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Abstract

Despite recent advances in natural language
generation, it remains challenging to control
attributes of generated text. We propose DEX-
PERTS: Decoding-time Experts, a decoding-
time method for controlled text generation
that combines a pretrained language model
with “expert” LMs and/or “anti-expert” LMs
in a product of experts. Intuitively, under
the ensemble, tokens only get high probabil-
ity if they are considered likely by the ex-
perts and unlikely by the anti-experts. We ap-
ply DEXPERTS to language detoxification and
sentiment-controlled generation, where we
outperform existing controllable generation
methods on both automatic and human evalua-
tions. Moreover, because DEXPERTS operates
only on the output of the pretrained LM, it is
effective with (anti-)experts of smaller size, in-
cluding when operating on GPT-3. Our work
highlights the promise of tuning small LMs on
text with (un)desirable attributes for efficient
decoding-time steering.

1 Introduction

Controlling the output of pretrained language mod-
els (LMs) is crucial for achieving useful and safe
language generation applications, such as non-
offensive sentence completion or friendly conversa-
tion generation (See et al., 2019; Sheng et al., 2020;
Gehman et al., 2020). For example, a safe comple-
tion to the prompt “When she rejected his advance,
he grabbed...” requires avoiding word choices that
could lead to continuations with gender-based vio-
lence (e.g., “her”; Figure 1).

Without such steering, these language models
risk generating mindless and offensive content
(Sheng et al., 2019; Holtzman et al., 2020) which
hinders their safe deployment (Brockman et al.,
2020; Bender et al., 2021). Importantly, as the
scale of pretrained LMs increases (e.g., 175B and
1.6T parameters; Brown et al., 2020; Fedus et al.,

Figure 1: Illustration of DEXPERTS, where a toxic LM
acts as an “anti-expert” and a non-toxic LM acts as an
“expert”. In this toy example, given the prompt, “When
she rejected his advance, he grabbed,” the toxic LM
assigns greater weight to “her” than “his”, expressing
subtle signals of toxicity that can be leveraged for effec-
tive attribute control. The difference in logits z` ´ z´

output by the expert and anti-expert represents the per-
turbations to make to the logits z of the pretrained
“base” LM.

2021), finetuning or re-training approaches are be-
coming increasingly computationally infeasible for
most researchers.

We propose DEXPERTS,1 a decoding-time
method for controlled text generation based on a

1DEXPERTS stands for Decoding-time Experts.
Our code is available at https://github.com/
alisawuffles/DExperts.

https://github.com/alisawuffles/DExperts
https://github.com/alisawuffles/DExperts
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product of experts (Hinton, 2002). Our method
combines an out-of-the-box pretrained (“base”)
LM with “expert” LMs and/or “anti-expert” LMs,
which model text with desirable and undesirable at-
tributes, respectively. By generatively modeling
text with particular attributes and directly com-
bining the output distributions from each LM,
DEXPERTS leverages subtle signals expressible
by language models for effective attribute control,
without sacrificing generation fluency or diversity.
Moreover, because it operates only on the out-
put of the base LM, DEXPERTS can steer with
(anti-)experts of smaller size, even in cases where
we do not have full access to the base model (e.g.,
GPT-3 through an API).

We first apply DEXPERTS to the task of language
detoxification (§3), by finetuning an expert and an
anti-expert on public comments that are human-
annotated for toxicity. Our experimental results
show that DEXPERTS can successfully avoid toxi-
city in language generation while preserving out-
put fluency, outperforming existing detoxification
methods on both automatic and human evaluations.
Moreover, we find that DEXPERTS continues to
outperform baselines when employing only an anti-
expert and re-using the base model as the expert,
making it one of the only methods that can avoid
toxicity without annotated examples of non-toxic
content. In analysis, we also show that our method
successfully avoids toxic degeneration while using
just „650 toxic comments, opening avenues for
easily customizable anti-experts.

We then showcase the generalizability of DEX-
PERTS by tackling the task of controlling the senti-
ment of LMs’ output (§4). To this end, we combine
a pretrained LM with (anti-)experts modeling pos-
itive and negative sentiment. As with language
detoxification, DEXPERTS outperforms existing
sentiment steering methods on both automatic and
human evaluations. Additionally, we show our
method is especially effective in the adversarial
setting of steering negative prompts toward pos-
itive continuations, and vice versa. Finally, we
demonstrate a preliminary proof-of-concept using
DEXPERTS for stylistic rewriting (§5).

Our work demonstrates the effectiveness of tun-
ing small LMs on text with desirable and undesir-
able properties for efficient and effective steering of
larger pretrained LMs, and highlights the promise
of decoding-time methods for controlled language
generation.

2 Experts and Anti-Experts for
Controlled Generation

Given input text as a prompt, the task of controlled
text generation is to generate a continuation that
flows naturally from the prompt while having the
desired attribute (e.g., positive sentiment) but not
an undesired one (e.g., toxicity).

Given a prompt xăt, the language model com-
putes the logits for the tth token, denoted zt P R|V|,
where V is the vocabulary. A probability distribu-
tion over the vocabulary is obtained by normalizing
and exponentiating zt:

P pXt | xătq “ softmaxpztq, (1)

and the next token is generated by sampling xt „
P pXt | xătq.

2.1 DEXPERTS Formalization
DEXPERTS operates on a pretrained language
model M by combining its predictions with an
expert M`, which models text with a desirable
attribute, and an anti-expert M´, which models
text with an undesirable attribute. At time step t,
we condition each language model M , M`, and
M´ on the prompt xăt to obtain zt, z

`
t , and z´t ,

respectively. The product-of-experts ensemble is
given by:2

P̃ pXt | xătq “ softmax
`

zt ` α
`

z`t ´ z´t
˘˘

(2)
where α is a hyperparameter that controls the
amount of modification to zt, and can be inter-
preted as the strength of control over the base
model. Equivalently,

P̃ pXt | xătq9P pXt | xătq

ˆ

P`pXt | xătq

P´pXt | xătq

˙α

(3)
Intuitively, a token will only have high proba-

bility if it has high probability under both P and
P`, and low probability under P´. We can inter-
pret the ratio P`pXt|xătq

P´pXt|xătq
as a scaling coefficient for

each token, which is used to modify the original
probability predicted for that token.

2.2 Sampling from DEXPERTS

Sampling fluent output from language models com-
monly requires truncating the unreliable tail of

2Though not explored in this paper, this formulation readily
accommodates multiple experts and anti-experts, whose logits
can be respectively added or subtracted.
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the probability distribution, as in top-k (Fan et al.,
2018) or nucleus sampling (Holtzman et al., 2020).
We adapt this intuition to our method by truncat-
ing the logits z output by the base model prior to
combining with the experts. Formally, let V 1 Ă V
denote the set of tokens that are a part of the top-
k/top-p vocabulary of the base LM at time step t.
The truncated logits z1 are given by

z1rvs “

#

zrvs if v P V 1

´8 otherwise
(4)

By substituting z with z1 in Equation 2, we have

P̃ 1pXt | xătq “ softmax
`

z1t ` α
`

z`t ´ z´t
˘˘

(5)
We obtain our next token xt via pure sampling from
the probability distribution P̃ 1pXt | xătq, which
has non-zero probability only on tokens in V 1. In
this way, adding in the (anti-)experts can be in-
terpreted as modifying the probability distribution
over the candidate tokens in V 1, without any chance
of reintroducing tokens v R V 1 from the tail of the
original probability distribution.

3 Toxicity Avoidance

Given that large pretrained LMs are at risk of pro-
ducing toxic content (Sheng et al., 2019; Gehman
et al., 2020), steering away from toxic “degener-
ation” is crucial for their safe deployment. Our
approach uses an anti-expert that models overt tox-
icity, as well as an expert that is finetuned on non-
toxic data from the same domain.

Note that while obtaining an LM that is truly
free from social biases is impossible (Fiske, 1993;
Lakoff, 1973), the “non-toxic” expert serves the
purpose of modeling the same domain of comments
as the toxic anti-expert, providing more effective
contrast. Nonetheless, we provide an ablation using
only a toxic anti-expert and show that it remains
effective above all previous baselines.

3.1 Method
We use GPT-2 Large as our base LM. For our expert
and anti-expert, we finetune several sizes of GPT-2
(Small, Medium, Large) on a dataset of human-
annotated comments from the Jigsaw Unintended
Bias in Toxicity Classification Kaggle challenge.3

We consider an example toxic if ě 50% of anno-
tators marked it as toxic, and nontoxic if none of
the annotators mark it as toxic. This toxic dataset

3https://bit.ly/3cvG5py

has „160K comments, and the nontoxic dataset
„1.4M comments. Note that our toxic dataset is
human-annotated and out-of-domain with respect
to the pretraining corpus (WebText for GPT-2).

We report results for α “ 2.0, chosen after ob-
serving the tradeoff between detoxification and flu-
ency, but show results for other values of α in Ap-
pendix D.

3.2 Evaluation
3.2.1 Generation Prompts
To evaluate the problem of toxic degeneration
where a user might unexpectedly receive harm-
ful output from a model, we use a random sam-
ple of 10K nontoxic prompts from the RealToxici-
tyPrompts dataset (Gehman et al., 2020).

3.2.2 Baselines
Domain-adaptive pretraining (DAPT; Guru-
rangan et al., 2020) We further pretrain the base
model on the non-toxic subset of OpenWebText.
This dataset is obtained by scoring the full Open-
WebText corpus with the toxicity classifier from
Perspective API4 and keeping the least toxic 2 per-
cent of documents, a corpus of about 150K docu-
ments, or 63M tokens, following the implementa-
tion of this baseline from Gehman et al. (2020).

Plug-and-play language models (PPLM;
Dathathri et al., 2020) PPLM uses gradients
from a toxicity classifier to update the LM’s hidden
representations. We retrain the classifier to be
compatible with our larger base model size, on
the same toxicity data used in the original paper.5

Due to the extreme computational expense of
PPLM (runtimes are shown in Appendix A.4), we
evaluate PPLM on a random subset of 1K prompts.

Generative discriminators (GeDi; Krause et al.,
2020) GeDi uses a class-conditioned LM to pro-
vide classification probabilities for all possible next
tokens via Bayes’ rule. We use the toxicity class-
conditioned LM released by the authors with the
recommended generation hyperparameters.

DEXPERTS (anti-only) We also explore an anti-
expert-only ablation of DEXPERTS, by reusing the
base model as the expert. To be clear, we substitute
z`t “ zt in Equation 1, so that we have

P̃ pXt | xătq “ softmax
`

p1` αqzt ´ αz
´
t

˘

(6)
4https://github.com/conversationai/

perspectiveapi
5https://bit.ly/3yQiCIo

https://bit.ly/3cvG5py
https://github.com/conversationai/perspectiveapi
https://github.com/conversationai/perspectiveapi
https://bit.ly/3yQiCIo
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Model Toxicity (Ó) Fluency (Ó) Diversity (Ò)
Avg. max. toxicity Toxicity prob. Output ppl. Dist-1 Dist-2 Dist-3

GPT-2 0.527 0.520 25.45 0.58 0.85 0.85

PPLM (10%) 0.520 0.518 32.58 0.58 0.86 0.86
Non-toxic expert 0.485 0.464 40.61 0.58 0.86 0.86
DAPT 0.428 0.360 31.21 0.57 0.84 0.84
GeDi 0.363 0.217 60.03 0.62 0.84 0.83
DEXPERTS (anti-only) 0.352 0.191 52.02 0.58 0.80 0.73

DEXPERTS (small) 0.302 0.118 38.20 0.56 0.82 0.83
DEXPERTS (medium) 0.307 0.125 32.51 0.57 0.84 0.84
DEXPERTS (large) 0.314 0.128 32.41 0.58 0.84 0.84

Table 1: Results of experiments in detoxifying generations from GPT-2. DEXPERTS (size) indicates the size of the
(anti-)experts. Fluency is measured as perplexity of generated output according to a larger GPT-2 model. Diversity
is measured as the count of unique n-grams normalized by the length of text. Toxicity is measured as the average
maximum toxicity over 25 generations and the empirical probability of generating toxic text at least once over 25
generations, as judged by Perspective API. All models are evaluated on a dataset of 10K nontoxic prompts from
RealToxicityPrompts (Gehman et al., 2020), except PPLM, which is evaluated on a subset of 1K prompts, due to
the greater computational expense.

We use the toxic anti-expert based on GPT-2 Large
and the same hyperparameter value α “ 2.0.

Non-Toxic Expert Finally, we consider generat-
ing directly from the non-toxic expert based on
GPT-2 Large.

For all baselines, we use nucleus sampling (Holtz-
man et al., 2020) with p “ 0.9 to generate up to 20
tokens. Note that for our method, nucleus sampling
is done as described in §2, by using the nucleus
from the base LM. Other training and generation
details (e.g., hyperparameters) are described in Ap-
pendix A.

3.2.3 Automatic Evaluation
We evaluate our generations for toxicity, fluency,
and diversity. Following previous work (Gehman
et al., 2020), we characterize generation toxicity us-
ing the toxicity score from Perspective API, along
two axes: 1) the maximum toxicity over k “ 25
generations, and 2) the empirical probability of gen-
erating a continuation with toxicity ě 0.5 at least
once over k “ 25 generations. Generation fluency
is measured by the mean perplexity of generated
continuations according to a larger pretrained LM,
GPT-2 XL. Generation diversity is measured using
the mean number of distinct n-grams, normalized
by the length of text (Li et al., 2016), among the
25 generations for each prompt. We report Dist-1,
Dist-2, and Dist-3 scores for distinct uni-, bi-, and
trigrams, respectively.

Results According to automatic metrics shown
in Table 1, DEXPERTS substantially outperforms

all existing baselines at detoxification. In partic-
ular, DEXPERTS (medium, large) are among the
most fluent controllable generation methods, while
fully preserving output diversity compared to the
base model. Moreover, the DEXPERTS (anti-only)
ablation continues to outperform baselines at detox-
ification, although with a loss in fluency and diver-
sity that is likely due to the less effective contrast
between the base model and anti-expert. We report
the per-generation runtime of each method in Ap-
pendix A.4 to demonstrate DEXPERTS’s efficiency
compared to other decoding-time methods.

3.2.4 Human Evaluation
While automatic toxicity classifiers like Perspec-
tive API enable the kind of large-scale evalua-
tion required for systematic comparison of meth-
ods, an abundance of work shows that their ac-
curacy is far from ideal (Dixon et al., 2018; Sap
et al., 2019; Davidson et al., 2019; Hutchinson
et al., 2020) in part due to reliance on spurious
features, which we discuss in §8. Therefore, we
carry out a human evaluation on Amazon Mechan-
ical Turk on 120 random prompts from the 10K
nontoxic subset. For each prompt, we compare
four pairs of models: DEXPERTS (large) versus
GPT-2 Large, PPLM, DAPT, and GeDi. For each
pair of models, we randomly sample two genera-
tions from each model. This results in a total of
120 prompts ˆ 4pairings

prompt ˆ 2 generations
pairing “ 960 com-

parisons. Each comparison pair is rated by three
Turkers, who select which of the two continuations
is: (1) less toxic, (2) more fluent, and (3) more
topical, i.e., whether the continuation is natural,
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Figure 2: Results of human evaluation for detoxification. DEXPERTS is rated as less toxic more often than every
baseline, and equally fluent compared to the base model, GPT-2.

Model Toxicity (Ó)
Avg. max. toxicity Toxicity prob.

GPT-3 0.525 0.515
DEXPERTS (large) 0.293 0.111

Table 2: Results of experiments in detoxifying genera-
tions from GPT-3.

relevant, and follows logically from the prompt.
A screenshot of the user interface is provided in
Appendix C.

Results According to human evaluations, DEX-
PERTS is rated as less toxic more often than all base-
lines (Figure 2). In particular, it is rated equally flu-
ent compared to GPT-2, yet less toxic than GPT-2
10% more often than the other way around. See
Appendix E for examples of generations.

3.3 Steering GPT-3
We next use DEXPERTS to steer GPT-3 Ada. Be-
cause the OpenAI API6 allows access to only the
top 100 log probabilities at each time step, we can
only modify and sample from the probability dis-
tribution over the top 100 tokens. Nonetheless,
results in Table 2 show that DEXPERTS effectively
reduces toxicity from GPT-3 to about the same
level as when operating on GPT-2. This demon-
strates that DEXPERTS requires only the output of
the base model, and indeed, the (anti-)experts do
not need to be built on the base model.

3.4 Analysis: Dataset Size
In practice, gathering large amounts of toxic data
may be challenging, especially in applications
where we would want to customize the anti-expert
LM for differing notions of harmful language. To
explore the limited data setting, we investigate
the relationship between the dataset size used to
train the (anti-)experts and its effectiveness at steer-
ing the base model. We finetune GPT-2 Large

6https://openai.com/api/

Figure 3: Performance of DEXPERTS when
(anti-)experts are trained on differently-sized datasets
and evaluated at different checkpoints, calculated on
a subset of 1K prompts. For comparison, recall the
avg. max. toxicity of GPT-2 is 0.527.

on five different dataset sizes of exactly 40,960,
204.8K, 1.024M, 5.12M, and 10.24M tokens; for
each dataset size, we train the expert and anti-
expert for one epoch with checkpoints at every fifth
of an epoch. The performance of each ensemble, at
every (anti-)expert checkpoint, is show in Figure 3.

We can see that even with a dataset of 40,960 to-
kens („650 comments) corresponding to ă 0.4%
of the original toxic dataset, we substantially re-
duce toxicity from the base model to about the
same level as our strongest baseline, GeDi. (On
one GPU, this corresponds to „3 minutes of fine-
tuning.) Nonetheless, as the size of the finetun-
ing dataset for (anti-)experts increases, the perfor-
mance of DEXPERTS increases as well.

4 Sentiment-Controlled Generation

As a second application we consider the well-
studied task of controlling the polarity of text’s
sentiment (e.g., Li et al., 2018; Sudhakar et al.,
2019), steering towards either positive or negative
sentiment.

4.1 Method
We use the same pretrained model from §3, GPT-2
Large, as our base LM. We finetune GPT-2 (Small,

https://openai.com/api/
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Target
Sentiment Model

% Positive Sentiment Fluency (Ó) Diversity (Ò)
Positive
prompts

Neutral
prompts

Negative
prompts Output ppl. Dist-1 Dist-2 Dist-3

Positive

DEXPERTS (large) 94.46 36.42 45.83 0.56 0.83 0.83
DEXPERTS (medium) 94.31 33.20 43.19 0.56 0.83 0.83
DEXPERTS (small) 94.57 31.64 42.08 0.56 0.83 0.84

GeDi 86.01 26.80 58.41 0.57 0.80 0.79
Positive expert 79.83 43.80 64.32 0.59 0.86 0.85
DAPT 77.24 14.17 30.52 0.56 0.83 0.84
DEXPERTS (anti-only) 60.72 4.43 46.00 0.65 0.80 0.78
CTRL 61.81 18.88 43.79 0.51 0.83 0.86
PPLM (10%) 52.68 8.72 142.11 0.62 0.86 0.85

GPT-2 99.08 50.02 0.00 29.28 0.58 0.84 0.84

Negative

PPLM (10%) 89.74 39.05 181.78 0.63 0.87 0.86
CTRL 79.05 37.63 35.94 0.50 0.83 0.86
DEXPERTS (anti-only) 93.75 34.05 44.23 0.65 0.81 0.78
DAPT 87.43 33.28 32.86 0.58 0.85 0.84
Negative expert 61.67 24.32 65.11 0.60 0.86 0.85
GeDi 39.57 8.73 84.11 0.63 0.84 0.82

DEXPERTS (small) 45.25 3.85 39.92 0.59 0.85 0.84
DEXPERTS (medium) 40.21 3.79 43.47 0.59 0.85 0.84
DEXPERTS (large) 35.99 3.77 45.91 0.60 0.84 0.83

Table 3: Results for experiments in sentiment-controlled generation. We consider three sets of prompts relative
to the base LM: neutral prompts, which are equally likely to lead to positive and negative generations, as well
as positive prompts and negative prompts, which lead to overwhelmingly positive and negative generations,
respectively. Sentiment is measured as the mean percentage of positive generations of out of the 25 continuations
for each prompt, according to HuggingFace’s sentiment analysis classifier. Higher is better for positive steering
(top); lower is better for negative steering (bottom).

Medium, Large) on a positive sentiment corpus
for our positive LM, and on a negative sentiment
corpus for our negative LM. We use Stanford Senti-
ment Treebank (SST-5; Socher et al., 2013), which
contains movie reviews labeled by human raters
for sentiment on a scale from 1 (very negative) to 5
(very positive). Our positive dataset contains “posi-
tive” and “very positive” reviews, and our negative
dataset “negative” or “very negative” reviews. Each
of these sentiment datasets has about 4K reviews.

For ease of notation we consider the positive LM
our expert and negative LM our anti-expert, and
use α “ ˘3.2 for steering in each direction. The
tradeoff between fluency and sentiment control for
many values of α is shown in §4.3.

4.2 Evaluation

4.2.1 Generation Prompts

In order to test our method’s ability to control sen-
timent beyond the domain that the sentiment ex-
perts are trained on (movie reviews), we collect a
dataset of 100K naturally occurring prompts from
the OpenWebText Corpus (OWT) (Gokaslan and
Cohen, 2019). Details are outlined in Appendix B.
We generate 25 continuations for each prompt from

the base LM, and score them using HuggingFace’s
sentiment analysis classifier (Wolf et al., 2020)
trained on SST-5 movie reviews. Using these gener-
ations from the base LM, we build three datasets of
prompts: (1) 5K “neutral” prompts, which lead to
12 or 13 positive continuations, (2) 2.5K “negative”
prompts, which lead to 25 negative continuations,
and (3) 2.5K “positive” prompts, which lead to 24
or 25 positive continuations. We consider the neg-
ative and positive prompts adversarial settings,
where the task is to steer toward the opposite senti-
ment of the prompt.

4.2.2 Baselines

We consider the same baselines as in §3, along with
a new baseline (CTRL; Keskar et al., 2019).

DAPT Corresponding to our DAPT baseline in
§3, we score all documents in OpenWebText with
the HuggingFace sentiment classifier, and keep the
most positive 2% and most negative 2% (according
to the probability of the predicted label) to obtain
the positive and negative corpora. We perform an-
other round of pretraining on each corpus to obtain
a positive LM and negative LM.
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PPLM As with toxicity §3, we retrain the senti-
ment classifier for PPLM with a larger embedding
size compatible with our base model. The training
data used is SST-5. Again, we evaluate PPLM on
only 10% of the prompts compared to other models,
which are randomly selected: 500 neutral prompts,
250 positive prompts, and 250 negative prompts.

GeDi We use GeDi with the sentiment class-
conditioned LMs released by the original authors,
which are trained on IMDB movie reviews (Maas
et al., 2011). (We find that retraining it on SST-5 re-
sults in slightly reduced performance, as discussed
in Appendix A.)

DEXPERTS (anti-only) To explore whether sim-
ply steering away from one sentiment will yield
the opposite sentiment, we again explore an anti-
expert-only version of DEXPERTS. As in §3, we
reuse the base model as the expert, and use only a
negative anti-expert LM for positive steering, and
only a positive anti-expert LM for negative steering.
We use α “ ˘2.0 for this setting.

Positive/Negative Experts Again, we consider
decoding directly from the corresponding senti-
ment expert for positive and negative steering.

Conditional Transformer LM (CTRL; Keskar
et al., 2019) To control the sentiment of genera-
tions from CTRL , we use the “Reviews” control
code and append a rating of “5.0” for positive gener-
ations and a rating of “1.0” for negative generations.
The sentiment training examples for CTRL came
from Amazon reviews (McAuley et al., 2015).

As with toxicity experiments (§3), we use nucleus
sampling with p “ 0.9, and include our training
and generation details in Appendix A.

4.2.3 Automatic Evaluation
We evaluate our generations for the target senti-
ment, fluency, and diversity. To estimate sentiment,
we use HuggingFace’s sentiment analysis classi-
fier, and report the mean percentage of generations
per prompt (out of 25) which are labeled positive
(the rest are negative). We evaluate fluency and
diversity in the same ways as §3.

Results As shown in Table 3, DEXPERTS greatly
outperforms previous controllable generation meth-
ods (PPLM, CTRL, DAPT, GeDi) on both neutral
prompts and adversarial prompts. The limited per-
formance of CTRL suggests that the effectiveness
of class-conditioned training on domain-specific

data is limited to the domain of that data; train-
ing on Amazon reviews does not allow general-
ization outside of the reviews domain. In a sim-
ilar vein, while the positive and negative experts
achieve decent performance (even performing the
best on negative prompts), they do so at the expense
of much higher output perplexity. This contrast
shows two sides of the same coin: we observe that
while CTRL acts like a standard language model
on out-of-domain prompts (good fluency, poor con-
trol), the sentiment experts are highly specialized
on movie reviews and tend to steer every genera-
tion toward movies (poor fluency, strong control).
Meanwhile, DAPT is more effective while main-
taining fluency, because its training domain is the
same domain as the prompts domain (i.e., OWT),
but its performance decreases substantially in the
adversarial setting which requires more active steer-
ing. We observe that the poor fluency of PPLM is
due to occasional generations with extremely high
perplexity, suggesting cases of degenerate behavior.
DEXPERTS with only an anti-expert is mildly effec-
tive on neutral prompts (outperforming or matching
the performance of CTRL and PPLM), but works
very poorly in the adversarial setting, confirming
our intuition that steering away from negative senti-
ment does not provide sufficiently strong guidance
for positive sentiment.

4.2.4 Human Evaluation

For human evaluation, we randomly choose 30 neu-
tral prompts, 30 positive prompts, and 30 negative
prompts, and consider five pairs of models: DEX-
PERTS versus GPT-2, CTRL, PPLM, DAPT, and
GeDi. For each prompt and pairing of models, we
sample two generations from each model for each
steering direction considered. This results in a to-
tal of 120 promptsˆ 5pairings

prompt ˆ 2generations
pairing “ 1200

pairs, each rated by 3 MTurk workers. We ask
annotators to select which generation achieves the
desired sentiment better, along with the fluency and
topicality questions from §3.2.4.

Results As shown in Figure 4, DEXPERTS is sub-
stantially more effective at steering toward posi-
tivity on negative prompts while achieving better
topicality and better fluency compared to all other
baselines, including GPT-2. In the opposite setting
of steering toward negativity on positive prompts,
the gap in sentiment control performance between
DEXPERTS and each of GPT-2, CTRL, DAPT, and
PPLM is even more pronounced: DEXPERTS is
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Figure 4: Results of human evaluation for steering toward positivity on negative prompts (left) and steering toward
negativity on positive prompts (right). DEXPERTS is substantially more effective at achieving the desired sentiment
over every baseline.

rated better than its comparison 62–78% of the
time. While GeDi achieves close to DEXPERTS’
performance in this setting, its topicality and flu-
ency are much worse. The asymmetry, where nega-
tive steering appears easier than positive steering
for DEXPERTS, is reflected in automatic evalua-
tion as well. We hypothesize that it is easier to
derail a positive prompt with negativity than turn
something negative into something positive; but to
human readers, these negative continuations may
be unexpected (a similar observation was made
in previous work; Madotto et al., 2020). For the
neutral prompts, we see similar trends as those in
the automatic and the human adversarial evalua-
tions. Due to space constraints, we include those
in Appendix D.2.

4.3 Analysis: Sentiment versus Fluency

In practice, we may want different levels of senti-
ment control depending on the application (e.g., ag-
gressively positive marketing pitches versus merely
friendly chatbots). Figure 5 shows the relationship
between output sentiment and fluency for different
choices of α P r´3.4, 3.4s, conditioned on neutral
prompts. The smooth tradeoff suggests that α can
by adjusted by a practitioner or user, depending
on their application. In our experiments, we pick
α “ ˘3.2 because the curve becomes less steep,
meaning that a greater cost in fluency does not re-

Figure 5: The relationship between output fluency and
positivity for different values of α P r´3.4, 3.4s. We
choose α “ ˘3.2 in our experiments. Results are cal-
culated on a subset of 1K neutral prompts.

turn as great of an increase in the desired sentiment.
The tradeoff between output toxicity and fluency
looks very similar for DEXPERTS detoxification
(§3), and is included in Appendix D.1.

5 Stylistic Rewriting with DEXPERTS

As a preliminary exploration, we go beyond gen-
erating text continuations to apply DEXPERTS to
stylistic rewriting, i.e., rewriting a sentence in a tar-
get style while preserving as much content as pos-
sible. We replace the base model with a pretrained



6699

autoencoder, BART (Lewis et al., 2020), and use
GPT-2 Large sentiment (anti-)experts from §4 for
steering. At each time step, the autoencoder base
model conditions on both the input sequence and
the generation-so-far, whereas the (anti-)experts
condition on only the latter. As a proof of concept,
we show some examples of input/output from this
system in Table 4.

InputÑ Output Examples

I love cats and seeing them play with yarn.
α“´4.0
ÝÝÝÝÝÑ I love cats and seeing them play with rotten cereal.

Oatmilk is tasty and good for the environment.
α“´3.5
ÝÝÝÝÝÑ Oatmilk is toxic and bad for the environment.

Great food but horrible staff and very very rude workers!
α“2.0
ÝÝÝÝÑ A very nice restaurant

Table 4: Examples of input/output from a preliminary
system that applies DEXPERTS to stylistic rewriting.
Recall α ą 0 indicates positive rewriting, and α ă 0
indicates negative rewriting.

This exploration suggests that more innovation is
required to apply DEXPERTS to stylistic rewriting,
but it is a promising direction. We anticipate future
work on the subject.

6 Related Work

The task of controlling the output of a language gen-
eration model has been widely studied by previous
work (for a review, see Prabhumoye et al., 2020).
Prior to using pretrained LMs as a backbone, most
work used custom neural models trained for their
respective downstream generation tasks, including
emotion-aware text generation (Ghosh et al., 2017;
Ficler and Goldberg, 2017), attribute-aware product
review generation (Dong et al., 2017), and friendly
or empathetic dialogue response generation (See
et al., 2019; Rashkin et al., 2019).

Since pretrained LMs have shown impressive
text generation ability (Radford et al., 2018, 2019),
two directions have emerged to control their
language generation: training approaches and
decoding-time approaches. Training approaches in-
clude finetuning the pretrained LMs on datasets that
contain the desired attributes (Gururangan et al.,
2020) as well as creating a class-conditioned pre-
trained LM trained on text with specific attributes
control code prefixes (Keskar et al., 2019). In con-
trast to our method, such approaches can only steer
towards desired text attributes, they cannot steer
away from them. Additionally, training approaches

require significant computational resources, which
may no longer be feasible with the size of more
recent pretrained LMs (Brown et al., 2020; Fedus
et al., 2021).

Decoding-time methods, a more lightweight ap-
proach, have been used controlling the attributes of
generated text, as well as for improving its quality
(Li et al., 2016; Holtzman et al., 2018; Welleck
et al., 2020). PPLM (Dathathri et al., 2020) is a
steering method that updates a pretrained model’s
hidden representations according to the gradient of
a classifier with respect to the desired class. Unfor-
tunately, this approach is computationally expen-
sive, as shown in this and previous work (Gehman
et al., 2020). Contemporaneous with our work,
FUDGE (Yang and Klein, 2021) trains classifiers
on partial sequences to predict whether an attribute
will be satisfied in the future, and uses Bayesian fac-
torization to obtain the attribute-conditioned proba-
bility distribution. GeDi (Krause et al., 2020) uses
Bayes’ rule similarly, but computes classification
probabilities using the output of class-conditioned
LMs rather than directly training a classifier. In
contrast, our experiments show that directly ensem-
bling LMs’ probabilities as opposed to using them
for estimating class probabilities is more effective
at steering text generation.

7 Conclusion

We present DEXPERTS, a method for controlled
text generation that reweights the predictions of
language models based on expert (and anti-expert)
opinions. In experiments for two different tasks,
detoxification and sentiment control, we show that
our method is able to effectively steer the language
model towards the desired generations, while pre-
serving the fluency and diversity of generated text.
As applications built on language models become
ubiquitous, DEXPERTS demonstrates promise in
steering these models toward safe and user-friendly
generations.
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8 Broader Impact and Ethical
Implications

Our study is motivated by the potential harms of
using pretrained language models (Bender et al.,
2021), specifically their tendency to generate hate-
ful, offensive, or toxic content (Sheng et al., 2020;
Gehman et al., 2020). Part of our work requires
automatically detecting toxicity in generated texts,
for which we use the Perspective API.7 a commer-
cially deployed toxicity detection tool. However,
the mismatch between the construct of toxicity and
its operationalization through an automatic classi-
fier can cause biased or unintended model behavior
(Jacobs and Wallach, 2021). Specifically, recent
work has shown that such hate speech classifiers
overestimate the prevalence of toxicity in text that
contains a minority identity mention (Hutchinson
et al., 2020; Dixon et al., 2018) or text written by
racial minorities (Sap et al., 2019; Davidson et al.,
2019), therefore having the real possibility of back-
firing against its very aim of fairness and inclusive
dialogue. To address this limitation, we also per-
form a human evaluation of toxicity, for which
we obtained IRB approval and sought to pay our
workers a fair wage („US$7–9/h).

We also acknowledge that any controllable
detoxification method runs the risk of dual use
(Pandya, 2019), specifically, this technology could
be used to automatically generate hateful text (e.g.,
extremist texts; McGuffie and Newhouse, 2020).
For a broader discussion of such risks, and of the
risks of large pretrained LMs in general, please see
Bender et al. (2021).

Nevertheless, toxicity in pretrained LMs is an
unsolved issue (Sheng et al., 2019; Gehman et al.,
2020). Therefore, we hope future work contin-
ues to better define and evaluate the presence of
harmful language (e.g., Sap et al., 2020), and to
develop systems for mitigating such language that
can be personalized to users’ diverse experiences
with language (e.g., dealing with reclaimed slurs
appropriately; Croom, 2013).
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Appendix Overview

In this supplemental material, we provide addi-
tional information for producing the results of the
paper and additional results.

A Modeling Details

A.1 Out of the Box Models

We use HuggingFace Transformers (Wolf et al.,
2020) versions of all pretrained models (aside from
GPT-3), implemented in the PyTorch deep learning
framework. For GPT-3, we use the Ada model
which is accessed with the OpenAI API.8

A.2 Training Details

All training is performed on a single NVIDIA
Quadro 6000 GPU.

DEXPERTS Hyperparameters for finetuning
(anti-)experts for DEXPERTS are given in Table 5.

Hyperparameter Assignment

model GPT-2 (S/M/L)
number of parameters 124M / 355M / 774M

number of steps 1-3 epochs
effective batch size 512

block size 128
learning rate optimizer Adam

Adam epsilon 1e-8
Adam initial learning rate 5e-5

learning rate scheduler linear with no warmup
weight decay 0

Table 5: Hyperparameters for finetuning (anti-)experts
for DEXPERTS and continued pretraining in domain-
adaptive pretraining (DAPT). We finetune the senti-
ment (anti-)experts and all DAPT models for 3 epochs,
and the toxicity (anti-)experts for one epoch.

The finetuning time for each model size is shown
in Table 6.

8https://openai.com/api/
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Size Non-toxic Toxic Positive Negative

Small 2h:45m 18m:01s 34s 32s
Medium 7h:06m 46m:52s 1m:30s 1m:24s

Large 14h:35m 1h:37m 3m:19s 3m:01s

Table 6: Finetuning time for (anti-)experts in DEX-
PERTS, for each GPT-2 size used.

DAPT For our implementation of DAPT in senti-
ment experiments (§4), we use HuggingFace’s sen-
timent analysis classifier to filter documents from
OpenWebText () for the most positive 2% and most
negative 2% of documents. Because the classifier
takes a maximum of 512 tokens as input text, we
approximate the sentiment of a document with its
first 510 tokens (a start and end token are added by
the classifier). The hyperparameters for the addi-
tional phase of pretraining on the attribute data is
given in Table 5.

PPLM For our implementation of PPLM in ex-
periments, we retrain the toxicity and sentiment
classifiers to be compatible with our base model
GPT-2 (large), as the original paper used GPT-2
medium for experiments. We use the same train-
ing datasets and hyperparameters as in the original
PPLM paper.

Hyperparameter Assignment

embedding size 1280
number of steps 10 epochs

learning rate 1e-4
batch size 64

Table 7: Hyperparameters for training the attribute clas-
sifiers used for PPLM.

GeDi For toxicity and sentiment steering, we
download the class-conditioned language models
(based on GPT-2 Medium) made available by the
original authors. As an experiment, we also align
the finetuning data for the sentiment GeDis and
the (anti-)experts used in DEXPERTS by finetun-
ing a new class-conditioned LM on SST-5 data (as
opposed to IMDB used by in GeDi). We found
slightly lower performance on sentiment control
(„1-2%) across the settings, and therefore use the
original class-conditioned LMs.

A.3 Dataset Details

Details of datasets used for further pretraining in
the DAPT baselines are given in Table 8, and those

for finetuning our experts and anti-experts are given
in Table 9 and Table 10.

Dataset size Non-toxic Positive Negative

Tokens 63,457,536 13,240,192 57,805,184
Documents 1,320,876 264,837 1,208,186

Table 8: Dataset details for subsets of OpenWebText
used to obtain the DAPT models.

Dataset size Non-toxic Toxic

Tokens 91,856,000 10,262,144
Comments 1,401,762 159,782

Table 9: Dataset details for toxicity (anti-)experts.

Dataset size Positive Negative

Tokens 116,480 108,800
Movie reviews 4,963 4,650

Table 10: Dataset details for sentiment (anti-)experts.

A.4 Generation Details
Generation hyperparameters shared among all
methods are shown in Table 11. Hyperparame-
ters for PPLM generation are shown in Table 12.
Following the recommendation of the authors,
we performed a hyperparameter search for step
size over the values t0.02, 0.06, 0.10, 0.20, 0.40u,
and for number of iterations over the values
t10, 20, 40, 60u, over a small sample of twenty non-
toxic prompts. We picked step size 0.20 and 10
iterations, for the best tradeoff between toxicity
reduction and output fluency. Due to the extreme
computational expense of this method, we were
not able to repeat the hyperparameter search for
sentiment prompts.

Hyperparameters for GeDi generation are shown
in Table 13.

Hyperparameter Assignment

number of samples 25
top-p (sampling) 0.9

temperature 1
max length 20

Table 11: Hyperparameters for generation with all mod-
els.

We compare the runtime for each controllable
generation method used in §3 in Table 14, all on a
single NVIDIA Quadro 6000 GPU.. We see that
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Hyperparameter Assignment

temperature 1
number of iterations 10

step size 0.20
gamma 1

GM-scale 0.9
KL-scale 0.01

repetition penalty 1
grad length 100000

horizon length 1
window length none

Table 12: Hyperparameters for generation with PPLM.
A description of each hyperparameter can be found in
(Dathathri et al., 2020)

Hyperparameter Assignment

posterior weighting exponent (ω) 30
filter p p1´ ρq 0.8

target p pτq 0.8
repetition penalty scale 10

repetition penalty 1.2

Table 13: Hyperparameters for generation with GeDi.
A description of each hyperparameter can be found in
(Krause et al., 2020)

DEXPERTS takes 2 to 3 times the time as decoding
directly from the base model, depending on the
size of the (anti-)experts. When using the same
model size for the guiding language model as in
GeDi (GPT-2 Medium), DEXPERTS is more effi-
cient than GeDi, and both methods are 100ˆ faster
than PPLM.

Model Generation time (sec)

GPT-2 / DAPT 0.094
DEXPERTS (small) 0.186
DEXPERTS (medium) 0.240
DEXPERTS (anti-only) 0.248
GeDi 0.276
DEXPERTS (large) 0.334
PPLM 25.39

Table 14: Generation time (in seconds) per continua-
tion of maximum length 20 tokens for toxicity experi-
ments in §3, all run on the same architecture for com-
parison.

B Collection of Sentiment Prompts

We build our prompts for sentiment experiments
(§4) from the OpenWebText Corpus (Gokaslan and
Cohen, 2019), a corpus of English web text scraped
from outbound links on Reddit. We randomly sam-
ple 100K documents from OpenWebText and tok-
enize each document into sentences. Following the

Figure 6: A histogram of the number of positive gen-
erations out of 25 from GPT-2, conditioned on our
sentiment prompts dataset of 100k naturally occurring
prompts.

creation of RealToxicityPrompts (Gehman et al.,
2020), we split each sentence into the prompt, con-
sisting of the first half of tokens, and the continua-
tion, consisting of the remaining tokens. We keep
only prompts that are between 4 and 10 tokens
long (inclusive). For all tokenization, we use the
NLTK library (Bird and Loper, 2004). This results
in 140M prompts, from which we randomly sample
100K prompts.

For each of the 100K prompts, we generate 25
continuations from our base model, GPT-2 (large),
and score the continuations for sentiment using the
HuggingFace sentiment classifier described in §4.
The distribution of prompts with n P r0, 25s posi-
tive continuations out of 25 is shown in Figure 6.
Interestingly, we observe that more prompts have
more negative continuations than positive continu-
ations than vice versa. Based on these generations,
we create three sets of prompts as described in §4.

C Human Evaluation

Our interface for human evaluation is shown in Fig-
ure 7. For each category, the annotator is allowed
to choose either one of the continuations, or rate
the two options as equal.

D Additional Results

D.1 Toxicity Hyperparameter Control
Figure 8 shows the relationship between output
toxicity and fluency for different values of α in our
method. The relationship is smooth, reflecting the
corresponding figure for sentiment in §4.3.

D.2 Human Evaluation on Neutral Prompts
Figure 9 shows the results of human evaluation on
sentiment control conditioned on neutral prompts.
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Figure 7: The interface on Amazon Mechanical Turk
used for collecting human evaluation in §3. The in-
terface for positive and negative sentiment evaluation
in §4 is equivalent, except replacing “less toxic” with
“more positive” and “more negative,” respectively.

Figure 8: The relationship between output fluency and
toxicity for different values of α P r1.0, 2.2s, which
controls the strength of control. Results are calculated
on a subset of 1K nontoxic prompts.

E Generation Examples

Examples of generations from each method are
given in Table 15 for detoxification (§3), and Table
16 for sentiment control (§4).
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Figure 9: Results of human evaluation comparing different methods’ ability to control sentiment on neutral
prompts, as an addendum to §4.

Prompt: She made out with him, took sexy pictures in a photo booth, and watched him...

GPT-2 having sex with a still-pregnant woman in the bathroom. She brought him over to the
PPLM kiss the smiling teachers who showed up to see her. ë Her is the story of Kimberly Tur
DAPT do it — with his brothers, neighbors, female employees at the bank and other bank customers who’d
GeDi admire her enormous breasts for the first time. She laughed when she found out Bruce kept them in to
DEXPERTS
pα “ 1.0q

go about his daily chores like a good girlfriend should. A neat piece of work who wanted her to

DEXPERTS
pα “ 2.0q

play drums on the rooftop patio with his band while another time his girlfriend came over and woke him up

Table 15: Examples of generated continuations using different detoxification methods, conditioned on a nontoxic
prompt (see §3) “She made out with him, took sexy pictures in a photo booth, and watched him...”

Prompt: Trust in automation can only evolve from...

GPT-2 within the market itself. No higher education, no corporate jobs, no content factories or on-demand

Positive steering

PPLM that default belief, Petersson says, “What is the best technology and automation tools employed in the

CTRL a strong foundation of good human skills and technology.” The author gives examples where he feels
this trust is

DAPT people, not from machines. This is why I believe education is the key to unlocking automation for
education

GeDi within but must also nurture and empower all of our employees to help shape the future.
DEXPERTS
pα “ 2.0q

integrating knowledge with innovation. Today’s start-ups bring unique, complementary perspectives to
transform our planet and

DEXPERTS
pα “ 3.2q

awareness and acceptance of the importance of automation to business success and sustainability of
our communities,” says Weibel

Negative steering

PPLM the first to the last step. If we are serious about having the right engine for the right problem
CTRL an idea to a reality. The future of AI will be built by humans with intelligent machines creating new tools
DAPT the bottom-up. But some more traditional forms of automation have started to become mainstream, and it
GeDi bad code to worse developers that don’t know what they’re doing as well. That’s why your
DEXPERTS
pα “ ´2.0q

a level of dependence. Automation cannot truly be trusted when it reaches a level of dependence
on security

DEXPERTS
pα “ ´3.2q

bad thinking: automation will fail because its logic is incoherent and artificial and does not add any value

Table 16: Examples of generated continuations using different methods for controlled text generation, conditioned
on the “neutral” prompt (see §4) “Trust in automation can only evolve from...”


