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Abstract
Risk prediction is an essential task in finan-
cial markets. Merger and Acquisition (M&A)
calls provide key insights into the claims made
by company executives about the restructuring
of the financial firms. Extracting vocal and
textual cues from M&A calls can help model
the risk associated with such financial activi-
ties. To aid the analysis of M&A calls, we
curate a dataset of conference call transcripts
and their corresponding audio recordings for
the time period ranging from 2016 to 2020.
We introduce M3ANet, a baseline architecture
that takes advantage of the multimodal multi-
speaker input to forecast the financial risk asso-
ciated with the M&A calls. Empirical results
prove that the task is challenging, with the pro-
posed architecture performing marginally bet-
ter than strong BERT-based baselines. We re-
lease the M3A dataset and benchmark models
to motivate future research on this challenging
problem domain.

1 Introduction

Mergers and Acquisitions (M&As)1 conference
calls are events preceding financial transactions
involving two or more entities such that either
one of the participant companies takes over the
other(s) and establishes itself as the owner (termed
as ”acquisition”) or when one company combines
with another to become a joint entity (termed as
”merger”). In these M&A conference calls, the
participating companies’ management makes a pre-
sentation to the call participants, such as market
analysts, media personnel, and other stakeholders,
explaining the rationale for the deal and possible
roadblocks to deal completion (Dasgupta et al.,
2020). Following the presentation segment, there
is a Q&A segment in which the call participants
ask questions to which the management responds.

∗ Equal contribution
1https://www.investopedia.com/mergers-and-acquisitions

Figure 1: A schematic of our proposed approach (M3A)
that leverages three types of input modalities: text utter-
ances from the call transcripts, audio clips, and speaker
specific input, for financial modeling tasks.

Building on the important information that
M&As provide, academic research, the financial
press, and other media give a great deal of atten-
tion. One of these discussions’ principal aspects
lies in how the deals may affect the company’s
valuation (Moeller et al., 2003; Fraunhoffer et al.,
2018) and future growth. A significant focus in
financial and economic literature has been on un-
derstanding whether M&As create or destroy value.
Consequently, shareholders critically analyze the
deals to estimate the potential stock price and stock
price volatility post the M&A conference call.

Identifying the gap in natural language process-
ing (NLP) literature on the lack of resources to
study M&A conference calls with their text tran-
scripts and audio recordings, we take the first step
in multimodal financial modeling in the M&A
space. Such data can allow academicians to study
M&A calls further, especially with the rich multi-
modal data. It shall enable studies that focus not
only on the words spoken in the call but also in the
manner they were spoken, a relatively unexplored
field in financial forecasting, as shown in Figure 1.

A salient aspect of conference calls is that, unlike
text reports, the company’s management interacts
with external stakeholders and asks questions. This

https://www.investopedia.com/mergers-and-acquisitions-4689815
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Figure 2: M&A calls have a Q&A session where financial stakeholders can ask questions to the company execu-
tives. In such sessions, company executives have to be impromptu with their responses, allowing informal words to
seep in. This example Q&A session is from the call regarding the acquisition of 21st Century Fox by Disney, dated
June 20, 2018. In the example, an analyst poses a few questions to the company executives (depicted in yellow).
The CEO of Disney responds to these questions, where we notice some cases of informal speech (depicted in pur-
ple). The Executive’s response however mainly focused on specific objects or entities (depicted in red) intermixed
with some time-based information (depicted in green).

interaction presents an opportunity of analyzing not
just the management’s claims but also the way they
express them. In Figure 2, we highlight the various
components in a short Q&A interaction. Often,
both the transcript and the audios of the calls are
available to the public.

Vocal cues play a critical role in verbal commu-
nication as they can provide support or discredit
the verbal message that is being spoken (Jiang and
Pell, 2017). For example, consider if the CEO of
the acquiring company exhibits confidence in the
statement - ”we are confident that this acquisition
will bring us profits,” however, displays nervous-
ness while justifying technical details of the deal,
we may infer contradiction in the claims of a suc-
cessful M&A. Vocal cues have been proven indica-
tors of emotions like deceit and nervousness (Belin
et al., 2017; Sporer and Schwandt, 2006). Past re-
search (Qin and Yang, 2019; Sawhney et al., 2020c)
shows that the addition of vocal cues has helped
with the task of financial predictions and enrich the
learned representations.

Our contributions can be summarized as:

• We curate a public dataset M3A2 (Multimodal
Multi-Speaker Merger & Acquisition Call Fi-

2The source code, processed features, and details on ac-
quiring raw data are available at https://github.com/
midas-research/m3a-acl

nancial Forecasting Dataset) that consists of
816 M&A conference calls spanning over 545
hours between 2016 to 2020 with their tran-
scripts and audio recordings, segmented by
utterances and aligned with the audio.

• We accompany the dataset with neural base-
line architectures that use the multimodal
multi-speaker input to predict stock volatil-
ity and price movement.

• To the best of our knowledge, no such M&A
conference call dataset exists in academia, and
our proposed methodology, M3ANet is the
first deep learning approach for financial pre-
dictions on M&A conference calls.

2 Related Work

M&A Conference Calls Financial reports and
conference calls have been shown to have a corre-
lation with the stock market and improve financial
predictions (Bowen et al., 2001; Kogan et al., 2009).
Studies have also been carried out specifically for
M&A calls, showing their effect on the market
(Dasgupta et al., 2020; Hu et al., 2018). However,
there exists a gap in leveraging neural predictive
modeling on using verbal and vocal cues pertaining
to M&A calls for financial forecasting.

https://github.com/midas-research/m3a-acl
https://github.com/midas-research/m3a-acl
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Financial Forecasting Research has shown his-
torical pricing data to be useful in predicting fi-
nancial risk modeling (Kristjanpoller et al., 2014;
Zheng et al., 2019; Dumas et al., 2009). It also
considers volatility as an indicator of uncertainty,
which helps make decisions regarding investments
(Heston, 1993; Johnson and Shanno, 1987; Scott,
1987). Previous work often use numerical features
(Liu and Chen, 2019; Nikou et al., 2019) in ap-
proaches like neural networks (Kim et al., 2019;
Luo et al., 2017), graph neural networks (Sawhney
et al., 2020b), and time-series models (Bollerslev,
1986; Engle, 1981). On the other hand, we are
interested in analyzing multimodal data like text
and audio, which can hold completely different
information for predictive models.

Natural Language Processing and Finance
For any system using human interactions to de-
termine financial risk or stock movements, it is
necessary to determine the relationship between
the various words to determine the speaker’s sen-
timent. Advances in NLP have been utilized in
many approaches to show financial information
significantly improving performance in forecast-
ing tasks like volatility and stock price prediction
(Wang et al., 2013; Ding et al., 2015; Mittermayer
and Knolmayer, 2007). Research has also shown
that social media affects the stock market (Bollen
et al., 2010; Oliveira et al., 2017; Sawhney et al.,
2020a). Machine learning methods using simple
bag-of-words features to represent the financial
documents used in previous research (Kogan et al.,
2009; Rekabsaz et al., 2017) largely ignore the
inter-dependencies between the sentences. To fill
the gap, recent approaches have moved towards
newer models such as transformers (Yang et al.,
2020) and reinforcement learning (Sawhney et al.,
2021b) over natural language data for financial fore-
casting.

Multimodality and Financial Forecasting Re-
search shows that psychological and behavioral
elements are often indicators of stock price move-
ment (Malkiel, 2003). Vocal cues have been proven
effective in portraying these elements (Wurm et al.,
2010; Hobson et al., 2011; Jiang and Pell, 2017).
Thus, it is no surprise that multimodal architec-
tures that use these cues for financial predictions
have seen significant improvements in their perfor-
mances (Yang et al., 2020; Sawhney et al., 2020d).

Speaker Context Encoding Past research
(Zhang et al., 2019; Li et al., 2020) in fields
like emotion recognition have seen the improved
performance on their prediction tasks with the
addition of speaker context. Models with data
related to spoken text benefit when the input is
enriched with information about who spoke what.

3 Problem Formulation

Consider an M&A call χ ∈ {χ1, χ2, . . . , χM},
which comprises multimodal components: χ =
[t; a]. Here, t is the sequence of textual utterances
(sentences)3 of the call transcript and can be rep-
resented as [t1, t2...tN ] where ti is the ith utter-
ance of the call and N is the maximum number
of utterances in any call. Similarly, a is the se-
quence of corresponding call audios for the textual
utterances (sentences) and can be represented as
[a1, a2...aN ] where ai is the ith call audio. The
call’s utterances are annotated with speaker infor-
mation s = [s1, s2...sN ], where si is the speaker
of the ith utterance and where each speaker in the
call may have spoken one or more utterances. Each
M&A conference call may have two or more partic-
ipating companies, with at least one publicly-traded
company with publicly available stock price infor-
mation. We limit the scope of the problem being
solved by forecasting predictions for just one of
the participant companies with the larger market
valuation (in case of a merger) or the acquiring
company (in case of an acquisition). We now de-
scribe the two prediction tasks that we utilize to
train M3ANet on.

Measuring stock volatility Following (Kogan
et al., 2009), we formulate stock volatility as a
regression problem. For a given stock with a close
price of pk on the trading day k, we calculate the
average log volatility as the natural log of the stan-
dard deviation of return prices r in a window of τ
days as:

v[0,τ ] = ln

(√∑τ
k=1(rk − r̄)2

τ

)
(1)

where rk =
pk−pk−1

pk−1
is the return price on day k

for a given stock, and r̄ is the average return price
over a period of τ days.

3We restrict the scope of segmentation to a sentence level
as opposed to a more granular level such as the word level
owing to the higher complexity and noise involved in word-
level segmentation for long M&A calls.
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(a) Yearly frequency of calls.
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(b) Mean # of utterances.
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(c) Mean # of speakers.
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(d) Mean audio length.

Figure 3: Statistics pertaining to the M3A dataset across modalities, types of calls, and years.

Formalizing price movement prediction Fol-
lowing (Xu and Cohen, 2018), we define price
movement yd−τ,d over a period of τ days as a bi-
nary classification task. For a given stock, we em-
ploy its close price, which can either rise or fall
on a day d compared to a previous day d − τ , to
formulate the classification task as:

y[d−τ,d] =

{
1, pd+τ > pd,
0, pd+τ ≤ pd

(2)

Given an acquisition conference call χ, our learn-
ing objective is to predict the average negative log
volatility v[0,τ ] and price movement y[d−τ,d] using
the conference call data χ = [t; a].

4 Curating M3A: Dataset Creation

4.1 Data Acquisition

We curate our dataset, M3A, by acquiring audio
records and text transcripts from the Bloomberg
Terminal.4 Since the conference calls were reliably
available from 2016, we filter and list all M&A
calls between 2016 and 2020. To limit the scope,
we ensured the calls were in English, had their
domicile as the U.S.A., and had ’merger’ or ’ac-
quisition’ in their title. The Bloomberg Terminal
often only provides the stock ticker for the acquir-
ing company (in case of an acquisition) and the
company with a more prominent marker valuation
(in case of a merger). To maintain uniformity, we
decide only to use the given stock information. We
pull the adjusted closing price data from Yahoo
Finance.5

The dataset comprises 816 conference calls.
The mean number of speakers across the calls is
10.68 ± 4.17, with a maximum of 31 speakers.
The mean number of utterances across the calls is
100.54± 38.32 utterances and a maximum of 284
utterances in a call. The mean length comes out to

4https://bba.bloomberg.net/
5https://in.finance.yahoo.com/

be 40.15± 15.15 minutes and a maximum length
of 98.15 minutes for the audio clips. We provide
further statistics in Figure 3. Looking at year-wise
trends, we see that acquisitions are consistently
more frequent that mergers every year. Further,
we note that mergers see a decreasing trend in the
number of utterances and acquisitions have a con-
sistent number of speakers in M&A calls. We also
note that acquisitions conference calls seem to be
increasing in length as the years progress.

We chronologically divide our dataset into a
train, validation, and test set in the ratio of 70 :
10 : 20, respectively. Such a split ensures that
future data is not used for forecasting past data.

4.2 Call Segmentation and Alignment

Each transcript of the dataset begins with the com-
pany’s details with the larger market valuation (in
case of a merger) or the acquiring company (in case
of an acquisition). These details include the com-
pany’s name, stock ticker, and the date of the call.
The transcript then lists the speakers in the call and
their position in the companies, if any. The call
contents follow the list of speakers. The contents
are separated by utterances and are annotated with
the utterances’ speakers.

Given our dataset, we have the option to choose
between transcript-level, utterance-level, and word-
level embeddings. We decide to use utterance-level
embeddings.6 We select utterances with at least ten
words to ensure better parsing of the transcript and
parse the texts to extract all valid utterances.

Since we are working with audio files, it be-
comes essential that we can segment them such
that we can align them with their corresponding
utterances in the text transcript. To achieve this
alignment, we have used the Aeneas7 library to per-

6Transcript-level embeddings are too coarse for our task.
We experimented with word-level embeddings but found that
the performance degraded.

7https://www.readbeyond.it/aeneas/

https://bba.bloomberg.net/
https://in.finance.yahoo.com/
https://www.readbeyond.it/aeneas/
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Figure 4: Data Pipeline: An overview of the processing involved with each data point including segmentation,
encoding of modalities, speaker information augmentation and prediction.

form the forced alignment. The Forced Alignment
algorithm takes as input a text file divided into frag-
ments and an unfragmented audio file. It processes
the input to output a synchronization map, which
automatically associates a time interval in the au-
dio file to its corresponding text fragment. Aeneas
uses the Sakoe-Chiba Band Dynamic Time Warp-
ing (DTW) (Sakoe and Chiba, 1978) forced align-
ment algorithm, which has been proven to improve
discrimination between words and has superior per-
formance over other conventional algorithms.

5 Methodology

5.1 Text and Audio Encoding

Text Encoding We compute an utterance’s textual
encoding as the arithmetic mean of all its word
vectors. BERT is well known as an effective pre-
trained language-based model for extracting word-
embeddings (Biswas et al., 2020) for a variety of
language modeling tasks. We use Uncased Base
BERT (Devlin et al., 2019) to extract the word
embeddings. For each call, we represent the text
utterances as [t1, t2, . . . , tN ]. As seen from Figure
4, we embed each text utterance ti to get its corre-
sponding 768-dimensional text encoding gi using
BERT such that gi = BERT(ti) for each i ∈ [1, N ].

Audio Encoding We use the OpenSMILE8 li-
brary to extract the audio features at a sampling rate
of 10ms and choose the set of 62 geMAPS features
described in (Eyben et al., 2016). This set includes
features like pitch, jitter, loudness, etc., which have
proven to be effective in audio analysis tasks (Chao
et al., 2015). For each call, we represent the audio
clips of the utterances as [a1, a2, . . . , aN ]. We em-
bed each audio utterance ai to its corresponding 62-
dimensional encoding hi using OpenSMILE such
that hi = OpenSMILE(ai) for each i ∈ [1, N ].

8https://pypi.org/project/opensmile/

Motivation for Speaker Information Infusion
The audio encodings help decipher the vocal cues
in the text transcript’s context to support or dis-
credit the speaker’s claims. However, it is critical
for the system to recognize the importance of the
utterance’s speaker to gauge its impact on financial
predictions. This requires the information about the
speaker of each utterance to be augmented to the
input. Prior research (Zhang et al., 2019; Li et al.,
2020) shows the addition of speaker context helps
improve prediction performance on tasks involving
datasets with spoken texts.

M&A calls have utterances spoken by the com-
pany’s management (the decision-making force of
the company), by analysts (who want to gauge the
risk in the company’s decisions), or even just the
operator (often an impartial person). Capturing this
speaker context will allow us to decide how much
impact a specific utterance can have on a com-
pany’s stock price. Thus, we extract the speaker
information for each utterance. We parse the list
of speakers from the transcripts and assign an ID
to each of the speakers. The IDs start from 1 and
are assigned incrementally to each speaker in the
order in which they are listed. The operator of the
call is assigned the ID 0. We then annotate each
of the utterances based on who spoke it. Finally,
we use one-hot encoding to represent the speaker
encoding s of each utterance in the call.

5.2 M3ANet: Speaker Transformer

The Transformer (Vaswani et al., 2017) uses multi-
head attention and position embeddings to learn
the relationship between different utterances. The
multimodal input requires the model to learn the
inter-dependencies between the audio and the text
features. M3ANet can then use the audio cues to
affirm or discredit the spoken message and make
an informed prediction. The idea behind M3ANet
is to use attention to weigh the importance of each
modality at different timestamps. We then aug-

https://pypi.org/project/opensmile/
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ment the data with the speaker encoding and allow
the Transformer to extract the multimodal inter-
dependencies for performing the prediction tasks.

Attention-Fusion Before we can fuse the inputs,
we need to linearly transform the text embeddings
to ensure the multimodal embeddings’ sizes are
the same. We then extract the attention weights
to calculate the attended inputs similar to (Hori
et al., 2017). These attention weights describe the
importance of a specific modality concerning the
other modality. We multiply the text and audio
features by their attention weights WT and WA
respectively to get the attended input, followed by
fusing them. The following equations formalize
the attention mechanism used:

WT = softmax(gWwt + bwt) (3)

WA = softmax(hWwa + bwa) (4)

WT =
WT

WT +WA
,WA =

WA

WT +WA
(5)

Xfused = gWT + hWA (6)

where Wwt and bwt represent the text attention
layer, Wwa and bwa represent the audio attention
layer and + represents addition.

Sentence-Level Transformer To model the se-
quence of textual and audio embeddings of the
M&A calls, we augment the fused multimodal em-
beddings Xfused with position embeddings pos by
addition and the speaker information by concate-
nation (represented by ⊕). pos has the same di-
mensions as Xfused, posj,ind represents the value
of the positional embedding for the jth utterance
at index ind. The augmentation is summarised as
follows:

posj,2l, posj,2l+1 = sin
(

j

10
8l
d

)
, cos

(
j

10
8l
d

)
(7)

Xfinal = (Xfused + pos)⊕ s (8)

The Transformer block uses the augmented fea-
ture set for further processing, following which the
intermediate tensors are passed through two con-
secutive dense layers to output the task prediction
as follows:

O1 = ReLU(Wl1I1 + bl1) (9)

y = σ(Wl2O1 + bl2) (10)

where, Wl1 and bl1 represent the first linear layer,
Wl2 and bl2 represent the second linear layer, I1

and O1 represent the input to the first and second
dense layer after being passed through the sentence
transformer, while σ represents the final activation
function and y represents the final prediction from
the activation corresponding to the task. We use
ReLU for the final prediction in the volatility pre-
diction task and sigmoid for the price prediction
task. We then use Mean Squared Error (MSE)
and Binary Cross-Entropy (BCE) losses to train
the output for volatility prediction and stock price
movement prediction, respectively.

6 Experimental Setup

6.1 Baselines

We compare M3ANet against modern baselines
across modalities for both the tasks. We employ
GloVe (Pennington et al., 2014), FinBERT (Araci,
2019) and Roberta (Liu et al., 2019) to embed the
text and choose an LSTM + Dense layer architec-
ture as a benchmark for both volatility and price
movement prediction. We also use all three (text,
audio, and multimodal) variants of the Multimodal
Deep Regression Model (MDRM) (Qin and Yang,
2019) as baselines.

6.2 Training Setup

We tune M3ANet’s hyper-parameters using Grid
Search. We summarize the range of hyperparam-
eters tuned on: size of the transformer’s feed-
forward layer and size of the linear layers ∈ {16,
32, 64}, dropout δ ∈ {0.0, 0.1, 0.25, 0.5}, batch
size b ∈ {32, 64, 128} and learning rate e ∈ {0.1,
0.01, 0.001, 0.0001}. The experiment results in the
following optimal choices of the hyper-parameters:
b = 64, e = 0.001, feed forward network size
(Volatility) = 16, hidden layer size (Volatility)
= 16 and δ (Volatility) = 0.1, , feed forward net-
work size (Movement) = 64, hidden layer size
(Movement) = 32, δ (Movement) = 0.0.

We implement all methods with Keras9 and
Google Colab.10, using ReLU as our hidden layer
activation function and optimize using Adam. We
choose the highest performing model during the
training phase on our validation set and chosen
evaluation metrics as our best model. We zero-pad
the calls that have less than the maximum number
of utterances/speakers for efficient batching. We
experiment with trading periods τ ∈ {3, 7, 15}

9https://keras.io/
10https://research.google.com/

colaboratory/

https://keras.io/
https://research.google.com/colaboratory/
https://research.google.com/colaboratory/
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Model Volatility Prediction Price Prediction
MSE3 MSE7 MSE15 F13 F17 F115 MCC3 MCC7 MCC15

RoBERTa + LSTM 0.78 (0.009) 0.58 (0.009) 0.47 (0.006) 0.57 0.58 0.49 0.19 0.22 0.10
GloVe + LSTM 0.80 (0.005) 0.60 (0.004) 0.48 (0.005) 0.55 0.56 0.42 0.19 0.22 0.02
FinBERT + LSTM 0.78 (0.008) 0.60 (0.004) 0.47 (0.005) 0.58 0.58 0.48 0.20 0.21 0.06
MDRM (T) 0.79 (0.003) 0.59 (0.003) 0.47 (0.002) 0.58 0.56 0.48 0.20 0.19 0.12
MDRM (A) 0.79 (0.004) 0.60 (0.002) 0.47 (0.003) 0.24 0.36 0.12 0.02 0.17 0.00
MDRM (T+A) 0.78 (0.005) 0.58 (0.003) 0.46 (0.002) 0.59 0.58 0.46 0.19 0.19 0.11
M3ANet (Ours) 0.77 (0.018)* 0.57 (0.016)* 0.46 (0.011)* 0.59 0.59 0.50* 0.19 0.19 0.13

Table 1: Mean τ -day volatility MSE and price movement prediction results (mean and stdev. of 5 runs for each
approach). * indicates that the result is significantly better than the MDRM (T+A). Bold denotes best performance.

Model Volatility Prediction Price Prediction
MSE3 MSE7 MSE15 F13 F17 F115 MCC3 MCC7 MCC15

Transformer (T) 0.79 (0.0130) 0.62 (0.0310) 0.47 (0.004) 0.50 0.54 0.40 0.13 0.16 0.11
Transformer (A) 0.82 (0.0180) 0.61 (0.0140) 0.49 (0.013) 0.53 0.59 0.50 0.13 0.18 0.13
Transformer (T+A: Concat) 0.80 (0.0006) 0.61 (0.0006) 0.48 (0.0003) 0.09 0.16 0.06 0.00 0.01 0.01
Transformer (T+A: Att. fusion) 0.76 (0.0180) 0.58 (0.0140) 0.47 (0.0090) 0.57 0.61 0.55 0.16 0.18 0.12
M3ANet (Ours) 0.77 (0.0180) 0.57 (0.0160) 0.46 (0.0110) 0.59 0.58 0.50 0.18 0.17 0.13

Table 2: Effect of multimodality and multi-speaker inputs (mean and stdev. of 5 runs for each approach).

days allowing experimentation across both short
and medium-term periods.

Similar to prior work (Sawhney et al., 2020d;
Theil et al., 2019; Yang et al., 2020), we evaluate
predicted volatility using the mean squared error
(MSE) for each hold period, n ∈ {3,7,15}. For
the classification task, we report the F1 score and
Mathew’s Correlation Coefficient (MCC) for the
classification task (Matthews, 1975). We use MCC
because, unlike the F1 score, MCC avoids bias due
to any data skew that may be present as it does not
depend on the choice of the positive class. For a

given confusion matrix
(
tp fn
fp tn

)
:

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(11)

7 Results and Analysis

7.1 Performance Comparison

As shown in Table 1, M3ANet achieves the best
performance for both the volatility prediction and
the price prediction task. We observe improve-
ments using M3ANet (Table 2) that leverages the
text and audio modalities along with speaker in-
formation. This improvement can be attributed
to attention to emphasize the importance of each
modality throughout the series of utterances. It
can also be observed that the improvements our
architecture results in are not quite large in mag-
nitude. We attribute this to the difficulty that the
task inherently possesses. Further research in more

sophisticated models may result in greater improve-
ments in the performance on M3A.

7.2 Multimodal and Multi-Speaker Learning

From Table 1 and Table 2, we see that in both the
MDRM and Transformer models, the multimodal
models performed much better than the unimodal
counterparts. This performance improvement fol-
lows from previous research (Qin and Yang, 2019)
with respect to volatility prediction. Similar ob-
servations validate our hypothesis that audio cues
provide additional information that helps make a
better prediction. It is also apparent from Table 2
that adding speaker context improves the prediction
result consistently. Thus, we infer that speaker in-
formation does play an essential part in forecasting
and adds to the data’s richness.

7.3 Ablation Study: Fusion

We experiment with fusion by concatenation and
fusion by attention for the Transformer and find
the latter performing better in most cases (Table
2). We believe this happens because simple fu-
sion techniques cannot produce features that ef-
fectively capture the individual modalities’ impor-
tance. However, attention fusion uses weights for
both the modalities, learned by the architecture, to
determine the importance of each modality with
respect to its counterpart. Using these weights to
perform a weighted addition gives a much better
representation of both the modalities and their par-
ticular importance in a fused vector.
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Figure 5: Qualitative Analysis
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Figure 6: Drift in Predicted Stock Volatility over Time;
The line graph represents the mean MSE while the
shaded regions represent the performance over 10 runs

Trained On Tested on Acquisitions Only Tested on Mergers Only
MSE3 F13 MCC3 MSE3 F13 MCC3

Acquisitions 0.65 0.66 0.12 1.47 0.56 0.015
Mergers 0.85 0.28 0.03 1.01 0.47 0.20

Table 3: Ablation Study: Performance of M3A, when
trained on Acquisitions and Mergers separately

7.4 Performance Drift over Time

As observed in previous works (Sawhney et al.,
2020d) using earnings calls, Figure 6 shows that
short-term stock volatility prediction is more com-
plex, possibly due to the erratic price fluctuations
after a M&A call. We hypothesize that these price
fluctuations settle as more time elapses, similar
to the phenomenon of PEAD (Post Earnings An-
nouncement Drift) (Bernard and Thomas, 1989;
Bhushan, 1994; Sadka, 2006). This saturation in
performance improvement can be attributed to the
dilution of cues extracted from the calls, as we
’drift’ away from them. However, it can be noted
that a similar trend may not necessarily be true for
price movement prediction.

7.5 Merger & Acquisition Transfer

We experiment by training M3ANet on Mergers
and Acquisitions calls separately, and testing both
models on each set of calls separately. From Table
3, it can be observed that both models predict the
price movement better for their respective sets as
expected. It is surprising to see that the models pre-
dict volatility of Acquisition calls relatively better
than that of Merger calls. This suggests that Ac-
quisition conference calls lead to a volatility that’s
relatively easier to predict and seems to be an av-
enue for further research.

7.6 Qualitative Analysis

Call 1: Acquisition of Shape Security by F5 Net-
works Inc Following the call, F5 Networks Inc
suffered a price drop of up to 5.2% within the next
month. Studying the call’s vocal cues, we notice
(Figure 5a) the CEO had sudden peaks in the mean
pitch of his audio while answering questions. Sim-
ilar peaks occurred when a participant asks the
CEO about their fraud protection when compared
to their competitors. Prior research on audio analy-
sis (Jiang and Pell, 2017) proves a high mean pitch
may indicate a lack of confidence in the speaker.
It was later ascertained that F5 had overpaid to ac-
quire Shape Security without proper due diligence
of fraud protection plans sold by Shape Security.
We observe how M3ANet successfully predicts the
decrease in price for all choices of τ while the
unimodal models fail to do the same each time.
Though the text reveals no lack of confidence, the
audio cues likely allow the model to make a suc-
cessful prediction.

Call 2: Merger of AK Steel Holding Corpo-
ration and Cleveland-Cliffs Inc Following the
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merger call, Cleveland-Cliffs Inc saw an increase
in their stock price up to 17.9% in the next five
days. Similar to the first call, we notice spikes and
sudden increases in the audios’ mean pitch from
Figure 5b. However, the difference exists in the fact
that these high pitch patterns come from an analyst
in the call and not someone holding an influential
position in the companies involved. M3ANet can
differentiate between the speakers and correctly
predicts the price going up, unlike the transformer
variant without speaker embeddings. This shows
how the augmentation of the multimodal data with
the speaker embedding likely benefits the predic-
tive power of M3ANet.

Call 3: Acquisition of Plateau Excavation Inc
by Sterling Construction Company Inc We
now analyze this acquisition as an error analysis
where M3ANet predicts incorrectly. We see the
text transformer performing well on this example
and accurately predicting the increase in the stock
price for Sterling Construction Company Inc. On
the other hand, our multimodal multi-speaker is
unable to do the same. Observing the audio cues
(Figure 5c), we find a great deal of variance in the
mean audio pitch. We attribute the erroneous per-
formance to the potential overfitting of the model
or noise in the audio cues.

8 Conclusion

We present a dataset of M&A calls that can be uti-
lized to predict financial risk following M&A calls.
We also present a strong baseline model using
multimodal multi-speaker inputs from the M&A
calls to perform financial forecasting. M3ANet
uses attention-based fusion to leverage the inter-
dependency between the verbal message and the
vocal cues. Further, the approach uses speaker in-
formation to enrich the input data to determine if
the speakers’ vocal cues or verbal messages conflict
with others and accounts for the same. Experiments
on M3A display the effectiveness of M3ANet. We
hope our M3A can enable more academic progress
in the field of financial forecasting.

Ethical Considerations and Limitations

Examining a speaker’s tone and speech in confer-
ence calls is a well-studied task in past literature
(Qin and Yang, 2019; Chariri, 2009). Our work
focuses only on calls for which companies publicly
release transcripts and audio recordings. The data

used in our study corresponds to M&A conference
calls of companies in the NASDAQ stock exchange.
We acknowledge the presence of gender bias in our
study, given the imbalance in the gender ratio of
speakers of the calls. We also acknowledge the
demographic bias (Sawhney et al., 2021a) in our
study as the companies are organizations within
the public stock market of United States of Amer-
ica and may not generalize directly to non-native
speakers.
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berg, E. André, C. Busso, L. Y. Devillers, J. Epps,
P. Laukka, S. S. Narayanan, and K. P. Truong.
2016. The geneva minimalistic acoustic parameter
set (gemaps) for voice research and affective com-
puting. IEEE Transactions on Affective Computing,
7(2):190–202.

R. Fraunhoffer, H. Kim, and D. Schiereck. 2018. Value
creation in ma transactions, conference calls, and
shareholder protection. International Journal of Fi-
nancial Studies, 6:1–21.

Steven Heston. 1993. A closed-form solution for op-
tions with stochastic volatility with applications to
bond and currency options. Review of Financial
Studies, 6:327–43.

Jessen Hobson, William Mayew, and Mohan Venkat-
achalam. 2011. Analyzing speech to detect financial
misreporting. Journal of Accounting Research, 50.

Chiori Hori, Takaaki Hori, Teng-Yok Lee, Ziming
Zhang, Bret Harsham, John R. Hershey, Tim K.
Marks, and Kazuhiko Sumi. 2017. Attention-based
multimodal fusion for video description. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision (ICCV).

Wenyao Hu, Thomas Shohfi, and Runzu Wang. 2018.
What’s really in a deal? evidence from textual anal-
ysis. SSRN Electronic Journal.

Xiaoming Jiang and Marc D. Pell. 2017. The sound
of confidence and doubt. Speech Communication,
88:106 – 126.

Herb Johnson and David Shanno. 1987. Option pricing
when the variance is changing. Journal of Financial
and Quantitative Analysis, 22:143–151.

Raehyun Kim, Chan Ho So, Minbyul Jeong, Sanghoon
Lee, Jinkyu Kim, and Jaewoo Kang. 2019. Hats: A
hierarchical graph attention network for stock move-
ment prediction.

Shimon Kogan, Dimitry Levin, Bryan R. Routledge,
Jacob S. Sagi, and Noah A. Smith. 2009. Pre-
dicting risk from financial reports with regression.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 272–280, Boulder, Colorado. Associ-
ation for Computational Linguistics.

Werner Kristjanpoller, Anton Fadic, and Marcel Min-
utolo. 2014. Volatility forecast using hybrid neural
network models. Expert Systems with Applications,
41:2437–2442.

Qingbiao Li, Chunhua Wu, Zhe Wang, and Kangfeng
Zheng. 2020. Hierarchical transformer network for
utterance-level emotion recognition. Applied Sci-
ences, 10:4447.

Jiexi Liu and Songcan Chen. 2019. Non-stationary
Multivariate Time Series Prediction with Selective
Recurrent Neural Networks, pages 636–649.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Rui Luo, Weinan Zhang, Xiaojun Xu, and Jun Wang.
2017. A neural stochastic volatility model.

Burton Malkiel. 2003. The efficient market hypothesis
and its critics. Journal of Economic Perspectives,
17:59–82.

B.W. Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) -
Protein Structure, 405(2):442 – 451.

Marc-andre Mittermayer and G.F. Knolmayer. 2007.
Newscats: A news categorization and trading sys-
tem. pages 1002 – 1007.

Sara Moeller, Frederik Schlingemann, and Rene Stulz.
2003. Do shareholders of acquiring firms gain from
acquisitions? SSRN Electronic Journal.

Mahla Nikou, Gholamreza Mansourfar, and
J. Bagherzadeh. 2019. Stock price prediction
using deep learning algorithm and its comparison
with machine learning algorithms. Intelligent
Systems in Accounting, Finance and Management,
26.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1111/j.1540-6261.2009.01444.x
https://doi.org/10.1111/j.1540-6261.2009.01444.x
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1111/j.1475-679X.2011.00433.x
https://doi.org/10.1111/j.1475-679X.2011.00433.x
https://doi.org/10.2139/ssrn.3292343
https://doi.org/10.2139/ssrn.3292343
https://doi.org/https://doi.org/10.1016/j.specom.2017.01.011
https://doi.org/https://doi.org/10.1016/j.specom.2017.01.011
https://doi.org/10.2307/2330709
https://doi.org/10.2307/2330709
http://arxiv.org/abs/1908.07999
http://arxiv.org/abs/1908.07999
http://arxiv.org/abs/1908.07999
https://www.aclweb.org/anthology/N09-1031
https://www.aclweb.org/anthology/N09-1031
https://doi.org/10.1016/j.eswa.2013.09.043
https://doi.org/10.1016/j.eswa.2013.09.043
https://doi.org/10.3390/app10134447
https://doi.org/10.3390/app10134447
https://doi.org/10.1007/978-3-030-29894-4_51
https://doi.org/10.1007/978-3-030-29894-4_51
https://doi.org/10.1007/978-3-030-29894-4_51
https://doi.org/10.1257/089533003321164958
https://doi.org/10.1257/089533003321164958
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1109/ICDM.2006.115
https://doi.org/10.1109/ICDM.2006.115
https://doi.org/10.2139/ssrn.383560
https://doi.org/10.2139/ssrn.383560
https://doi.org/10.1002/isaf.1459
https://doi.org/10.1002/isaf.1459
https://doi.org/10.1002/isaf.1459


6761

Nuno Oliveira, P. Cortez, and Nelson Areal. 2017. The
impact of microblogging data for stock market pre-
diction: Using twitter to predict returns, volatility,
trading volume and survey sentiment indices. Ex-
pert Syst. Appl., 73:125–144.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Yu Qin and Yi Yang. 2019. What you say and how you
say it matters: Predicting stock volatility using ver-
bal and vocal cues. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 390–401, Florence, Italy. Associ-
ation for Computational Linguistics.

Navid Rekabsaz, Mihai Lupu, Artem Baklanov,
Alexander Dür, Linda Andersson, and Allan Han-
bury. 2017. Volatility prediction using financial dis-
closures sentiments with word embedding-based IR
models. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1712–1721, Van-
couver, Canada. Association for Computational Lin-
guistics.

Ronnie Sadka. 2006. Momentum and post-earnings-
announcement drift anomalies: The role of liquidity
risk. Journal of Financial Economics, 80(2):309 –
349.

H. Sakoe and S. Chiba. 1978. Dynamic programming
algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 26(1):43–49.

Ramit Sawhney, Shivam Agarwal, Arnav Wadhwa, and
Rajiv Ratn Shah. 2020a. Deep attentive learning for
stock movement prediction from social media text
and company correlations. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8415–8426,
Online. Association for Computational Linguistics.

Ramit Sawhney, Shivam Agarwal, Arnav Wadhwa, and
Rajiv Ratn Shah. 2020b. Spatiotemporal hypergraph
convolution network for stock movement forecast-
ing. In 2020 IEEE International Conference on
Data Mining (ICDM), pages 482–491.

Ramit Sawhney, Arshiya Aggarwal, and Rajiv Ratn
Shah. 2021a. An empirical investigation of bias in
the multimodal analysis of financial earnings calls.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3751–3757, Online. Association for Compu-
tational Linguistics.

Ramit Sawhney, Piyush Khanna, Arshiya Aggarwal,
Taru Jain, Puneet Mathur, and Rajiv Ratn Shah.

2020c. VolTAGE: Volatility forecasting via text au-
dio fusion with graph convolution networks for earn-
ings calls. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8001–8013, Online. Associa-
tion for Computational Linguistics.

Ramit Sawhney, Puneet Mathur, Ayush Mangal, Piyush
Khanna, R. Shah, and Roger Zimmermann. 2020d.
Multimodal multi-task financial risk forecasting.
Proceedings of the 28th ACM International Confer-
ence on Multimedia.

Ramit Sawhney, Arnav Wadhwa, Shivam Agarwal, and
Rajiv Ratn Shah. 2021b. Quantitative day trading
from natural language using reinforcement learning.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4018–4030, Online. Association for Compu-
tational Linguistics.

Louis Scott. 1987. Option pricing when the variance
changes randomly: Theory, estimation, and an appli-
cation. Journal of Financial and Quantitative Anal-
ysis, 22:419–438.

Siegfried Sporer and Barbara Schwandt. 2006. Paraver-
bal indicators of deception: A meta-analytic synthe-
sis. Applied Cognitive Psychology, 20:421 – 446.

Kilian Theil, Samuel Broscheit, and H. Stucken-
schmidt. 2019. Profet: Predicting the risk of firms
from event transcripts. In IJCAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Chuan-Ju Wang, Ming-Feng Tsai, Tse Liu, and Chin-
Ting Chang. 2013. Financial sentiment analysis for
risk prediction.

Lee Wurm, Douglas Vakoch, Maureen Strasser, Robert
Calin-Jageman, and Shannon Ross. 2010. Speech
perception and vocal expression of emotion. Cogni-
tion Emotion, 15:831–852.

Yumo Xu and Shay B Cohen. 2018. Stock movement
prediction from tweets and historical prices. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1970–1979.

Linyi Yang, Tin Lok James Ng, Barry Smyth, and Rui-
hai Dong. 2020. Html: Hierarchical transformer-
based multi-task learning for volatility prediction.
Proceedings of The Web Conference 2020.

Dong Zhang, Liangqing Wu, Changlong Sun,
Shoushan Li, Qiaoming Zhu, and Guodong Zhou.
2019. Modeling both context- and speaker-sensitive
dependence for emotion detection in multi-speaker
conversations. pages 5415–5421.

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P19-1038
https://doi.org/10.18653/v1/P19-1038
https://doi.org/10.18653/v1/P19-1038
https://doi.org/10.18653/v1/P17-1157
https://doi.org/10.18653/v1/P17-1157
https://doi.org/10.18653/v1/P17-1157
https://doi.org/https://doi.org/10.1016/j.jfineco.2005.04.005
https://doi.org/https://doi.org/10.1016/j.jfineco.2005.04.005
https://doi.org/https://doi.org/10.1016/j.jfineco.2005.04.005
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.1109/ICDM50108.2020.00057
https://doi.org/10.1109/ICDM50108.2020.00057
https://doi.org/10.1109/ICDM50108.2020.00057
https://www.aclweb.org/anthology/2021.naacl-main.294
https://www.aclweb.org/anthology/2021.naacl-main.294
https://doi.org/10.18653/v1/2020.emnlp-main.643
https://doi.org/10.18653/v1/2020.emnlp-main.643
https://doi.org/10.18653/v1/2020.emnlp-main.643
https://www.aclweb.org/anthology/2021.naacl-main.316
https://www.aclweb.org/anthology/2021.naacl-main.316
https://doi.org/10.2307/2330793
https://doi.org/10.2307/2330793
https://doi.org/10.2307/2330793
https://doi.org/10.1002/acp.1190
https://doi.org/10.1002/acp.1190
https://doi.org/10.1002/acp.1190
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1080/02699930143000086
https://doi.org/10.1080/02699930143000086
https://doi.org/10.24963/ijcai.2019/752
https://doi.org/10.24963/ijcai.2019/752
https://doi.org/10.24963/ijcai.2019/752


6762

Jie Zheng, Andi Xia, Lin Shao, Tao Wan, and
Zengchang Qin. 2019. Stock volatility prediction
based on self-attention networks with social informa-
tion. pages 1–7.

https://doi.org/10.1109/CIFEr.2019.8759115
https://doi.org/10.1109/CIFEr.2019.8759115
https://doi.org/10.1109/CIFEr.2019.8759115

