasing the cov-
erage of lexical units can be beneficial. So we
manually clustered frames that share a related defi-
nition with our 42 chosen frames and merged their
lexical units. The table below shows the cluster
for which the lexical units are merged. Our experi-
ments showed that merging lexical units from these
frames improved both the precision and recall.

Primary Frame Clustered Frames

Agriculture Food gathering
Growing food
Planting

Attaching Connectors
Cause fluidic motion Cause to be wet
Cause harm Attack

Weapon
Cause motion Cause to move in-

place
Cause to fragment Grinding
Commercial transaction Commerce buy

Commerce sell
Competition Exercising
Containing Containers
Cooking creation Apply heat
Create representation Recording
Cure Recovery
Hunting Taking captive

Trap
Inhibit movement Immobilization
Light movement Location of light
Make noise Cause to make noise

Noise makers
Perception experience Perception active

Cause to perceive
Information display

Reading activity Reading perception
Removing Emptying
Self motion Vehicle

Ride vehicle
Operate vehicle

Supporting Posture
Wearing Body decoration

Clothing
Accoutrements
Clothing parts


