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Abstract

Although automated metrics are commonly
used to evaluate NLG systems, they often cor-
relate poorly with human judgements. Newer
metrics such as BERTScore have addressed
many weaknesses in prior metrics such as
BLEU and ROUGE, which rely on =-gram
matching. These newer methods, however, are
still limited in that they do not consider the
generation context, so they cannot properly re-
ward generated text that is correct but deviates
from the given reference.

In this paper, we propose Language Model
Augmented Relevance Score (MARS), a new
context-aware metric for NLG evaluation.
MARS leverages off-the-shelf language mod-
els, guided by reinforcement learning, to cre-
ate augmented references that consider both
the generation context and available human
references, which are then used as additional
references to score generated text. Compared
with seven existing metrics in three common
NLG tasks, MARS not only achieves higher
correlation with human reference judgements,
but also differentiates well-formed candidates
from adversarial samples to a larger degree.

1 Introduction

Automated metrics such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) are popular meth-
ods for evaluating natural language generation
(NLG) systems. Compared with human evalua-
tion, they are cheaper and faster, and accordingly,
they often serve as essential metrics for benchmark-
ing the performance of NLG models (Novikova
et al., 2017). Despite their widespread use, how-
ever, these automated metrics often poorly correlate
with ratings given by human judges, particularly
for datasets in which only a single human reference
exists (Gupta et al., 2019; Novikova et al., 2017).
Moreover, these automated metrics only capture
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Figure 1: Existing metrics compare the candidate with
the human reference but ignore context. MARS (our
method) augments the human reference while consider-
ing the context, which allows it to provide evaluation
scores that correlate highly with human references.

similarities between generated sentences and refer-
ence candidates, crucially ignoring provided con-
texts that are relevant for evaluating the answer in
contextual NLG tasks, such as story generation,
news summarization, and question-answering (Tao
et al., 2018; Nema and Khapra, 2018).

Table 1 shows a story generation1 example
that exemplifies some weaknesses of several com-
mon metrics. Perplexity (PPL) (Brown et al.,
1992) successfully detects ungrammatical sen-
tences, but it fails to distinguish legitimate novel
continuations and copy-and-pasted ones. Rely-
ing on surface-level =-gram matching, BLEU-1
and ROUGE-L2 cannot detect reordering effec-
tively, and wrongly score the well-formed candi-
date lower than its retrieval-based adversarial ex-
ample. BERTScore (Zhang et al., 2019) leverages
contextual embeddings from BERT (Devlin et al.,
2019), thus mitigating the above challenges, but
still does not fairly evaluate candidates that cor-
rectly align with the context but happen to differ

1The ROC story generation task asks systems to generate
a legitimate ending for a four-sentence story.

2L stands for longest common sequence matching.
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Context. Wendy was driving down the road. She heard her car making a noise. She pulled over to examine the problem.
There was nothing but oil all on the road from her car.

Human Reference. She called for help and waited to get her car fixed. PPL BLEU-1 ROUGE-L BERTScore MARS

Candidate. Her fears were confirmed when her engine was smoking. 75.58 0.223 0.182 0.338 0.574
Reorder. her confirmed engine fears Her when was were smoking. 405.60 0.223 0.182 0.265 0.352
Retrieve. She heard her car making a noise. 63.93 0.337 0.400 0.406 0.448

Table 1: In this story generation example, MARS is the only metric that gives the well-formed candidate a higher
score than two adversarial examples. The human rating of the candidate averaged over 20 judgements is 5.05 out of
6.00. Two adversarial examples are generated by Reordering the tokens of the candidate (as weak NLG systems
whose generation is not readable) and Retrieveing a sentence from the context (as systems with no generation
ability). We boxed the cases where the adversarial example does not score lower than the well-formed candidate.

from the provided reference example. In our exam-
ple, the candidate “... her engine was smoking” is
reasonable but deviates from the human reference,
and so BERTScore rates it relatively low (0.338 out
of 1.0), thus correlating poorly with human rating,
which was high (5.05 out of 6.00).

To address the above issues, prior studies have
proposed a number of promising remedies. One
line of work has proposed to combine human rat-
ings with automated metrics (Durmus et al., 2020;
Chaganty et al., 2018, inter alia). For instance, in
HUSE score, Hashimoto et al. (2019) leverages the
differences between perplexity and human judge-
ments to consider both quality and diversity of
generated text. Another line has proposed train-
ing separate neural models to aid automated met-
rics (Mehri and Eskenazi, 2020; Yuma et al., 2020,
inter alia). For instance, BLEURT (Sellam et al.,
2020) fine-tunes BERT (Devlin et al., 2019) on syn-
thetic reference-candidate pairs for machine trans-
lation. These methods, however, are often limited
in practical use, because the high-cost human rat-
ings are not always available for every dataset, and
the data- or system-specific training is not easily
extended to other domains (Zhang et al., 2019), and
can even bias the evaluation (Freitag et al., 2020b).

In this paper, we present MARS (Language
Model Augmented Relevance Score), a new NLG
evaluation metric that requires neither supervision
from human ratings nor additional training on spe-
cific domains. As shown in Figure 1, instead of
comparing candidates only with human written ref-
erences, as many prior metrics do, MARS uses a
mixture of both human and augmented references.
Specifically, MARS masks tokens in the reference
to create templates, and then uses the context and
templates to generate augmented references by in-
filling the masked parts with an LM guided by rein-
forcement learning. The augmented references thus

incorporate information from both the context and
the human reference, and are enriched with lexical
and syntactic diversity, facilitating fairer evaluation
of candidates. Finally, we compute the score as
a weighted average of the similarity between the
candidate and the set of augmented references in
the contextual embedding space.

The advantages of MARS are three-fold. First,
MARS correlates highly with human judgements.
We apply MARS to three diverse NLG tasks, and
demonstrate that, compared with seven popular
NLG metrics, MARS better correlates with hu-
man judgements and is robust against adversarial
attacks. Second, MARS is context-aware. Un-
like existing metrics that only consider the given
human reference, we use a constrained NLG ap-
proach to incorporate the generation context into
augmented references, thus alleviating bias against
diverse candidates. Third, MARS is easy to deploy
and extend. Built on off-the-shelf LMs, MARS
requires neither human supervision nor additional
training for specific domains, and can therefore
serve as a general-purpose metric for a broad range
of NLG applications, as we will demonstrate for
three common NLG tasks: story generation, news
summarization, and question-answering.

2 Approach

MARS comprises three steps. First, we mask out
non-important tokens from the human reference to
produce templates for augmentation (§2.1). Sec-
ond, we guide off-the-shelf LMs to generate refer-
ence augmentation on these templates via a rein-
forced self-planning algorithm (§2.2). Finally, we
compute a weighted average score that reflects the
overall similarity between the candidate and the set
of augmented references (§2.3).
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2.1 Human Reference Token Masking

The first step in MARS is to take in the given hu-
man reference and generate templates—masked
versions of the human reference—which can then
be used to generate augmented references. Our
masking procedure can be viewed as a reversed
process of prior insertion- and template-based gen-
eration approaches (Zhang et al., 2020; Miao et al.,
2019); whereas these generation approaches start
with templates of important tokens and then fill
in the details to generate complete sentences, our
masking procedure starts with the complete sen-
tence (i.e., the human reference) and then masks
out unimportant tokens to generate templates. To
better explain our masking procedure, we introduce
two concepts, mask priority and mask cost:

Mask Priority. We compute a mask priority E8
for each token G8, which captures the priority of
masking G8, where non-important words should
receive higher priority. We compute E8 as a func-
tion of two things: the inverse document frequency
(IDF) of G8 , and the part-of-speech (POS) of G8:

E8 =
U(POS [G8])
IDF(G8 , -)

, (1)

where U is a function that assigns a weight to each
POS tag.3 Common tokens across the corpus -
(e.g., stop words, with low IDF) will receive high
mask priority. Tokens responsible for description
details will also be assigned high mask priority
based on their part-of-speech (e.g., adjectives are
mainly used for details and so they are given higher
priority of being masked).

Mask Cost. For each token G8 , we also compute
a mask cost F8. Tokens that appear in both con-
text and human reference should have high mask-
ing cost as they are deemed context-carrying. We
use the longest common sequence (LCS) match-
ing between the context and the human reference
to identify these context-carrying tokens. In our
experiments, we set the F8 of these tokens to 10
and the default F8 of all other tokens to 1. We use
_ to denote the ratio of tokens to be masked in a
sentence of # tokens, and define ,max = _ · # as
the maximum cost allowed.

3U varies for each task. Empirically, we find that it works
well to assign adjectives, adverbs, and nouns higher weights
than other parts-of-speech. For our setting, we assign weights
of 4, 3, 2 to the above three types.

DP-based Token Masking. Now that for each
token we have a mask priority and a mask cost,
we aim to choose a set of tokens to mask with the
highest possible sum of priorities for which the
sum of mask costs is not greater than,max. Given
a function q(G8) = {1, 0} where 1 means token G8
is masked and 0 means it remains, the objective of
token masking can be expressed as follows:

max
#∑
8=1

E8 · q(G8) ,

s.t.
#∑
8=1

F8 · q(G8) ≤ ,max .

(2)

Such a goal is actually a NP-complete combina-
torial optimization problem, called the Knapsack
problem (Pisinger, 1995), which we solve using
dynamic-programming (DP). In general, the mask-
ing strategy aggressively harvests tokens of high
mask priority while keeping the cost of masked to-
kens from exceeding the mask cost limitation,max.
The detailed DP algorithm for solving this problem
is shown in Appendix A.

2.2 Self-planning Cloze Augmentation
After creating the templates described in §2.1, we
produce augmented reference examples based on
both the templates as well as the generation context.
This procedure can be seen as a mixture of hard-
and soft-constrained NLG, where the template to-
kens pre-exist with some blanks, and the system,
conditioned on the context, aims to fill in the blanks.
We henceforth refer this process of creating aug-
mented references as cloze4 augmentation.

Background. Masked Language Models (MLM)
such as RoBERTa (Liu et al., 2019) and BERT (De-
vlin et al., 2019) are trained to predict masked
tokens within sentences, and thus are able to do
cloze augmentation off-the-shelf. However, with-
out architecture-level modification, MLMs are only
able to infill a pre-determined number of missing
tokens (Zhu et al., 2019). This is especially prob-
lematic since—if they are directly used to augment
references—all the augmented references will have
the same number of tokens as that of the original
human reference. We believe this unnecessarily
constrains augmentation diversity, and thus con-
sider it as a Naive method in our evaluations (§4).

4A cloze test (Taylor, 1953) is a language test where a
portion of language is removed and the participant is asked to
replace the missing language item.
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I really like the show performed at the Theatre!

I enjoy every minute of the show at the Theatre!

I [blk] [blk] the show [blk] [blk] the Theatre!

(a) Naive Cloze Augmentation:Masked LM

(b) Self-planning Cloze Augmentation: Autoregressive LM

I enjoy the show only performed at the Theatre!

Context

Context

Bi-directional Attention

Uni-directional Attention Reinforced Self-planning

+

+

I [blk] [blk] the show [blk] [blk] the Theatre!

Figure 2: Compared with the Naive method, our rein-
forced self-planning approach infills blanks with ([blk])
varying-length tokens while considering both past and
future tokens, which promote diversity and coherence
respectively. The context is concatenated to the begin-
ning of the reference template.

Autoregressive Language Models (ALM) such
as GPT-2 (Radford et al., 2019), on the other hand,
are trained to predict current step token given past
tokens. They can generate sequences of varying
lengths, but they cannot infill missing tokens within
sentences effectively since they do not consider
future context. To enable ALMs to infill blanks
of unspecified length, prior work has proposed
either retraining a new LM from scratch (Shen
et al., 2020) or fine-tuning on specially prepared
data (Donahue et al., 2020), which are costly and
not easy to extend to new NLG tasks. As shown
in Figure 2, we take a reinforcement learning (RL)
approach that uses future words after the blank to
guide current step infilling generation. Since such
RL guidance only relies on the tokens within its
own to-be-infilled template, we call it reinforced
self-planning. Our method combines the advan-
tages of both MLMs and ALMs, requiring neither
re-training nor collecting new data, and thus is eas-
ier to extend to other off-the-shelf LMs.

Reinforced Self-planning. At each decoding
step during generation, a vanilla ALM will pick
the token GC that has the highest probability by
applying an argmax over the softmax output of hid-
den states. We add a self-planning stage between
the argmax and softmax function. Following the
RL framework, we define the state at step C as the
generated sequences before C (i.e., BC = G<C ), and
the action at step C as the C-th output token (i.e.,

0C = GC ). We take the softmax output of the last
hidden states (with parameter \) as the policy c\ ,
since it is the probability of picking token GC (action
0C ) given the state BC = G<C . Similarly, we denote
the policy after reinforced self-planning as c\3 .

Typically, the RL objective is to maximize the
expectation of total reward �, summed over ) steps
on the trajectory g induced by c\ :

� (\) = Eg∼c\

[
)∑
C=0

WCAC

]
, (3)

where W ∈ (0, 1] is the discounting factor, and A is
the single-step reward. In text generation, however,
such a reward definition requires sampling over the
future generated sequence to estimate current step
reward (Gong et al., 2019), which may cause the
policy to end in zero reward region because of high
variance of the gradient (Pang and He, 2021). Since
we guide the generation in every step of decoding,
we derive the C-th step policy gradient O\ �C (\) as:

ECg∼c\

[
nCO\ log c\ (0C |BC ) · A (G3C )

]
, (4)

with importance sampling weight nC to stabilize the
optimization (Munos et al., 2016), which is:

nC =
c\3 (0C |BC )
c\ (0C |BC )

.

If we denote a certain token in future context
as F ∈ {Ffuture}, single-step self-planning reward
A (G3C ) can be approximated by the cosine similarity
between C-th step hidden state and the embedded
vector of F by the LM embedding layers, which is

A (G3C ) =
∑

F ∈Ffuture

log(softmax(ℎ\3<C ) · emb(F)) .

(5)
Given all above definitions, at C-th step, we up-

date c\ towards the self-planned c\3 as:

\3 ← \ + [
:∑
8=1

O\ �C (\3/b)
‖O\ �C (\3/b)‖

, (6)

where [ is the learning rate and b is the temperature
parameter to control the stochastic sampling dur-
ing token decoding (Keskar et al., 2019). After :
iterations of reinforced self-planning, the updated
policy c\3 should produce tokens approaching the
future context in embedding space, since future
context contributes to the calculation of reward A
(Eq. 5).5 More details about how we handle edge
cases during reinforced self-planning are presented
in Appendix B.

5In our setting, [, b and : are 0.02, 1.3, and 3 respectively.
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2.3 Computing Contextual Similarity

After generating augmented reference sentences,
the final MARS score is computed as a weighted
average of the similarity between the candidate and
each reference in the augmentation set (including
the original human reference). One way to ob-
tain similarity scores is using BERTScore (Zhang
et al., 2019), but BERTScore requires training on
external resources to make its outputs more read-
able. Therefore, in order to keep all the resources
used by MARS off-the-shelf, we utilize Sentence-
BERT (Reimers and Gurevych, 2019), which uses
the mean of all token embeddings in a sentence as
the overall sentence-level encoding. As the sen-
tence encoder, we use RoBERTa-large (Liu et al.,
2019), a common choice in the literature (Zhang
et al., 2019; Reimers and Gurevych, 2020). As
shown in Eq. 7, we then compute MARS score as
the average of the cosine similarities weighted us-
ing a geometric progression with a common ratio
@ ∈ (0, 1] and a scale factor (start value) 0 ≠ 0:

MARS =
#_∑
8=1

0@8−1 candT · ref8−1

‖cand‖T ‖ref8−1‖

s.t.
#_∑
8=1

0@8−1 = 1 ,

(7)

where the candidate encoding is cand, the reference
encodings are ref8 (8 is the index of the augmented
reference under a certain _, and ref0 marks the zero-
mask human reference), and #_ is the number of
masking ratios we use in §2.1. Different @ values,
as defined by the geometric progression, determine
how much weight each reference contributes. By
default, Eq. 7 assigns the largest weight to the hu-
man reference since it is the gold standard.

3 Tasks & Datasets

We evaluated MARS and compared it with several
popular NLG metrics on the following three tasks:

Story Generation. We use the ROC stories
dataset6 for story generation, which requires candi-
date NLG systems to generate coherent endings to
four-sentence stories (Mostafazadeh et al., 2016).
The dataset consists of 96,198 examples of par-
tially written stories; we take the human-rated
subset (#=300) released by HUSE (Hashimoto
et al., 2019), which contains continuances by (1)

6https://cs.rochester.edu/nlp/rocstories/

Avg.
|Cntx.|

Avg.
|H Ref.| Ω

# data
(# HR / data)

U

ROC 34.38 8.37 4.1 300 (20) 0.64
Newsroom 772.21 34.70 22.3 540 (3) 0.71
MOCHA 161.92 4.69 34.5 450 (5) 0.82

Table 2: Statistics of the three datasets with human rat-
ings used in this work. Avg. |Cntx.| and |H Ref.|: the
averaged number of tokens in contexts and human ref-
erences. Ω: the ratio of the previous two terms (lower
Ω can indicate a more open-ended task). # HR: the
number of Human Ratings. U: Krippendorff’s alpha
coefficient to measure inter-annotator agreement.

an industry-level system based on Apache Solr7,
and (2) an Open-NMT model with global atten-
tion (McCann et al., 2017).

News Summarization. For the news summariza-
tion task, we use the Newsroom summary dataset.8

This dataset contains 1.3 million articles from 38
major publications (Grusky et al., 2018) and we use
the subset with human ratings (#=540) released by
the authors.9 This dataset contains outputs from
summarization models: (1) TextRank: a sentence-
level summarization system inspired by Google
PageRank (Page et al., 1999), (2) a Seq2Seq model
with attention (Rush et al., 2015), and (3) Pointer-
N: a pointer-based neural model (See et al., 2017)
trained on Newsroom dataset.

Question Answering. For question answering,
we use the MOCHA dataset,10 which includes
human ratings on outputs of five models trained
on six QA datasets (Chen et al., 2020). We con-
sider a distributionally-balanced subset (#=450)
of these outputs from three systems: (1) fine-
tuned GPT-2 (Radford et al., 2019), (2) a Back-
Translation model (Sennrich et al., 2016), and (3)
a MHPG model (Bauer et al., 2018) trained on Nar-
rativeQA (Kočiskỳ et al., 2018) and MCScript (Os-
termann et al., 2018) datasets.

The detailed statistics of these three datasets
we used for this work are shown in Table 2. For
pre-processing, we removed hashtags and urls in
the text, but leave punctuation and stop words,
which can affect LCS matching when computing
mask costs. For all tasks, we use GPT-2 (large,
with 774M parameters) as the language model for

7https://lucene.apache.org/solr
8http://lil.nlp.cornell.edu/newsroom/
9The subset includes human ratings on four perspectives:

coherence, fluency, informative and relevance. We compute
the average of the four scores as an overall human rating.

10https://allennlp.org/mocha
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ROC Story Generation
Ω = 4.1

Newsroom Summarization
Ω = 22.7

MOCHA Question Answering
Ω = 34.5

Existing Metrics Solr Open-NMT TextRank Seq2Seq Pointer-N GPT-2 Back-Tran MHPG

BLEU-1 0.198 0.104 0.224 0.268 0.115 0.328 0.061 0.318
METEOR 0.180 0.116 0.288 0.235 0.256 0.466 0.179 0.409
ROUGE-L 0.118 0.195 0.041 -0.133 0.065 0.468 0.056 0.247
Sent. Mover Sim. 0.020 0.015 0.112 0.099 0.177 0.510 0.166 0.610
MoverScore 0.181 0.391 0.075 0.337 0.212 0.535 0.190 0.592
BERTScore 0.245 0.386 0.154 0.302 0.181 0.444 0.274 0.458
Perplexity -0.104 -0.073 -0.385 0.011 -0.035 0.014 -0.051 -0.128

MARS (default) 0.476 0.397 0.372 0.336 0.329 0.526 0.644 0.741
- w/o. self-plan. 0.313 0.212 0.290 0.245 0.314 0.477 0.631 0.709
- w/o. context+ 0.360 0.334 0.107 0.160 -0.009 0.134 0.222 0.303
- w/o. both 0.276 0.183 -0.163 0.149 -0.057 -0.092 0.121 0.299

Naive (MLM) 0.449 0.197 0.201 0.324 0.114 0.443 0.307 0.540

Table 3: Pearson’s A correlations with human judgements for MARS and seven existing metrics across system
outputs for three generation tasks. BLEU-1 (Papineni et al., 2002), METEOR (Lavie and Agarwal, 2007), and
ROUGE-L (Lin and Och, 2004) use =-gram matching. Sentence Mover’s Similarity (Clark et al., 2019) and Mover-
Score (Zhao et al., 2019) measure similarity using earth mover’s distance. BERTScore (Zhang et al., 2019) lever-
ages contextual embeddings from pre-trained LMs. As an ablation, we remove self-planning guidance, context,
and both. Naive uses RoBERTa-large for reference augmentation (see §2.2). Ω is defined as in Table 2.

MARS, and RoBERTa-large for the Naive method.
For the newsroom dataset, some news articles were
longer than the max sequence length of 1024 BPE,
and so we cut off the tail end of these examples.
With a single RTX-2080 GPU, cloze augmentation
with _ = {0 (human ref.), 20%, 40%, 60%, 80%}
takes 0.8 seconds on average per reference, amount-
ing to a total augmentation time of 17, 45, and 32
minutes for the ROC, Newsroom and MOCHA
tasks respectively. We show how we pick the mask-
ing ratios for different tasks in §4.3.

4 Evaluation

4.1 MARS Better Correlates With Humans
As automated metrics are only helpful if they cor-
relate sufficiently with human judgements, in this
section we examine how MARS correlates with
human judgements compared with prior metrics.

System-level Correlation. Table 3 shows the
correlations between human judgements and au-
tomated metrics for MARS and seven other unsu-
pervised metrics, across all NLG systems studied
in our three tasks. Compared with the other metrics,
MARS achieves the highest correlation with human
judgements for five of the seven systems (and com-
parable with the top in the other two systems), mak-
ing considerable improvements over the next-best
metric for many of the NLG systems (e.g., 0.370 ↑
for Back-Translation, and 0.231 ↑ for Solr). We

also notice that MARS has greater improvements
on more open-ended tasks (e.g., story generation,
which has low Ω), which corroborates MARS’s
original objective of judging diverse candidates
more fairly. As for the baselines, =-gram matching
metrics such as BLEU correlate poorly with human
ratings on such open-ended tasks; BERTScore per-
forms better on short candidates and high-Ω tasks
(e.g., QA); and perplexity, as expected, correlates
weakly with human ratings. The Naive method,
which uses multiple augmented references of the
same length, improves over BERTScore, which
only uses the original reference.

Ablation Study. As shown in the lower rows of
Table 3, we see that the performance of MARS
drops substantially when the crucial components
are removed. Specifically, removing self-planning
hurts performance more for tasks with longer refer-
ences (e.g., story generation) since self-planning is
more helpful when there are more blanks to in-fill,
and removing context hurts performance more in
tasks that are less open-ended (highΩ, such as QA)
because there is no adequate input for a reasonable
augmentation. We take these ablation study re-
sults as evidence that the techniques we propose in
MARS are crucial for improving correlation with
human judgements.

Task-level Correlation Visualization. To visu-
alize the correlation between automated metrics
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ROC Story Generation Newsroom Summarization MOCHA Question Answering

Existing Metrics Reorder (Δ) Retrieve (Δ) ref. Reorder (Δ) Retrieve (Δ) ref. Reorder (Δ) Retrieve (Δ) ref.

BLEU-1 (=) 0 H 0.015 0.137 (=) 0 H 0.144 0.176 (=) 0 H 0.424 0.344
METEOR H 0.041 H 0.031 0.094 H 0.132 H 0.142 0.244 H 0.012 H 0.379 0.412
ROUGE-L H 0.131 H 0.123 0.194 N 0.011 H 0.035 0.036 H 0.032 H 0.363 0.336
Sent. Mover Sim. H 0.024 H 0.062 0.019 H 0.153 H 0.161 0.136 H 0.232 H 0.161 0.515
MoverScore H 0.131 H 0.123 0.276 N 0.011 H 0.135 0.236 N 0.027 H 0.495 0.500
BERTScore H 0.109 H 0.127 0.337 H 0.112 H 0.026 0.344 H 0.101 H 0.461 0.462
Perplexity H 0.113 N 0.170 -0.089 H 0.298 N 0.008 0.234 H 0.035 N 0.026 -0.032

MARS
w/. RoBERTa Emb. H 0.125 H 0.191 0.459 H 0.117 H 0.198 0.423 H 0.092 H 0.504 0.667
w/. GloVe Emb. H 0.087 H 0.177 0.363 H 0.052 H 0.149 0.409 H 0.085 H 0.426 0.602

Naive (MLM) H 0.149 H 0.156 0.350 H 0.112 H 0.190 0.314 H 0.098 H 0.247 0.639

Table 4: We test robustness of MARS and seven other automated metrics under attacks from adversarial samples
generated by following two attack strategies: (1) Reorder: randomly reorders 50% of tokens in the candidates; (2)
Retrieve: randomly retrieves a sentence from the context as a candidate. ref.: correlation of original candidates
with human judgements. If a metric scores adversarial samples equal to (=) or higher (N) than ref., we consider
such metrics not robust under attacks. Robust systems should assign decreased scores (H) compared to ref.
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Figure 3: Correlation between BERTScore (left) and
MARS (right) with human judgements for MOCHA
QA. The G-axis is the automated metric score and H-
axis is the human judgement. Points in different col-
ors represent generation outputs of three NLG systems:
GPT-2 (red circles), Back-Translation (green triangles),
and MHPG (blue squares).

and human judgements, we consider the MOCHA
QA task as an example and plot the correlations of
BERTScore (left) and MARS (right) with human
judgements. As shown in Figure 3, compared with
MARS, BERTScore has more candidates in the
upper-left corner of the plot (i.e., low BERTScore
but high human judgement). Many of these are
generated by GPT-2 and MHPG, which, based on
manual examination, tend to provide more details
in the answer than the human reference. For in-
stance, given a context about shopping, one ques-
tion is “Did they need to buy any meat?”. The
human reference answer is simply “Yes, they did.”,
but GPT-2 returns “Yes, they bought chicken and
a roast.”, which is more detailed, even containing
item names derived from the context. Whereas
BERTScore cannot evaluate such cases where the
generated candidate is over-described with respect

to the human reference, MARS uses augmented ref-
erences enriched with information from the context
to provide a fairer judgement.

4.2 Is MARS robust?

Good evaluation metrics ought to also be able to de-
tect adversarial examples by assigning them lower
scores than well-formed candidates. As shown in
Table 4, uni-gram matching BLEU-1 cannot de-
tect reordered sequences, while ROUGE-L scores
reordered sequence higher occasionally if token-
swapping leads to more LCS. Sentence Mover’s
Similarity combines word and sentence embed-
dings and thus is more capable of recognizing re-
ordered samples than MoverScore. Perplexity can
detect reordered examples effectively, but is unable
to detect retrieved sentences, as they are usually
well-formed. MARS, on the other hand, has the
best robustness against adversarial samples, possi-
bly because multiple context-infused augmented
references help MARS detect adversarial samples
more reliably. We also study the effects of contex-
tual embeddings we use in §2.3—when switching
to GloVe embeddings (Pennington et al., 2014),
which are not contextual, MARS is less able to
detect adversarial samples, especially reordered
ones. The Naive method, which by default uses
RoBERTa embedding, achieves comparable robust-
ness as MARS but its task-level correlations with
humans (ref.) are generally lower than MARS, po-
tentially because its fixed-length cloze generation
limits the diversity of augmented references.



6684

ROC Story Generation

{_}max 0% (ref.) 20% 40% 60% 80%

Pearson’s A 0.411 0.432 0.444 0.459 0.452
Avg. f - 0.027 0.046 0.055 0.059

Newsroom Summarization

{_}max 0% (ref.) 20% 40% 60% 80%

Pearson’s A 0.395 0.407 0.416 0.423 0.411
Avg. f - 0.061 0.062 0.063 0.068

MOCHA Question Answering

{_}max 0% (ref.) 20% 40% 60% 80%

Pearson’s A 0.658 0.667 0.649 0.603 0.584
Avg. f - 0.074 0.104 0.117 0.125

Table 5: Evaluating correlation with human judge-
ments for various max masking ratios (_max) used in
MARS. 0% masking (ref.) means only the human ref-
erence was used to score candidates. We also show
the averaged standard deviation of the cosine similar-
ities between the candidate and augmented references
across all samples.

4.3 Choosing Masking Ratios for MARS

The masking ratios for MARS are set using the hy-
perparameter {_}max, which corresponds to MARS
using masking ratios from 0% to {_}max in in-
crements of 20%, e.g., {_}max = 40% indicates
_ ∈ {0%, 20%, 40%}. In preliminary experi-
ments, we observed that {_}max varied for differ-
ent datasets. Thus, for our three generation tasks,
we evaluate MARS performance given different
{_}max, as shown in Table 5. We find that tasks that
were more open-ended (low Ω; e.g., story genera-
tion) benefited from higher {_}max, which created a
more diverse set of augmented references, whereas
tasks that were less open-ended (high Ω; e.g., QA)
worked better with lower {_}max, which kept the
augmented references more similar to the original.

4.4 Error Analysis

We analyzed cases where MARS score substan-
tially differed from human judgements. From test
set outputs, we found that errors could often be cat-
egorized into one of three types (shown in Table 6):
(1) Out of Vocabulary errors, often induced by
unknown tokens in the candidates, (2) Confusion
errors, where candidates are simply copied from
context, and (3) Inference errors, where the candi-
dates are further inferences of the context based on
commonsense knowledge. In these cases, human
annotators tended to assign higher scores, whereas,
MARS over-penalized them.

Error Example

OOV
(ROC)

Context: ...waltz dance at wedding...
Gold: All the guests gasped
when they saw the couples’ skill!
Candidate: All the guests gasped
when they saw the UNK UNK
Human: 0.392 MARS: 0.198

Confusion
(Newsroom)

Context: ...bidding on a neighborhood...
Gold: A neighborhood named
for its former orchards inspires loyalty
and bidding wars.
Candidate: Living there cherrydale lies
north of interstate... (a sentence extracted
from Context)
Human: 0.700 MARS: 0.399

Inference
(MOCHA)

Context: ...washing cloths...
Q: Why did they do the laundry?
Gold: To clean their clothes
Candidate: Because they were dirty.
Human: 0.400 MARS: 0.083

Table 6: Error analysis of MARS. We investigated three
typical types of errors within the samples which re-
ceived large differences between the MARS score and
human ratings. Gold: human written references.

5 Human Judgement

We conducted human evaluation on Amazon Me-
chanical Turk (MTurk) to further study the quality
of MARS augmentation. In total 150 participants
were randomly assigned to evaluate the three tasks.
Participants (61.3% male and 38.7% female) were
all from the United States and above 18 years old,
with an average age of 34.7 years old. Each partici-
pant was paid 75 cents for completing 14 questions
in each questionnaire (average completion time per
questionnaire was about 5.11 minutes).

Results We conducted paired sample C-tests to
examine how much the augmentation samples re-
semble the original human references regarding
relevance to context and readability. As shown in
Table 7, in terms of relevance to context, MARS
had no statistically significant difference compared
with original human references in Newsroom and
MOCHA datasets, but was rated as even more rel-
evant to the generation context than the human
reference in the ROC dataset (MARS Mean = 5.07
> Human Ref. Mean = 4.95), possibly because re-
inforced self-planning guided the augmentation to
be more related to the context. In terms of readabil-
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ROC Newsroom MOCHA

Ori. Naive MARS Ori. Naive MARS Ori. Naive MARS

Relevance Mean 4.95 4.81 5.07 4.62 4.50 4.61 5.16 4.61 4.97
p - .00* .04* - .05 .95 - .00* .10

Readability Mean 5.67 5.53 5.40 4.54 4.31 4.59 5.41 5.23 5.33
p - .11 .05 - .12 .41 - .16 .29

Overall Mean 5.69 5.31 5.42 4.87 4.57 4.75 4.62 4.44 4.68
p - .12 .30 - .10 .22 - .07 .10

Table 7: Human evaluation results on Relevance (to context), Readability, and Overall quality of MARS and
Naive augmentation method. All results are compared with the original human reference (Ori.). Text was scored
on a scale from 1-7. ? value describes the significance of difference. (* corresponds to ? < 0.05, ** to ? < 0.01
and *** to ? < 0.001.)

ity, both MARS and Naive were rated lower than
the original but not significantly; we take this as a
compromise of cloze style augmentation. No sta-
tistically significant differences were seen between
the original and MARS augmentation in overall
ratings across the three tasks. These results further
confirm that augmented examples from MARS are
of similar quality to the original human references.

6 Related Metrics

Unsupervised Metrics. In addition to the met-
rics we directly compared with previously, other
unsupervised metrics have also been proposed.
TER (Snover et al., 2006), CharacTer (Wang
et al., 2016), and chrF (Popović, 2017) focus on
character-level overlaps instead of =-gram match-
ing. Similar to BERTScore, YiSi (Lo, 2019) and
BERTr (Mathur et al., 2019) leverage pre-trained
contextual embeddings to better capture similarity.
ΔBLEU (Galley et al., 2015) adds human anno-
tated sentences as negative references. Bawden
et al. (2020) find the gain from multiple references
can be limited by inherent weaknesses in BLEU.
We considered lessons from many of the above
works while designing MARS.

Learned Metrics. Compared with unsupervised
metrics, learned metrics collect human supervi-
sions (Freitag et al., 2020a; Chaganty et al., 2018)
or train on specially prepared data of a certain do-
main (Sellam et al., 2020; Rei et al., 2020). Other
approaches train on related tasks and use these mod-
els as metrics for the original task (Goodrich et al.,
2019; Eyal et al., 2019). Whereas learned metrics
may have limited applicability on tasks where no
such resources are available, MARS fully exploits
the few-shot learning abilities of off-the-shelf LMs

and therefore does not require additional training.

Task-specific Metrics. Finally, many metrics
have been proposed for task-specific evaluation,
such as LEIC (Cui et al., 2018) and CIDEr (Vedan-
tam et al., 2015) for image captioning, PAR-
ENT (Dhingra et al., 2019) for table-to-text, and
EASSE (Alva-Manchego et al., 2019) for sentence
simplification. MARS, with some modifications,
can potentially be extended to these tasks.

7 Limitations

MARS can be limited by the LM that it uses—
for instance, the total length of context + refer-
ence/candidate is limited by the max sequence
length of the LM used. Additionally, our work
has focused on English, and MARS may require
non-trivial modifications to handle cases where the
context and reference/candidate are in different lan-
guages, such as machine translation. Future work,
could potentially extend MARS to these scenarios
using multi-lingual sequence-to-sequence models
such as multilingual-T5 (Xue et al., 2020). We also
analyzed errors and found that MARS sometimes
under-scores candidates that contained unknown to-
kens or were copied directly from the context (see
Appendix C for examples and further analysis).

8 Conclusion

We have proposed MARS, a context-aware and
easy-to-deploy NLG metric built upon an off-the-
shelf language model (GPT-2). On three contextual
NLG tasks, we show that MARS better correlates
with human judgements compared with seven other
unsupervised metrics. Requiring neither costly hu-
man supervision nor additional training, MARS
can be applied to a broad range of NLG tasks.
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Ethical Considerations

The goal of MARS is to aid the evaluation of NLG
models, and hence we draw attention to several eth-
ical considerations. First, the augmented references
of MARS can be affected by certain biases from the
LM it is based on (e.g., GPT-2) (Liu et al., 2021),
though those biases may be partially mitigated by
the relatively narrow scope of cloze completion and
by generations being guided by given context and
human references. Second, MARS facilitates eval-
uation and therefore development of NLG models,
for which a major ethical consideration is that they
can mimic target properties in training data that
are undesirable. This is especially true of models
trained on non-contemporary data that does not rep-
resent current norms and practices. These biases
can lead to ethical concerns if users or deployers of
models are not aware of these issues or do not ac-
count for them. More generally, NLG models can
also be used in malicious ways such as to generate
fake news or spam, which we strongly discourage.
Finally, our experiments and analysis are done in
English, and therefore we do not claim that our
findings will generalize across all languages, al-
though our framework has potential to be extended
to other languages with necessary modifications.
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Appendix A: DP-based Token Masking
Algorithm

As part of Eq.1 in the main paper, we define the
IDF score given token G8 and a corpus - containing
" documents as:

IDF(G8 , -) = − log
1
"

"∑
9=1
�[G8 ∈ - 9] ,

where �[·] is the indicator function. We present our
DP-based masking algorithm in Algorithm 1:

Algorithm 1: DP-based Token Masking
Input: Human reference {G8}#8=1, masking

ratio _, and task-specific factor U.
Compute E8 for each G8 with U (Eq. 1);
Compute F8 depending on LCS for each G8;
Init DP-table ) [# + 1] [,max + 1] with all 0;
for 8 = 1, 2, . . . , # do

for 9 = 1, 2, . . . ,,max do
if 9 − F8−1 < 0 then

) [8] [ 9] = ) [8 − 1] [ 9];
Record masking choice q(G8);

else
) [8] [ 9] = max() [8 − 1] [ 9],
) [8 − 1] [ 9 − F8−1] + E8−1);
Record masking choice q(G8);

end
end

end
{q(G8)#8=1} ← backtracking via records;
return best masking strategy {q(G8)#8=1};

Appendix B: Generate, Judge, and Revise
Algorithm

The complete procedure for augmenting human ref-
erences is presented in Algorithm 2. For a given
template, we first group the tokens into a block-
by-block form with blank blocks ([B]) and text
blocks ([T]). Then, we generate varying lengths
of tokens, iteratively concatenating them with next
text block, and judging them based on PPL, and fi-
nally revising current generations accordingly. We
use the language modeling ability of LM to check
the perplexity of the current sequence, and set a
hyper-parameter f to control the maximum ex-
tended generation (for a lower PPL).

Depending on whether there is a subsequent
text block, the generation will switch between two

Algorithm 2: Generate, Judge and Revise
Input: Template {q(G8)}#8=1, max guess f,

and LM perplexity checker PPL.
Group {q(G8)}#8=1 into [B] and [T];
Init final output B;
foreach block do

8 ← 0;
Init priority queue @, buffer B′;
if [T] then

Append [T] to B;
else if [B] then

while 8 < f + |[B]| do
if next is [T] then

F ← self-planning gen.;
else

F ← open-ended gen.;
end
B′← B + F;
Record (PPL(B′ + [T]), B′) in @;
8 ← 8 + 1;

end
B← B + lowest PPL B′ pop from @;

end
end
return augmented reference B;

modes: self-planning generation (if there is future
context) and open-ended generation (otherwise).
We use a priority queue to store each step genera-
tion and its corresponding PPL for quick revisions
afterwards.


