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Abstract

Generating metaphors is a difficult task as it
requires understanding nuanced relationships
between abstract concepts. In this paper,
we aim to generate a metaphoric sentence
given a literal expression by replacing rele-
vant verbs. Guided by conceptual metaphor
theory, we propose to control the generation
process by encoding conceptual mappings be-
tween cognitive domains to generate meaning-
ful metaphoric expressions. To achieve this,
we develop two methods: 1) using FrameNet-
based embeddings to learn mappings between
domains and applying them at the lexical level
(CM-Lex), and 2) deriving source/target pairs
to train a controlled seq-to-seq generation
model (CM-BART). We assess our methods
through automatic and human evaluation for
basic metaphoricity and conceptual metaphor
presence. We show that the unsupervised CM-
Lex model is competitive with recent deep
learning metaphor generation systems, and
CM-BART outperforms all other models both
in automatic and human evaluations.1

1 Introduction

Recent neural models have led to important
progress in natural language generation (NLG)
tasks. While pre-trained models have facilitated
advances in many areas of generation, the field of
metaphor generation remains relatively unexplored.
Moreover, the few existing deep learning models
for metaphor generation (Yu and Wan, 2019; Stowe
et al., 2020; Chakrabarty et al., 2020) lack any con-
ceptualization of the meaning of the metaphors.

This work proposes the first step towards
metaphor generation informed by the conceptual
metaphor theory (CMT) (Lakoff and Johnson,
1980; Lakoff, 1993; Reddy, 1979). CMT holds

1All code, models, and data are made avail-
able at: https://github.com/UKPLab/
acl2021-metaphor-generation-conceptual

Figure 1: Metaphor generation guided by concep-
tual metaphors. Given a literal input, we can gener-
ate metaphoric outputs based on different mappings be-
tween conceptual domains.

that we use conceptual mappings between domains
(conceptual structures that group related concepts)
to generate linguistic metaphors.2 Metaphoric map-
pings consist of a source and a target conceptual do-
main. The source domain is the conceptual domain
from which we draw the metaphorical expressions,
while the target domain is the conceptual domain
that we try to understand. A classical mapping
is ARGUMENT IS WAR, in which we conceptual-
ize the target argumentation domain as the more
concrete source domain of war:

• They fought against the contract.
• They defended their new proposal.

We focus on verbs, as they are often the key
component of metaphoric expressions (Steen et al.,
2010; Martin, 2006). When used metaphorically,
verbs typically evoke source domains (e.g. fought,
defended in the above examples): they are con-
crete, and are used to understand more abstract tar-
gets (i.e., argumentation verbs such as argued, sup-
ported) via conceptual mappings (Sullivan, 2013).

We propose a novel framework for metaphor gen-
eration informed by conceptual metaphor theory.
Given a literal input sentence that evokes a tar-
get domain we generate metaphoric sentences that

2“Domains” are also often referred to as “image schema”,
“frames”, “scenes”, and more; see Kövecses (2020)
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evoke desired corresponding source domain(s).3

For example, given the literal sentence The party
ended as soon as she left evoking the target domain
CAUSE TO END, we can apply a variety of con-
ceptual mappings to generate different metaphoric
outputs evoking different source domains (see Fig-
ure 1). This allows us to generate metaphoric ex-
pressions that match known metaphoric mappings,
as well as generating from unseen mappings to
explore novel metaphors. Our contributions are:

• Two metaphor generation models grounded
in CMT: 1) An unsupervised lexical model
relying on frame embeddings learned from
Framenet (CM-Lex, Section 3.1) and 2) a
BART (Lewis et al., 2020) model encod-
ing source/target domain information through
fine-tuning (CM-BART, Section 3.2).
• Two metaphor generation tasks: 1) generate

metaphoric expressions from known concept
mappings, for which we provide gold standard
test data, and 2) generate novel expressions
from unknown metaphors using rare and un-
seen mappings (Section 4).
• A thorough evaluation using both automatic

and human evaluations (Section 5). We show
that our CM-BART model improves over all
others in terms of metaphoricity (by ≥ 7%)
and domain evocation (by ≥ 33%), and CM-
Lex is competitive with previous neural mod-
els on metaphoricity while outperforming
them on domain evocation (by ≥ 13%).

2 Task Definition

Traditional metaphor generation models focus only
on whether the generated output is in some way
“metaphoric” or not. This ignores the semantic
and cognitive properties inherent in metaphoric-
ity. These models can, to some degree, generate
metaphors given a literal input, but these outputs
often do not evoke the intended metaphor.

Controlled metaphor generation yields critical
benefits over these uncontrolled systems. For sen-
tences in context, having metaphors that are consis-
tent with the text is essential for natural understand-
ing. Also, metaphors are not only used to express
human knowledge, but can also help shape our
understanding of the world: having fine-grained
control over the generation process allows us to

3We note that this source and target terminology used here
is opposite to that in machine translation.

explore novel metaphoric mappings and perhaps
improve our understanding of the related domains.

To achieve controlled metaphor generation, we
define our task as follows: given a literal input
sentence which evokes a target domain and an in-
tended conceptual mapping, generate a metaphoric
sentence such that it evokes a desired source do-
main. Thus, our generation models receive three
inputs: 1) a literal input sentence (They argued
against the contract), 2) the target domain evoked
by the literal input (ARGUMENT) and 3) the de-
sired source domain (WAR) for the metaphorical
sentence. The output is a metaphorical sentence
which evokes the intended mapping (They fought
against the contract)

3 Methods

We experiment with two general categories for gen-
eration. First, following previous work in metaphor
generation and interpretation (Mao et al., 2018;
Stowe et al., 2020), we implement lexical meth-
ods for replacement, identifying relevant verbs and
replacing them with potential candidates for evok-
ing particular mappings. Second, we experiment
with deep learning models, employing controlled
sequence-to-sequence generation.

3.1 CM-Lex

Metaphor generation can be conceptualized as find-
ing key words and replacing them with metaphoric
counterparts. This can be done by employing vec-
tor spaces, identifying the word most likely to fit
in an appropriate context and subjecting them to
some constraints of metaphoricity. We build on
this paradigm by incorporating facets of concep-
tual metaphor theory.

Our procedure is as follows: we learn a joint
embedded representations for domains and lexical
items. We then use the linear transformation be-
tween two domains as a mapping, which can be ap-
plied to input words from the target domain to gen-
erate a word from the source domain. As a proxy
for domains, we utilize FrameNet (Baker et al.,
1998), which contains semantic frames along with
the set of lexical units that evoke them. Frames can
be defined as related systems of concepts (Fillmore,
1982), which is exchangeable with the term “do-
main” used in conceptual metaphor theory (Cruse
and Croft, 2004). Thus, we consider the transfor-
mation from one frame to another as a proxy for a
conceptual metaphoric mapping.
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We first train FrameNet frame embeddings and
employ evaluation metrics to ensure their quality.
We then apply transformations between domains
to literal verbs to generate metaphors grounded in
conceptual metaphor theory.

3.1.1 Learning Frame Embeddings
In order to exploit FrameNet frames as concep-
tual domains, we will embed them in vector space.
While lexical and contextualized embeddings have
proven effective, the field of embedding concepts
from lexical resources is less well explored (Sikos
and Padó, 2018; Alhoshan et al., 2019). These
methods involve tagging raw corpora using auto-
matic FrameNet parsing and then inputting some
combination of the original text and the FrameNet
information into standard embedding algorithms.

To train and evaluate frame embeddings, we use
211k sentences of Gold annotations used to train
the Open-SESAME parser (Swayamdipta et al.,
2017), along with a variety of other automatically
tagged datasets: 250k individual sentence from the
Gutenberg Poetry Corpus (Jacobs, 2018), 17k from
various fiction section of the Brown Corpus (Fran-
cis and Kucera, 1979), and 80k sentences randomly
selected from Wikipedia. From this, we extract a 5-
word context window for each verb, creating 1.8M
verb instances. We then replace the focus verb with
its FrameNet frame label (either provided in the
Gold data, or tagged via the parser), and train em-
bedding models on the resulting data. This yields
joint embedding spaces that contain both common
words and FrameNet frame embeddings.

We define two intrinsic metrics to evaluate the
quality of our produced embeddings to enable fine-
tuning and validation. First, following Sikos and
Padó (2018), we can evaluate quality based on the
words that evoke that Frame. FrameNet gives a
set of lexical units (LUs) that evoke each frame
f . We calculate the lexical similarity by taking
the distance from the mean embedding of “local”
words (w ∈ f ) to the mean embedding of a random
sample k of “distant” words (w 6∈ f ):

lex(f) =
∑
w∈f

cos(Ew,Ef )
|f | −

k∑
w 6∈f

cos(Ew,Ef )
k

This lexical metric (lex) is evaluates whether
the frame embedding is similar to words within its
frame and dissimilar to those without.

FrameNet also contains linking relations be-
tween frames (eg. used-by, uses), yielding a
hierarchy of connected frames. Starting with the
assumption that frames connected in the structure

Figure 2: Lexical generation process

should be more similar, we also calculate a struc-
tural similarity metric str. We follow the same
process as above, taking the distance between the
mean embedding of the local frames n ∈ N , where
N is the immediate neighbors of f , to the mean
embedding of a sample k of distant frames n /∈ N .

str(f) =
∑
n∈N

cos(En,Ef )
|N | −

k∑
n6∈N

cos(En,Ef )
k

We experiment with three lexical embeddings
models: word2vec skip-gram (Mikolov et al.,
2013), Glove (Pennington et al., 2014), and Fast-
Text (Bojanowski et al., 2017). We experiment
with 50, 100, and 300 dimensional representations;
we find the 50 dimensional word2vec embeddings
perform best for both evaluation metrics.4

3.1.2 Embedding Mappings

To apply these embeddings to generate metaphors
based on conceptual mappings, we learn mappings
between frames and apply the mappings directly to
lexical items to facilitate lexical replacement.

We define a mapping m as the pointwise dis-
tance between the target frame embedding and
the source frame embedding. Following the ap-
proach for learning connections between concrete
and poetic themes of Gagliano et al. (2016), we
sum the embedding of the target verb and the map-
ping m for the selected conceptual mapping, and
select the most similar word to the resulting vector.
This word is then delemmatized using fitbert
(Havens and Stal, 2019) and inserted into the origi-
nal sentence (Figure 2).

Note that these resulting words are generated
without context, as they rely only on the input word
and the conceptual mappings. This approach has
benefits: we require no labeled metaphor data, us-
ing only embeddings trained on FrameNet-tagged
corpora. However, ignoring context is likely detri-
mental. In order to better use contextual infor-
mation, we explore state-of-the-art sequence-to-
sequence modeling.

4For full frame embedding evaluation, see Appendix A.
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Literal (filled from LM) Target Frame Metaphoric (original) Source Frame
That tyranny is destroyed DESTRUCTION That tyranny is slain KILLING

The house where love had ended CAUSE TO END The house where love had died DEATH
As the moments passed on PROCESS END As the moments roll on CAUSE MOTION

What I learned my senses fraught COMING TO BELIEVE What I bear my senses fraught BRINGING

Table 1: Sample of extracted pairs from the data collection process.

3.2 CM-BART

For sequence-to-sequence learning, we fine-tune
a pre-trained BART model (Lewis et al., 2020),
adding source and target information to guide gen-
eration towards the intended metaphors. We first
outline a procedure for generating semi-supervised
paired data, then detail the training and generation
process.

3.2.1 Method for Creating Parallel Data

In order to train sequence-to-sequence models
for metaphor generation, we require large scale
parallel corpora. We follow the approach of
Chakrabarty et al. (2021) and build a corpus of
literal/metaphoric paraphrases by starting with the
Gutenberg Poetry corpus (Jacobs, 2018), identify-
ing and masking metaphoric verbs, and replacing
them with infilling from a language model. We
use a BERT-based metaphor classification model
trained on the VUA metaphor corpus (Steen et al.,
2010) to identify metaphoric verbs in a sentence
(i.e “died” in The house where love had died). Then
we convert it to a literal sentence (The house where
love had ended) using infillings from pre-trained
BERT (Devlin et al., 2019).

To ensure the literal sentence with replace-
ments convey the same semantic meaning as the
metaphorical sentence they are then filtered using
symbolic meaning (SymbolOf relation) obtained
from COMET (Bosselut et al., 2019), a GPT based
language model fine-tuned on ConceptNet (Speer
et al., 2017). COMET returns top 5 symbolic
beams of (loss, loneliness, despair, sadness and
sorrow) for the sentence “The house where love
had died” whereas it replaces sorrow with life for
the literal version. While Chakrabarty et al. (2021)
filter down to only those candidates with an exact
match between the top 5 symbolic beams for the
literal and metaphorical sentences returned by the
COMET model, we ease the restriction to cases
where at least four of five symbols are the same.

In order to learn more direct metaphoric in-
formation from this data, we additionally tag
each sentence with FrameNet frames using the
Open-SESAME parser (Swayamdipta et al., 2017).

We extract each pair in which both the focus
word in the literal, target-domain sentence and the
metaphoric, source-domain sentence are assigned
a FrameNet frame. We then make the assumption
that the relation between the frames for the source
and target domains reflects a metaphoric mapping.
This then yields a dataset of paired sentences for
which we have a metaphoric mapping between do-
mains based on FrameNet for the focus verbs.

Samples of the created data are shown in Table 1.
In total this process yields 248k sentences spanning
8.5k unique mappings between FrameNet frames.
Each pair comprises a literal and metaphoric sen-
tence, along with the literal target frame and the
metaphoric source frame. From these we can di-
rectly train a sequence to sequence model for con-
ceptual metaphor-based generation.

3.2.2 Models
We fine-tune BART (Lewis et al., 2020), a pre-
trained conditional language model that combines
bidirectional and auto-regressive transformers, on
the created parallel corpora described in Section
3.2.1. We incorporate representations of the frame
information to allow this model to control for the
metaphoric mappings evoked.

To transform a literal sentence from a given tar-
get domain to a metaphorical sentence evoking a
specific source domain, we incorporate both target
and source domains (as FrameNet frames) into the
textual representation as a control code, following
the work of Schiller et al. (2020) who used this
procedure for Argument Generation. Following the
example from Figure 1, the input literal text fed to
the BART encoder would be:

• DEATH 〈EOT 〉 The party 〈V 〉 ended :
CAUSE TO END 〈V 〉 as soon as she left.

where 〈EOT 〉 and 〈V 〉 are delimiters, DEATH is
the source frame, and CAUSE TO END the target
frame. The decoding target is the metaphoric text
“The party died as soon as she left”, which evokes
the CAUSE TO END IS DEATH mapping.

Note that our training data differs only at the
level of a single verb. We use the generative BART
seq2seq model to generate metaphoric paraphrases,
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but due to the nature of the training data and the im-
portance of verbs in metaphoric expressions, this is
often realized in the output as lexical replacement.

Post fine-tuning, we use top-k (k=5) sampling
(Fan et al., 2018) to generate metaphors condi-
tioned on the input literal sentence and source and
target domains for the required metaphoric map-
ping.5 We evaluate the lexical model (CM-Lex)
and the sequence-to-sequence model (CM-BART)
under two experimental settings.

4 Experimental Setup

We evaluate our metaphor generation methods
against two previous approaches to metaphoric
paraphrase generation: the MERMAID system
(Chakrabarty et al., 2021) and the metaphor mask-
ing model (MetMask) (Stowe et al., 2020). We
explore two tasks: generating against gold standard
metaphoric expressions, and using rare and unseen
metaphoric mappings. For the former, we build a
gold test set of metaphoric paraphrases that evoke a
particular source/target mapping. For the latter, we
apply a variety of source/target mappings to literal
inputs for which we do not have gold outputs.

4.1 Building a Test Set

For a test set, we use the same procedure as our
data collection approach from Section 3.2.1. We ap-
ply this procedure to two datasets: a sample of the
Gutenberg Poetry Corpus and a sample of fiction
from the Brown Corpus (Francis and Kucera, 1979).
This generates an initial set of literal/metaphoric
pairs. We also tagged the pairs from Mohammad
et al. (2016) with FrameNet tags, as these generally
contain novel, well-formed metaphors. These three
datasets each have different properties with regard
to metaphor. The Gutenberg Poetry corpus has
consistent, novel metaphors, but often unconven-
tional syntactic constructions, due to the poetic
nature of the text. The Mohammad 2016 corpus
contains manually constructed metaphors which
are novel, following relatively basic syntactic pat-
terns. The Brown Corpus is standard fiction texts,
so the metaphors within tend to be very conven-
tional.

From these sources, we draw pairs randomly,
checking that they reflect strong literal/metaphoric
paraphrases until we obtain 50 instances from each
set. Each pair is tagged with FrameNet frames for
the focus verbs, which comprise the metaphoric

5Full parameter tuning outlined in Appendix C.

mapping.6 For the Brown corpus, metaphoric ex-
pressions were relatively rare, and thus valid pair-
ings were sparse: to overcome this, we manually
modified 11 of the expressions to evoke the appro-
priate metaphoric mappings.

In total this process yielded 150 lit-
eral/metaphoric pairs, along with the source
and target frames that they evoke. We use this
dataset to evaluate generating metaphors based on
mappings with gold standard outputs, using both
automatic and human-based evaluations.

4.2 Expanding to Unknown Metaphors

To explore the flexibility of the system developed in
this study, we also evaluate them for generation of
metaphoric expressions that are not directly linked
to gold literal/metaphoric pairs. For this, we be-
gin with our 150 pairs from above, but consider
only the literal sentence and the evoked target do-
main. For each sentence, we generate two source
domains that could potentially map to the target.
These are selected in order to identify rare and un-
seen mappings based on the observed mappings in
our training data. For rare mappings we select a
source domain at random from the mappings with
the median frequency for a given target domain.
For unseen mappings we select a source domain at
random from the FrameNet frames that are never
used as a source for the given target domain.

This set contains only the tuple (input sentence,
target domain, source domain) needed as input
to our models; we do not have gold generated
metaphorical utterances. Thus, on this set we will
only perform human-based evaluation of the qual-
ity of the generated metaphors.

4.3 Automatic Evaluation Metrics

Word overlap metrics (eg. BLEU, ROUGE) are
inherently weak for this task, as these sentences
inherently have high overlaps. So instead, we em-
ploy semantic distance metrics. We generate sen-
tence embeddings using SBERT7 (Reimers and
Gurevych, 2019) for each of our components: the
literal input L, the original gold metaphoric expres-
sion M , and the generated output G.

6In 22 cases, parsing errors in FrameNet frames were man-
ually corrected.

7Specifically using the roberta-large model, which
shows the best performance for sentence similarity tasks.
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Model dis rel mean %=
MetMask .191 .094 .143 .087
MERMAID .147 .087 .117 .133
CM-Lex .151 .086 .122 .107

CM-BART .085 .047 .066 .293

Table 2: Automatic evaluation for metaphor generation
systems. %= indicates the percentage that matched the
gold metaphor exactly.

4.3.1 Distance from Gold Metaphor (dis)
The generated metaphoric expressions should
match the semantics of the original gold metaphor.
We can evaluate this using the cosine distance,
here between M and G. As SBERT embeddings
have been shown to reflect semantic similarity and
entailment between paired sentences, this metric
should be capable of capturing whether the gener-
ated metaphoric expression matches the gold.

4.3.2 Relational distance (rel)
Assuming that conceptual metaphoric mappings
are responsible for the connecting of meaning be-
tween our literal and metaphoric sentences, we
would also expect there to be a relation that holds
between the original literal input L and metaphoric
output M . This relation should also hold between
the L and the generated metaphor G. As a sim-
ple metric we can employ cosine distance: we aim
for minimizing the distance between cos(L,M)
between cos(L,G).

Finally, we include the percentage of times the
model produced the exact gold output.

5 Results and Analysis

Results for automatic evaluation on the 150 gold
metaphors are shown in Table 2. Note that we can-
not automatically evaluate against rare or unseen
metaphoric mappings, as we lack gold metaphors.

The CM-Lex model is competitive with the best
neural baseline, which is encouraging. This shows
that simply incorporating basic understanding of
conceptual mappings can be a powerful tool for
metaphor generation. The CM-BART yields the
best automatic performance over all metrics, sig-
nificantly outperforming all other models (p < .01,
paired t-test.).

Automatic metrics allow us to quickly prototype
metaphoric generation systems based in conceptual
metaphor theory. However, they rely on SBERT
and inherit the biases and weaknesses therein. We
also perform human evaluations, against both the
gold test data and the set of rare and unseen map-
pings.

Gold Rare Unseen
Model Met Src Met Src Met Src

MetMask 2.27 1.60 - - - -
MERMAID 2.56 2.12 - - - -
CM-Lex 2.34 2.43 2.28 2.10 1.58 1.14

CM-BART 2.72 2.87 2.41 2.70 2.41 2.01

Table 3: Human evaluations for metaphoricity (Met)
and source domain evocation (Src).

5.1 Human Evaluation
For human evaluation, we defined two objectives.
First, we aim to capture the metaphoricity of the
output, as a core objective. The outputs should
evoke novel, interesting metaphors regardless of
the domains involved. Second, we want the gen-
erated metaphoric outputs to evoke the source do-
mains (eg. “She destroyed his argument” evokes
the source domain of WAR).

We recruited three domain experts in metaphoric-
ity. They were instructed to rate each instance on a
scale from 1 (not at all) to 4 (very) for metaphoric-
ity and for whether it evokes the source domain.
If the sentence was completely unintelligible, they
were instructed to mark it as 0 for both categories.
For metaphoricity, annotators were given brief def-
initions of metaphoricity which they incorporated
into their expert knowledge to best rate metaphors.
For source domain evocation, they were addition-
ally provided with links to the respective FrameNet
frames.

We evaluate three different models for the gold
metaphors: the best performing previous model,
MERMAID, as well as the lexical and CM-BART
models. For all models we evaluate generation
using the mappings for our gold test set. For the un-
known metaphors without gold sentences, we only
evaluate our two controlled models, as the generic
baselines give the same output regardless of the
intended source. This yields a total of 450 sen-
tences (150 gold, 300 without) that are evaluated
for metaphoricity and source domain.

All three experts annotated a random set of 100
training sentences, in order to determine the fea-
sibility and agreement for this task. Agreement
rates were .50 for metaphoricity and .37 for source
domain (Krippendorff’s α).8

5.1.1 Gold Test Mappings
Results for human evaluations of gold, rare, and
unseen metaphoric mappings are shown in Table 3.
With regard to the gold mappings, the CM-BART
model performs best in metaphoricity and source

8Full annotation analysis can be found in Appendix B.



6730

Input/TARGET/SOURCE Model Output Met Src

1
He resisted the panic of vertigo

SELF CONTROL IS
QUARRELING

Gold He fought the panic of vertigo
MetMask He got the panic of vertigo 3 1
MERMAID He felt the panic of vertigo 1 2
CM-Lex He confrontations the panic of vertigo 0 0

CM-BART He disputed the panic of vertigo 3 4

2
A dim aurora rises in my east

CHANGE POSITION ON A SCALE
IS RESIDENCE

Gold A dim aurora lives in my east
MetMask A dim aurora kicked in my east 3 1
MERMAID A dim aurora hangs in my east 4 2
CM-Lex A dim aurora stands in my east 3 3

CM-BART A dim aurora lives in my east 3 4

3
People were running out of the theater

SELF MOTION IS
FLUIDIC MOTION

Gold People were streaming out of the theater
MetMask People were clogged out of the theater 4 1
MERMAID People were running out of the theater 1 4
CM-Lex People were boiling out of the theater 4 4

CM-BART People were spilled out of the theater 4 3

Table 4: Example outputs of each system along with the mean of their human evaluations.

TARGET/SOURCE Model Output Met Src

1

OPERATE VEHICLE IS Input The car drove up alongside him

Rare: SELF MOTION
CM-Lex The car drove up alongside him 1 1

CM-BART The car ran up alongside him 4 4

Unseen: DEATH
CM-Lex The car fell up alongside him 4 4

CM-BART The car died up alongside him 4 2

2

DISTRIBUTED POSITION IS Input The meat was covered in a fatty gravy

Rare: GIVING
CM-Lex The meat was raised in a fatty gravy 4 1

CM-BART The meat was given in a fatty gravy 2 4

Unseen: SURRENDERING POSSESSION
CM-Lex The meat was cut in a fatty gravy 1 1

CM-BART The meat was yielded in a fatty gravy 3 4

3

DISPERSAL IS Input At last the darkness began to dissolve

Rare: ATTEMPT
CM-Lex At last the darkness began to gorn 0 0

CM-BART At last the darkness began to try 4 4

Unseen: WARNING
CM-Lex At last the darkness began to Giffen 0 0

CM-BART At last the darkness began to bite 4 1

Table 5: Examples of system outputs on rare and unknown metaphoric mappings.

domain evocation. CM-Lex has middling perfor-
mance for metaphoricity, but does well at generat-
ing correct source domains. The MERMAID system
performs well in terms of metaphor generation, but
fails to capture the intended source domain.

Examples of each model’s generation are shown
in Table 4. In 1, we see that CM-Lex generates
noise, making the results unintelligible. CM-BART
is more robust, generating fluent expressions, and
shows evidence of conceptual mapping control,
generating a metaphoric expression matching the
source domain. In 2, the MetMask and MERMAID

models generate reasonable metaphors, which do
not evoke the intended domain. CM-Lex is better,
generating “stand” which can reflect RESIDENCE,
while the CM-BART performs best, generating the
gold metaphoric expression.

In 3, we see that the unconstrained models gen-
erate effective expressions: ”clog” is an evocative
metaphor, and ”running”, while literal, can match
the intended domain via the idea of running water.
However, our controlled methods both generate
novel metaphors that directly evoke the source do-

main, showing the effectiveness of incorporating
conceptual information in generation.

Overall, we see that the unconstrained models of-
ten generate good metaphors, but lack consistency
with the input, as they are naive with regard to
the conceptual backing of these metaphoric expres-
sions. CM-Lex is effective to some degree, even
without metaphoric training data, and CM-BART
performs best, generating novel metaphors that fre-
quently match the intended metaphoric expression.

5.1.2 Unknown Metaphor Mappings
CM-BART outperforms CM-Lex for metaphoricity
and source domain evocation for rare and unseen
source domains. Examples of the two proposed
models’ generated for rare and unseen metaphoric
mappings are shown in Table 5.

Example 1 shows the ideal case. When given a
source domain from a ”rare” mapping, the resulting
metaphor is fairly reasonable. CM-BART gener-
ates a metaphor consistent with the original seman-
tics; CM-Lex generates the literal utterance. When
presented with an unseen mapping in which oper-
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ating a vehicle is framed as death, we get diverse
expressions, both adding meaning to the original ut-
terance. CM-Lex uses the verb ”fell” (albeit incor-
rectly conjugated), which can be used to abstractly
evoke the death domain, while CM-BART directly
uses the verb ”die”. The original expression can
be ambiguous as to whether the car stopped: the
evoked metaphor enforces the stoppage of the car,
and also provides color to the expression.

Example 3 highlights a key issue: when the
source and target domains are too incongruent, the
generated expressions can be inconsistent. CM-Lex
here again generates noise. However, CM-BART
generates normal, expressive metaphors, which are
nonetheless incompatible with the original literal
input, which denotes the lessening of darkness.
Rather, CM-BART generates a metaphor express-
ing perhaps growing darkness with the verb try and
a dangerous darkness with the verb bite.

This is a critical point with regard to concep-
tual mappings. Not all pairs are available: they
require semantic consistency, and while generating
from any two pairs may yield insightful, interesting,
and perhaps inspiring new metaphoric expressions,
generating metaphoric paraphrases requires addi-
tional knowledge of which source/target pairings
are compatible. This generally supports notion of
invariance and structure mapping, in which there is
inherent structure within domains that needs to be
consistent in order to evoke metaphoric mappings
between them (Gentner, 1983; Lakoff, 1993).

It must be noted that the systems proposed here
have a distinct advantage in this task: we add
FrameNet frames, which, while neither perfect nor
designed to capture metaphoricity, provide a strong
signal for which domains to generate in. This high-
lights a possible benefit to the interaction between
deep, pre-trained models such as BART and avail-
able lexical resources: by combining these, we
are able to leverage the strength of each to build a
powerful metaphor generation system.

6 Related Work

We broadly cover two areas of related work: previ-
ous computational approaches to CMT, and previ-
ous approaches to metaphor generation.

Computational Approaches to CMT. There
are a variety of approaches to identifying con-
ceptual metaphors themselves. The CorMet sys-
tem (Mason, 2004) was built to extract concep-
tual metaphors based on selectional preferences

of verbs. Shaikh et al. (2014a) builds ”conceptual
spaces” for source domains, using rule-based ex-
traction of relations between lexical items. These
conceptual spaces are then used to find new concep-
tual metaphors. This process is extended to build a
repository of linguistic and conceptual metaphors
(Shaikh et al., 2014b). Mohler et al. (2014) fo-
cus on identifying appropriate source domains for
metaphoric expressions, using vector-based ap-
proaches for metaphor interpretation.

The idea of using frames to represent metaphoric
domains has been explored in the MetaNet project
(Dodge et al., 2015). We however, restrict our work
to FrameNet due to the coverage and availability
of reliable automatic parsing.

Metaphor Generation. Early work in metaphor
generation was based in heuristics, learning to gen-
erate relatively simple ”A is like B” representations
(Abe et al., 2006; Terai and Nakagawa, 2010). In a
similar vein, Veale (2016) uses template-like struc-
tures to generate creative and metaphoric tweets.

Other works focus on identifying metaphoric
mappings using WordNet clustering and selec-
tional preferences (Mason, 2004; Gandy et al.,
2013), syntactic relations to build proposition
databases (Ovchinnikova et al., 2014), and embed-
ding based approaches to identify poetic relation-
ships (Gagliano et al., 2016). However, the goal of
these works is to generate mappings, rather than
linguistic expressions that evoke them.

Amongst deep learning approaches Yu and Wan
(2019) identify literal and metaphoric words in
corpora based on selectional restrictions, and us-
ing these to train sequence-to-sequence models for
metaphor generation, albeit without reference to
any input expression. Stowe et al. (2020) gen-
erates metaphors using masked language model-
ing, masking metaphoric tokens in training in or-
der to encourage metaphoric generation. Other
approaches use novel methods for collecting lit-
eral/metaphor pairs, training sequence-to-sequence
models for simile generation and metaphoric para-
phrasing (Chakrabarty et al., 2020, 2021). These
approaches effectively generate figurative language,
but the models have no knowledge of the under-
lying metaphors, and thus simply generate un-
grounded expressions. This leads to outputs which
are possibly metaphoric, but contain no connec-
tion to the input, eschewing the critical connections
that make novel metaphors powerful. We instead
propose methods for generating metaphoric para-
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phrases grounded in CMT.

7 Conclusions and Future Work

In summary, we have shown two methods for in-
corporating knowledge of conceptual metaphor the-
ory in metaphor generation. We trained FrameNet
frame embeddings to represent conceptual do-
mains, and applied shifts between them to generate
metaphors in an unsupervised fashion. Leverag-
ing FrameNet further, we build a dataset of semi-
supervised pairs that evoke conceptual metaphors,
which can be used along with BART for controlled
metaphor generation. This model achieves state-
of-the-art performance in metaphor generation by
both automatic and human evaluations.

Future work can expand these models to go be-
yond verbs, incorporating nominal and other types
of metaphors. The next necessary step is to go
beyond lexicalized metaphors: good, consistent
conceptual metaphors often span long stretches of
text, and we need to design models that can learn
and generate metaphors over larger texts.

Ethical Considerations

Although we use language models trained on data
collected from the Web, which have been shown to
have issues with bias and abusive language (Sheng
et al., 2019; Wallace et al., 2019), the inductive bias
of our models should limit inadvertent negative im-
pacts. Unlike model variants such as GPT, BART
is a conditional language model, which provides
more control of the generated output. It should also
be noted that our CM-BART model is fine-tuned
on the poetry corpus which is devoid of harmful
and toxic text especially targeted at marginalized
communities

Advances in generative AI inherently come with
concerns about models’ ability to deceive, per-
suade, and misinform. Metaphorical language has
been shown to express and elicit stronger emotion
than literal language (Citron and Goldberg, 2014;
Mohammad et al., 2016) and to provoke emotional
responses in the context of political discourse cov-
ered by mainstream newspapers (Figar, 2014). We
understand there may be concerns about building
generative models for metaphors aimed at persua-
sion. Social scientists distinguish persuasion from
manipulation based on two aspects: dissimulation
and constraint (Nettel and Roque, 2012). Dissimu-
lation involves concealing intention, which requires
hiding information, whereas constraint involves re-

moving options from the audience and forcing them
to accept the conclusion. Our work on metaphor
generation does not aim to hide information about
a topic or present it as the only choice, but aims to
provide the same sentence using more expressive
language.
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Figure 3: Frame embedding evaluation metrics as data
is added.

A Appendix A

Results for each frame embedding method using
the distance metrics defined in Section 3.1 are
shown in Table 6.

Figure 3 tracks these evaluation metrics as more
data is added to each algorithm. The lexical eval-
uation relatively stable, peaking in most cases be-
tween .1 and .2. The word2vec embeddings main-
tain their upward progression even at maximal
data: theoretically additional data could improve
these embeddings further. The structural evaluation
shows something very different: while word2vec
and FastText embeddings improve as data is added,
showing some effects of model size, the Glove
embeddings trend sharply negative at first before
proceeding beginning to improve.

B Appendix B

Agreement rates were measured using Krippen-
dorff’s α. For metaphoricity, the mean score was
.505, indicating moderate agreement. However,
given the difficulty of this task, we believe this to
be relatively stronger: see Table 7 for comparison
to other work evaluating metaphor generation.

For source domain annotation, annotators varied
in the degree to which source domains were evoked.
Initial agreement was relatively poor (.249): we per-
formed a post-processing step, normalizing their
results to a consistent mean. This yields an agree-
ment score of .387: which we deemed competitive
for the difficulty of the task. As we have no direct
comparison for evaluation, further work is required

https://doi.org/10.18653/v1/N19-1092
https://doi.org/10.18653/v1/N19-1092
https://doi.org/10.18653/v1/N19-1092
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lex sim str sim mean
Dimensions 50 100 300 50 100 300 50 100 300
word2vec .203 .208 .205 .111 .076 .104 .157 .144 .154
fasttext .113 .120 .117 .042 .103 .095 .077 .111 .106
glove .179 .191 .212 -.106 -.136 -.108 .037 .028 .052

Table 6

Paper n Method Agreement
Do Dinh et al. (2018) 15,180 MTurk .16-.38 α
Yu and Wan (2019) 80 MTurk -

Chakrabarty et al. (2020) 900 MTurk .36-.49 α
Stowe et al. (2020) 513 MTurk -

Chakrabarty et al. (2021) 900 MTurk -
This work 450 Experts .505 α

Table 7: Comparison of agreement rates for various
metaphor evaluation tasks. Note that Do Dinh et al.
(2018) developed a real-valued scoring layer over an ex-
isting corpus rather than evaluating generated outputs.
“-” indicates agreement is not reported.

to refine this type of evaluation process.

C Appendix C

For retrieving commonsense symbolism of the sen-
tences, we use the pre-trained COMET model 9

and retrieve top 5 candidates for each input.

1. No of Parameters: We use the BART large
checkpoint (400M parameters) and use the
FAIRSEQ implementation (Ott et al., 2019)
10.

2. No of Epochs: We fine-tune pre-trained
BART for 25 epochs for CM-BART model
and save the best model based on validation
perplexity.

3. Training Time: Our training time is 60 min-
utes for CM-BART.

4. Hardware Configuration: We use 4 RTX
2080 GPUs.

5. Training Hyper parameters: We use the
same parameters as the FAIRSEQ github
repository where BART was fine-tuned for
the CNN-DM summarization task with the
exception of the size of each mini-batch, in
terms of the number of tokens, for which we
used 1024. 11

9https://github.com/atcbosselut/
comet-commonsense

10https://github.com/pytorch/fairseq/
tree/master/examples/bart

11https://github.com/pytorch/fairseq/
blob/master/examples/roberta/README.glue.
md

6. Decoding Strategy & Hyper Parameters:
For decoding we generate metaphors from
our models using a top-k random sampling
scheme (Fan et al., 2018). At each timestep,
the model generates the probability of each
word in the vocabulary being the likely next
word. We randomly sample from the k = 5
most likely candidates from this distribution.

https://github.com/atcbosselut/comet-commonsense
https://github.com/atcbosselut/comet-commonsense
https://github.com/pytorch/fairseq/tree/master/examples/bart
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