
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 6634–6647

August 1–6, 2021. ©2021 Association for Computational Linguistics

6634

Learning Dense Representations of Phrases at Scale

Jinhyuk Lee1,2∗ Mujeen Sung1 Jaewoo Kang1 Danqi Chen2

Korea University1 Princeton University2

{jinhyuk_lee,mujeensung,kangj}@korea.ac.kr
danqic@cs.princeton.edu

Abstract

Open-domain question answering can be refor-
mulated as a phrase retrieval problem, without
the need for processing documents on-demand
during inference (Seo et al., 2019). However,
current phrase retrieval models heavily depend
on sparse representations and still underper-
form retriever-reader approaches. In this work,
we show for the first time that we can learn
dense representations of phrases alone that
achieve much stronger performance in open-
domain QA. We present an effective method
to learn phrase representations from the super-
vision of reading comprehension tasks, cou-
pled with novel negative sampling methods.
We also propose a query-side fine-tuning strat-
egy, which can support transfer learning and
reduce the discrepancy between training and
inference. On five popular open-domain QA
datasets, our model DensePhrases improves
over previous phrase retrieval models by 15%–
25% absolute accuracy and matches the perfor-
mance of state-of-the-art retriever-reader mod-
els. Our model is easy to parallelize due to
pure dense representations and processes more
than 10 questions per second on CPUs. Finally,
we directly use our pre-indexed dense phrase
representations for two slot filling tasks, show-
ing the promise of utilizing DensePhrases as a
dense knowledge base for downstream tasks.1

1 Introduction

Open-domain question answering (QA) aims to
provide answers to natural-language questions us-
ing a large text corpus (Voorhees et al., 1999; Fer-
rucci et al., 2010; Chen and Yih, 2020). While a
dominating approach is a two-stage retriever-reader
approach (Chen et al., 2017; Lee et al., 2019; Guu
et al., 2020; Karpukhin et al., 2020), we focus on

∗Work partly done while visiting Princeton University.
1Our code is available at https://github.com/

princeton-nlp/DensePhrases.

a recent new paradigm solely based on phrase re-
trieval (Seo et al., 2019; Lee et al., 2020). Phrase
retrieval highlights the use of phrase representa-
tions and finds answers purely based on the similar-
ity search in the vector space of phrases.2 Without
relying on an expensive reader model for process-
ing text passages, it has demonstrated great runtime
efficiency at inference time.

Despite great promise, it remains a formidable
challenge to build vector representations for ev-
ery single phrase in a large corpus. Since phrase
representations are decomposed from question rep-
resentations, they are inherently less expressive
than cross-attention models (Devlin et al., 2019).
Moreover, the approach requires retrieving answers
correctly out of billions of phrases (e.g., 6× 1010

phrases in English Wikipedia), making the scale of
the learning problem difficult. Consequently, ex-
isting approaches heavily rely on sparse represen-
tations for locating relevant documents and para-
graphs while still falling behind retriever-reader
models (Seo et al., 2019; Lee et al., 2020).

In this work, we investigate whether we can build
fully dense phrase representations at scale for open-
domain QA. First, we aim to learn strong phrase
representations from the supervision of reading
comprehension tasks. We propose to use data aug-
mentation and knowledge distillation to learn better
phrase representations within a single passage. We
then adopt negative sampling strategies such as in-
batch negatives (Henderson et al., 2017; Karpukhin
et al., 2020), to better discriminate the phrases at
a larger scale. Here, we present a novel method
called pre-batch negatives, which leverages preced-
ing mini-batches as negative examples to compen-
sate the need of large-batch training. Lastly, we
present a query-side fine-tuning strategy that dras-

2Following previous work (Seo et al., 2018), ‘phrase’ de-
notes any contiguous segment of text up to L words (including
single words), which is not necessarily a linguistic phrase.

https://github.com/princeton-nlp/DensePhrases
https://github.com/princeton-nlp/DensePhrases
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Category Model Sparse? Storage #Q/sec NQ SQuAD
(GB) (GPU, CPU) (Acc) (Acc)

Retriever-Reader

DrQA (Chen et al., 2017) 3 26 1.8, 0.6 - 29.8
BERTSerini (Yang et al., 2019) 3 21 2.0, 0.4 - 38.6
ORQA (Lee et al., 2019) 7 18 8.6, 1.2 33.3 20.2
REALMNews (Guu et al., 2020) 7 18 8.4, 1.2 40.4 -
DPR-multi (Karpukhin et al., 2020) 7 76 0.9, 0.04 41.5 24.1

Phrase Retrieval
DenSPI (Seo et al., 2019) 3 1,200 2.9, 2.4 8.1 36.2
DenSPI + Sparc (Lee et al., 2020) 3 1,547 2.1, 1.7 14.5 40.7
DensePhrases (Ours) 7 320 20.6, 13.6 40.9 38.0

Table 1: Retriever-reader and phrase retrieval approaches for open-domain QA. The retriever-reader approach
retrieves a small number of relevant documents or passages from which the answers are extracted. The phrase
retrieval approach retrieves an answer out of billions of phrase representations pre-indexed from the entire corpus.
Appendix B provides detailed benchmark specification. The accuracy is measured on the test sets in the open-
domain setting. NQ: Natural Questions.

tically improves phrase retrieval performance and
allows for transfer learning to new domains, with-
out re-building billions of phrase representations.

As a result, all these improvements lead to a
much stronger phrase retrieval model, without the
use of any sparse representations (Table 1). We
evaluate our model, DensePhrases, on five standard
open-domain QA datasets and achieve much bet-
ter accuracies than previous phrase retrieval mod-
els (Seo et al., 2019; Lee et al., 2020), with 15%–
25% absolute improvement on most datasets. Our
model also matches the performance of state-of-
the-art retriever-reader models (Guu et al., 2020;
Karpukhin et al., 2020). Due to the removal of
sparse representations and careful design choices,
we further reduce the storage footprint for the full
English Wikipedia from 1.5TB to 320GB, as well
as drastically improve the throughput.

Finally, we envision that DensePhrases acts as a
neural interface for retrieving phrase-level knowl-
edge from a large text corpus. To showcase this
possibility, we demonstrate that we can directly
use DensePhrases for fact extraction, without re-
building the phrase storage. With only fine-tuning
the question encoder on a small number of subject-
relation-object triples, we achieve state-of-the-art
performance on two slot filling tasks (Petroni et al.,
2021), using less than 5% of the training data.

2 Background

We first formulate the task of open-domain ques-
tion answering for a set of K documents D =
{d1, . . . , dK}. We follow the recent work (Chen
et al., 2017; Lee et al., 2019) and treat all of English
Wikipedia as D, hence K ≈ 5 × 106. However,

most approaches—including ours—are generic and
could be applied to other collections of documents.

The task aims to provide an answer â for the in-
put question q based on D. In this work, we focus
on the extractive QA setting, where each answer is
a segment of text, or a phrase, that can be found in
D. Denote the set of phrases inD as S(D) and each
phrase sk ∈ S(D) consists of contiguous words
wstart(k), . . . , wend(k) in its document ddoc(k). In
practice, we consider all the phrases up to L = 20
words in D and S(D) comprises a large number of
6× 1010 phrases. An extractive QA system returns
a phrase ŝ = argmaxs∈S(D) f(s|D, q) where f is
a scoring function. The system finally maps ŝ to
an answer string â: TEXT(ŝ) = â and the evalua-
tion is typically done by comparing the predicted
answer â with a gold answer a∗.

Although we focus on the extractive QA setting,
recent works propose to use a generative model as
the reader (Lewis et al., 2020; Izacard and Grave,
2021), or learn a closed-book QA model (Roberts
et al., 2020), which directly predicts answers with-
out using an external knowledge source. The ex-
tractive setting provides two advantages: first, the
model directly locates the source of the answer,
which is more interpretable, and second, phrase-
level knowledge retrieval can be uniquely adapted
to other NLP tasks as we show in §7.3.

Retriever-reader. A dominating paradigm in
open-domain QA is the retriever-reader ap-
proach (Chen et al., 2017; Lee et al., 2019;
Karpukhin et al., 2020), which leverages a first-
stage document retriever fretr and only reads top
K ′ � K documents with a reader model fread.
The scoring function f(s | D, q) is decomposed as:
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f(s | D, q) = fretr({dj1 , . . . , djK′} | D, q)
× fread(s | {dj1 , . . . , djK′}, q),

(1)

where {j1, . . . , jK′} ⊂ {1, . . . ,K} and if s /∈
S({dj1 , . . . , djK′}), the score will be 0. It can eas-
ily adapt to passages and sentences (Yang et al.,
2019; Wang et al., 2019). However, this approach
suffers from error propagation when incorrect docu-
ments are retrieved and can be slow as it usually re-
quires running an expensive reader model on every
retrieved document or passage at inference time.

Phrase retrieval. Seo et al. (2019) introduce the
phrase retrieval approach that encodes phrase and
question representations independently and per-
forms similarity search over the phrase representa-
tions to find an answer. Their scoring function f is
computed as follows:

f(s | D, q) = Es(s,D)>Eq(q), (2)

where Es and Eq denote the phrase encoder and
the question encoder respectively. As Es(·) and
Eq(·) representations are decomposable, it can
support maximum inner product search (MIPS)
and improve the efficiency of open-domain QA
models. Previous approaches (Seo et al., 2019;
Lee et al., 2020) leverage both dense and sparse
vectors for phrase and question representations
by taking their concatenation: Es(s,D) =
[Esparse(s,D), Edense(s,D)].3 However, since the
sparse vectors are difficult to parallelize with dense
vectors, their method essentially conducts sparse
and dense vector search separately. The goal of
this work is to only use dense representations,
i.e., Es(s,D) = Edense(s,D), which can model
f(s | D, q) solely with MIPS, as well as close the
gap in performance.

3 DensePhrases

3.1 Overview
We introduce DensePhrases, a phrase retrieval
model that is built on fully dense representations.
Our goal is to learn a phrase encoder as well as a
question encoder, so we can pre-index all the pos-
sible phrases in D, and efficiently retrieve phrases
for any question through MIPS at testing time. We
outline our approach as follows:

3Seo et al. (2019) use sparse representations of both para-
graphs and documents and Lee et al. (2020) use contextualized
sparse representations conditioned on the phrase.

• We first learn a high-quality phrase encoder
and an (initial) question encoder from the
supervision of reading comprehension tasks
(§4.1), as well as incorporating effective nega-
tive sampling to better discriminate phrases at
scale (§4.2, §4.3).

• Then, we fix the phrase encoder and encode
all the phrases s ∈ S(D) and store the phrase
indexing offline to enable efficient search (§5).

• Finally, we introduce an additional strategy
called query-side fine-tuning (§6) by further
updating the question encoder.4 We find this
step to be very effective, as it can reduce
the discrepancy between training (the first
step) and inference, as well as support transfer
learning to new domains.

Before we present the approach in detail, we first
describe our base architecture below.

3.2 Base Architecture
Our base architecture consists of a phrase encoder
Es and a question encoder Eq. Given a passage
p = w1, . . . , wm, we denote all the phrases up to L
tokens as S(p). Each phrase sk has start and end in-
dicies start(k) and end(k) and the gold phrase
is s∗ ∈ S(p). Following previous work on phrase
or span representations (Lee et al., 2017; Seo et al.,
2018), we first apply a pre-trained language model
Mp to obtain contextualized word representations
for each passage token: h1, . . . ,hm ∈ Rd. Then,
we can represent each phrase sk ∈ S(p) as the con-
catenation of corresponding start and end vectors:

Es(sk, p) = [hstart(k),hend(k)] ∈ R2d. (3)

A great advantage of this representation is that we
eventually only need to index and store all the word
vectors (we useW(D) to denote all the words in
D), instead of all the phrases S(D), which is at
least one magnitude order smaller.

Similarly, we need to learn a question encoder
Eq(·) that maps a question q = w̃1, . . . , w̃n to a
vector of the same dimension as Es(·). Since the
start and end representations of phrases are pro-
duced by the same language model, we use an-
other two different pre-trained encoders Mq,start
and Mq,end to differentiate the start and end po-
sitions. We apply Mq,start and Mq,end on q sep-
arately and obtain representations qstart and qend

4In this paper, we use the term question and query inter-
changeably as our question encoder can be naturally extended
to “unnatural” queries.



6637

Ǜ������������������������ǜ

�#-�. �
�)�*� -

ǆ�*)ǅ/��/�)���*��'*. �/*�� ǆ�$.���#$/�.*)"�
�4�/# ��-$/$.#�-*�&���)��/# ��*'$� �ƺƺƺǛ�
�ǜ��#*�.$)".��*)ǅ/��/�)���*��'*. �/*�� ǂ

ƾ�
�*)ǅ/ � /# �*'$� 

�0 ./$*)�
�)�*� -

��-��&����(�

ƾ�

�#-�. �
�)�*� -

ƾ�

�*-2�-��

���&2�-�

/# 

�*'$� 

��( .

�-*2)

Ǜ�
�ǜ��*)ǅ/��/�)���*��'*. �/*�� �Ǜ���ǜ�.0)"��4

�*.$/$1 �'�� '

� "�/$1 �'�� '

Ǚ�ǚ��$)"' Ǒ+�..�" �/-�$)$)"�2ǟ����$/$*)�'�) "�/$1 . Ǚ�ǚ��0 -4Ǒ.$� �Ɵ) Ǒ/0)$)"�ƥ�
)! - )� 

ƾ� Ǜ������������������������ǜ

�0 ./$*)�
�)�*� -

�*)ǅ/��/�)���*��'*. �/*�� 

���$/$*)�'�) "�/$1 .
Ǚ$)Ǒ��/�#�ǟ�+- Ǒ��/�#ǚ

/# ��*'$� 

Ǜ������������������������ǜ Ǜ������������������������ǜǛ������������������������ǜ

�''$)"/*)

�-�# ./-�

�0& 

#$/ .*)"

Ǜ������������������������ǜ

ƾ�

#$/�.*)" �*+ǑƧ

�*+Ǒƨ

Figure 1: An overview of DensePhrases. (a) We learn dense phrase representations in a single passage (§4.1) along
with in-batch and pre-batch negatives (§4.2, §4.3). (b) With the top-k retrieved phrase representations from the
entire text corpus (§5), we further perform query-side fine-tuning to optimize the question encoder (§6). During
inference, our model simply returns the top-1 prediction.

taken from the [CLS] token representations re-
spectively. Finally, Eq(·) simply takes their con-
catenation:

Eq(q) = [qstart,qend] ∈ R2d. (4)

Note that we use pre-trained language models to
initialize Mp, Mq,start and Mq,end and they are
fine-tuned with the objectives that we will define
later. In our pilot experiments, we found that Span-
BERT (Joshi et al., 2020) leads to superior perfor-
mance compared to BERT (Devlin et al., 2019).
SpanBERT is designed to predict the information
in the entire span from its two endpoints, therefore
it is well suited for our phrase representations. In
our final model, we use SpanBERT-base-cased as
our base LMs for Es and Eq, and hence d = 768.5

See Table 5 for an ablation study.

4 Learning Phrase Representations

In this section, we start by learning dense phrase
representations from the supervision of reading
comprehension tasks, i.e., a single passage p con-
tains an answer a∗ to a question q. Our goal is to
learn strong dense representations of phrases for
s ∈ S(p), which can be retrieved by a dense rep-
resentation of the question and serve as a direct

5Our base model is largely inspired by DenSPI (Seo et al.,
2019), although we deviate from theirs as follows. (1) We
remove coherency scalars and don’t split any vectors. (2)
DenSPI uses a shared encoder for phrases and questions while
we use 3 separate language models initialized from the same
pre-trained model. (3) We use SpanBERT instead of BERT.

answer (§4.1). Then, we introduce two different
negative sampling methods (§4.2, §4.3), which en-
courage the phrase representations to be better dis-
criminated at the full Wikipedia scale. See Figure 1
for an overview of DensePhrases.

4.1 Single-passage Training
To learn phrase representations in a single passage
along with question representations, we first max-
imize the log-likelihood of the start and end posi-
tions of the gold phrase s∗ where TEXT(s∗) = a∗.
The training loss for predicting the start position of
a phrase given a question is computed as:

zstart
1 , . . . , zstart

m = [h>1 q
start, . . . ,h>mqstart],

P start = softmax(zstart
1 , . . . , zstart

m ),

Lstart = − logP start
start(s∗).

(5)

We can define Lend in a similar way and the final
loss for the single-passage training is

Lsingle =
Lstart + Lend

2
. (6)

This essentially learns reading comprehension with-
out any cross-attention between the passage and the
question tokens, which fully decomposes phrase
and question representations.

Data augmentation Since the contextualized
word representations h1, . . . ,hm are encoded in
a query-agnostic way, they are always inferior to
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query-dependent representations in cross-attention
models (Devlin et al., 2019), where passages are
fed along with the questions concatenated by a spe-
cial token such as [SEP]. We hypothesize that one
key reason for the performance gap is that reading
comprehension datasets only provide a few anno-
tated questions in each passage, compared to the set
of possible answer phrases. Learning from this su-
pervision is not easy to differentiate similar phrases
in one passage (e.g., s∗ = Charles, Prince of Wales
and another s = Prince George for a question q =
Who is next in line to be the monarch of England?).

Following this intuition, we propose to use a sim-
ple model to generate additional questions for data
augmentation, based on a T5-large model (Raf-
fel et al., 2020). To train the question genera-
tion model, we feed a passage p with the gold
answer s∗ highlighted by inserting surrounding
special tags. Then, the model is trained to max-
imize the log-likelihood of the question words of
q. After training, we extract all the named enti-
ties in each training passage as candidate answers
and feed the passage p with each candidate an-
swer to generate questions. We keep the question-
answer pairs only when a cross-attention reading
comprehension model6 makes a correct prediction
on the generated pair. The remaining generated QA
pairs {(q̄1, s̄1), (q̄2, s̄2), . . . , (q̄r, s̄r)} are directly
augmented to the original training set.

Distillation We also propose improving the
phrase representations by distilling knowledge
from a cross-attention model (Hinton et al., 2015).
We minimize the Kullback–Leibler divergence be-
tween the probability distribution from our phrase
encoder and that from a standard SpanBERT-base
QA model. The loss is computed as follows:

Ldistill =
KL(P start||P start

c ) + KL(P end||P end
c )

2
,

(7)
where P start (and P end) is defined in Eq. (5) and
P start
c and P end

c denote the probability distributions
used to predict the start and end positions of an-
swers in the cross-attention model.

4.2 In-batch Negatives

Eventually, we need to build phrase representations
for billions of phrases. Therefore, a bigger chal-
lenge is to incorporate more phrases as negatives
so the representations can be better discriminated

6SpanBERT-large, 88.2 EM on SQuAD.

Positive

(a) In-batch Negatives ( )B − 1 (b) Pre-batch Negatives (  )B × C

Detached  in recent C batchesgstart
i

Negative

gstart1 gstart2 gstart3 gstart4

qstart1

qstart2

qstart3

qstart4

qstart1

qstart2

qstart3

qstart4

Figure 2: Two types of negative samples for the first
batch item (qstart

1 ) in a mini-batch of size B = 4 and
C = 3. Note that the negative samples for the end
representations (qend

i ) are obtained in a similar manner.
See §4.2 and §4.3 for more details.

at a larger scale. While Seo et al. (2019) simply
sample two negative passages based on question
similarity, we use in-batch negatives for our dense
phrase representations, which has been shown to be
effective in learning dense passage representations
before (Karpukhin et al., 2020).

As shown in Figure 2 (a), for the i-th exam-
ple in a mini-batch of size B, we denote the
hidden representations of the gold start and end
positions hstart(s∗) and hend(s∗) as gstart

i and
gend
i , as well as the question representation as

[qstart
i ,qend

i ]. Let Gstart,Gend,Qstart,Qend be the
B × d matrices and each row corresponds to
gstart
i ,g end

i ,qstart
i ,qend

i respectively. Basically, we
can treat all the gold phrases from other pas-
sages in the same mini-batch as negative exam-
ples. We compute Sstart = QstartGstartᵀ and Send =
QendGendᵀ and the i-th row of Sstart and Send return
B scores each, including a positive score and B−1
negative scores: sstart

1 , . . . , sstart
B and send

1 , . . . , send
B .

Similar to Eq. (5), we can compute the loss func-
tion for the i-th example as:

P start_ib
i = softmax(sstart

1 , . . . , sstart
B ),

P end_ib
i = softmax(send

1 , . . . , send
B ),

Lneg = −
logP start_ib

i + logP end_ib
i

2
,

(8)

We also attempted using non-gold phrases from
other passages as negatives but did not find a mean-
ingful improvement.

4.3 Pre-batch Negatives
The in-batch negatives usually benefit from a large
batch size (Karpukhin et al., 2020). However, it is
challenging to further increase batch sizes, as they
are bounded by the size of GPU memory. Next,
we propose a novel negative sampling method
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called pre-batch negatives, which can effectively
utilize the representations from the preceding C
mini-batches (Figure 2 (b)). In each iteration, we
maintain a FIFO queue of C mini-batches to cache
phrase representations Gstart and Gend. The cached
phrase representations are then used as negative
samples for the next iteration, providing B × C
additional negative samples in total.7

These pre-batch negatives are used together with
in-batch negatives and the training loss is the same
as Eq. (8), except that the gradients are not back-
propagated to the cached pre-batch negatives. After
warming up the model with in-batch negatives, we
simply shift from in-batch negatives (B − 1 nega-
tives) to in-batch and pre-batch negatives (hence a
total number ofB×C+B−1 negatives). For sim-
plicity, we use Lneg to denote the loss for both in-
batch negatives and pre-batch negatives. Since we
do not retain the computational graph for pre-batch
negatives, the memory consumption of pre-batch
negatives is much more manageable while allowing
an increase in the number of negative samples.

4.4 Training Objective
Finally, we optimize all the three losses together, on
both annotated reading comprehension examples
and generated questions from §4.1:

L = λ1Lsingle + λ2Ldistill + λ3Lneg, (9)

where λ1, λ2, λ3 determine the importance of each
loss term. We found that λ1 = 1, λ2 = 2, and λ3 =
4 works well in practice. See Table 5 and Table 6
for an ablation study of different components.

5 Indexing and Search

Indexing After training the phrase encoder Es,
we need to encode all the phrases S(D) in the en-
tire English Wikipedia D and store an index of
the phrase dump. We segment each document
di ∈ D into a set of natural paragraphs, from
which we obtain token representations for each
paragraph using Es(·). Then, we build a phrase
dump H = [h1, . . . ,h|W(D)|] ∈ R|W(D)|×d by
stacking the token representations from all the para-
graphs in D. Note that this process is computation-
ally expensive and takes about hundreds of GPU
hours with a large disk footprint. To reduce the

7This approach is inspired by the momentum contrast idea
proposed in unsupervised visual representation learning (He
et al., 2020). Contrary to their approach, we have separate
encoders for phrases and questions and back-propagate to both
during training without a momentum update.

size of phrase dump, we follow and modify several
techniques introduced in Seo et al. (2019) (see Ap-
pendix E for details). After indexing, we can use
two rows i and j of H to represent a dense phrase
representation [hi,hj ]. We use faiss (Johnson
et al., 2017) for building a MIPS index of H.8

Search For a given question q, we can find the
answer ŝ as follows:

ŝ = argmax
s(i,j)

Es(s(i,j),D)>Eq(q),

= argmax
s(i,j)

(Hqstart)i + (Hqend)j ,
(10)

where s(i,j) denotes a phrase with start and end
indices as i and j in the index H. We can com-
pute the argmax of Hqstart and Hqend efficiently
by performing MIPS over H with qstart and qend.
In practice, we search for the top-k start and top-k
end positions separately and perform a constrained
search over their end and start positions respec-
tively such that 1 ≤ i ≤ j < i+ L ≤ |W(D)|.

6 Query-side Fine-tuning

So far, we have created a phrase dump H that sup-
ports efficient MIPS search. In this section, we pro-
pose a novel method called query-side fine-tuning
by only updating the question encoder Eq to cor-
rectly retrieve a desired answer a∗ for a question
q given H. Formally speaking, we optimize the
marginal log-likelihood of the gold answer a∗ for a
question q, which resembles the weakly-supervised
QA setting in previous work (Lee et al., 2019; Min
et al., 2019). For every question q, we retrieve top
k phrases and minimize the objective:

Lquery = − log

∑
s∈S̃(q),TEXT(s)=a∗

exp
(
f(s|D,q)

)
∑

s∈S̃(q) exp
(
f(s|D,q)

) ,

(11)
where f(s|D, q) is the score of the phrase s
(Eq. (2)) and S̃(q) denotes the top k phrases for
q (Eq. (10)). In practice, we use k = 100 for all
the experiments.

There are several advantages for doing this: (1)
we find that query-side fine-tuning can reduce the
discrepancy between training and inference, and
hence improve the final performance substantially
(§8). Even with effective negative sampling, the
model only sees a small portion of passages com-
pared to the full scale of D and this training objec-
tive can effectively fill in the gap. (2) This train-
ing strategy allows for transfer learning to unseen

8We use IVFSQ4 with 1M clusters and set n-probe to 256.



6640

domains, without rebuilding the entire phrase in-
dex. More specifically, the model is able to quickly
adapt to new QA tasks (e.g., WebQuestions) when
the phrase dump is built using SQuAD or Natural
Questions. We also find that this can transfers to
non-QA tasks when the query is written in a dif-
ferent format. In §7.3, we show the possibility of
directly using DensePhrases for slot filling tasks
by using a query such as (Michael Jackson, is a
singer of, x). In this regard, we can view our model
as a dense knowledge base that can be accessed
by many different types of queries and it is able to
return phrase-level knowledge efficiently.

7 Experiments

7.1 Setup

Datasets. We use two reading comprehension
datasets: SQuAD (Rajpurkar et al., 2016) and Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019) to
learn phrase representations, in which a single gold
passage is provided for each question. For the open-
domain QA experiments, we evaluate our approach
on five popular open-domain QA datasets: Natu-
ral Questions, WebQuestions (WQ) (Berant et al.,
2013), CuratedTREC (TREC) (Baudiš and Šedivỳ,
2015), TriviaQA (TQA) (Joshi et al., 2017), and
SQuAD. Note that we only use SQuAD and/or NQ
to build the phrase index and perform query-side
fine-tuning (§6) for other datasets.

We also evaluate our model on two slot filling
tasks, to show how to adapt our DensePhrases for
other knowledge-intensive NLP tasks. We focus
on using two slot filling datasets from the KILT
benchmark (Petroni et al., 2021): T-REx (Elsahar
et al., 2018) and zero-shot relation extraction (Levy
et al., 2017). Each query is provided in the form
of “{subject entity} [SEP] {relation}" and the
answer is the object entity. Appendix C provides
the statistics of all the datasets.

Implementation details. We denote the training
datasets used for reading comprehension (Eq. (9))
as Cphrase. For open-domain QA, we train two ver-
sions of phrase encoders, each of which are trained
on Cphrase = {SQuAD} and {NQ,SQuAD}, re-
spectively. We build the phrase dump H for the
2018-12-20 Wikipedia snapshot and perform query-
side fine-tuning on each dataset using Eq. (11). For
slot filling, we use the same phrase dump for open-
domain QA, Cphrase = {NQ,SQuAD} and perform
query-side fine-tuning on randomly sampled 5K

Model SQuAD NQ (Long)

EM F1 EM F1

Query-Dependent

BERT-base 80.8 88.5 69.9 78.2
SpanBERT-base 85.7 92.2 73.2 81.0

Query-Agnostic

DilBERT (Siblini et al., 2020) 63.0 72.0 - -
DeFormer (Cao et al., 2020) - 72.1 - -
DenSPI† 73.6 81.7 68.2 76.1
DenSPI + Sparc† 76.4 84.8 - -
DensePhrases (ours) 78.3 86.3 71.9 79.6

Table 2: Reading comprehension results, evaluated on
the development sets of SQuAD and Natural Ques-
tions. Underlined numbers are estimated from the fig-
ures from the original papers. †: BERT-large model.

or 10K training examples to see how rapidly our
model adapts to the new query types. See Ap-
pendix D for details on the hyperparameters and
Appendix A for an analysis of computational cost.

7.2 Experiments: Question Answering

Reading comprehension. In order to show the
effectiveness of our phrase representations, we first
evaluate our model in the reading comprehension
setting for SQuAD and NQ and report its perfor-
mance with other query-agnostic models (Eq. (9)
without query-side fine-tuning). This problem was
originally formulated by Seo et al. (2018) as the
phrase-indexed question answering (PIQA) task.

Compared to previous query-agnostic models,
our model achieves the best performance of 78.3
EM on SQuAD by improving the previous phrase
retrieval model (DenSPI) by 4.7% (Table 2). Al-
though it is still behind cross-attention models, the
gap has been greatly reduced and serves as a strong
starting point for the open-domain QA model.

Open-domain QA. Experimental results on
open-domain QA are summarized in Table 3. With-
out any sparse representations, DensePhrases out-
performs previous phrase retrieval models by a
large margin and achieves a 15%–25% absolute
improvement on all datasets except SQuAD. Train-
ing the model of Lee et al. (2020) on Cphrase =
{NQ,SQuAD} only increases the result from
14.5% to 16.5% on NQ, demonstrating that it does
not suffice to simply add more datasets for train-
ing phrase representations. Our performance is
also competitive with recent retriever-reader mod-
els (Karpukhin et al., 2020), while running much
faster during inference (Table 1).
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Model NQ WQ TREC TQA SQuAD

Retriever-reader Cretr: (Pre-)Training

DrQA (Chen et al., 2017) - - 20.7 25.4 - 29.8
BERT + BM25 (Lee et al., 2019) - 26.5 17.7 21.3 47.1 33.2
ORQA (Lee et al., 2019) {Wiki.}† 33.3 36.4 30.1 45.0 20.2
REALMNews (Guu et al., 2020) {Wiki., CC-News}† 40.4 40.7 42.9 - -
DPR-multi (Karpukhin et al., 2020) {NQ, WQ, TREC, TQA} 41.5 42.4 49.4 56.8 24.1

Phrase retrieval Cphrase: Training

DenSPI (Seo et al., 2019) {SQuAD} 8.1∗ 11.1∗ 31.6∗ 30.7∗ 36.2
DenSPI + Sparc (Lee et al., 2020) {SQuAD} 14.5∗ 17.3∗ 35.7∗ 34.4∗ 40.7
DenSPI + Sparc (Lee et al., 2020) {NQ, SQuAD} 16.5 - - - -
DensePhrases (ours) {SQuAD} 31.2 36.3 50.3 53.6 39.4
DensePhrases (ours) {NQ, SQuAD} 40.9 37.5 51.0 50.7 38.0

Table 3: Open-domain QA results. We report exact match (EM) on the test sets. We also show the additional
training or pre-training datasets for learning the retriever models (Cretr) and creating the phrase dump (Cphrase). ∗:
no supervision using target training data (zero-shot). †: unlabeled data used for extra pre-training.

Model T-REx ZsRE

Acc F1 Acc F1

DPR + BERT - - 4.47 27.09
DPR + BART 11.12 11.41 18.91 20.32
RAG 23.12 23.94 36.83 39.91

DensePhrases5K 25.32 29.76 40.39 45.89
DensePhrases10K 27.84 32.34 41.34 46.79

Table 4: Slot filling results on the test sets of T-REx
and Zero shot RE (ZsRE) in the KILT benchmark. We
report KILT-AC and KILT-F1 (denoted as Acc and F1
in the table), which consider both span-level accuracy
and correct retrieval of evidence documents.

7.3 Experiments: Slot Filling
Table 4 summarizes the results on the two slot fill-
ing datasets, along with the baseline scores pro-
vided by Petroni et al. (2021). The only extractive
baseline is DPR + BERT, which performs poorly
in zero-shot relation extraction. On the other hand,
our model achieves competitive performance on all
datasets and achieves state-of-the-art performance
on two datasets using only 5K training examples.

8 Analysis

Ablation of phrase representations. Table 5
shows the ablation result of our model on SQuAD.
Upon our choice of architecture, augmenting train-
ing set with generated questions (QG = 3) and
performing distillation from cross-attention mod-
els (Distill = 3) improve performance up to EM =
78.3. We attempted adding the generated questions
to the training of the SpanBERT-QA model but
find a 0.3% improvement, which validates that data
sparsity is a bottleneck for query-agnostic models.

Model M Share Split QG Distill EM

DenSPI Bb. 3 3 7 7 70.2
Sb. 3 3 7 7 68.5
Bl. 3 3 7 7 73.6

Dense Bb. 3 7 7 7 70.2
Phrases Bb. 7 7 7 7 71.9

Sb. 7 7 7 7 73.2
Sb. 7 7 3 7 76.3
Sb. 7 7 3 3 78.3

Table 5: Ablation of DensePhrases on the development
set of SQuAD. Bb: BERT-base, Sb: SpanBERT-base,
Bl: BERT-large. Share: whether question and phrase
encoders are shared or not. Split: whether the full
hidden vectors are kept or split into start and end vec-
tors. QG: question generation (§4.1). Distill: distilla-
tion (Eq.(7)). DenSPI (Seo et al., 2019) also included a
coherency scalar and see their paper for more details.

Effect of batch negatives. We further evaluate
the effectiveness of various negative sampling
methods introduced in §4.2 and §4.3. Since it is
computationally expensive to test each setting at
the full Wikipedia scale, we use a smaller text cor-
pus Dsmall of all the gold passages in the develop-
ment sets of Natural Questions, for the ablation
study. Empirically, we find that results are gener-
ally well correlated when we gradually increase the
size of |D|. As shown in Table 6, both in-batch
and pre-batch negatives bring substantial improve-
ments. While using a larger batch size (B = 84)
is beneficial for in-batch negatives, the number of
preceding batches in pre-batch negatives is optimal
when C = 2. Surprisingly, the pre-batch negatives
also improve the performance when D = {p}.
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Type B C D = {p} D = Dsmall

None 48 - 70.4 35.3

+ In-batch 48 - 70.5 52.4
84 - 70.3 54.2

+ Pre-batch 84 1 71.6 59.8
84 2 71.9 60.4
84 4 71.2 59.8

Table 6: Effect of in-batch negatives and pre-batch neg-
atives on the development set of Natural Questions. B:
batch size. C: number of preceding mini-batches used
in pre-batch negatives. Dsmall: all the gold passages in
the development set of NQ. {p}: single passage.

Effect of query-side fine-tuning. We summa-
rize the effect of query-side fine-tuning in Table 7.
For the datasets that were not used for training the
phrase encoders (TQA, WQ, TREC), we observe
a 15% to 20% improvement after query-side fine-
tuning. Even for the datasets that have been used
(NQ, SQuAD), it leads to significant improvements
(e.g., 32.6%→40.9% on NQ for Cphrase = {NQ})
and it clearly demonstrates it can effectively reduce
the discrepancy between training and inference.

9 Related Work

Learning effective dense representations of words
is a long-standing goal in NLP (Bengio et al., 2003;
Collobert et al., 2011; Mikolov et al., 2013; Peters
et al., 2018; Devlin et al., 2019). Beyond words,
dense representations of many different granular-
ities of text such as sentences (Le and Mikolov,
2014; Kiros et al., 2015) or documents (Yih et al.,
2011) have been explored. While dense phrase rep-
resentations have been also studied for statistical
machine translation (Cho et al., 2014) or syntactic
parsing (Socher et al., 2010), our work focuses on
learning dense phrase representations for QA and
any other knowledge-intensive tasks where phrases
can be easily retrieved by performing MIPS.

This type of dense retrieval has been also stud-
ied for sentence and passage retrieval (Humeau
et al., 2019; Karpukhin et al., 2020) (see Lin et al.,
2020 for recent advances in dense retrieval). While
DensePhrases is explicitly designed to retrieve
phrases that can be used as an answer to given
queries, retrieving phrases also naturally entails re-
trieving larger units of text, provided the datastore
maintains the mapping between each phrase and
the sentence and passage in which it occurs.

QS NQ WQ TREC TQA SQuAD

Cphrase = {SQuAD}

7 12.3 11.8 36.9 34.6 35.5
3 31.2 36.3 50.3 53.6 39.4

Cphrase = {NQ}

7 32.6 21.1 32.3 32.4 20.7
3 40.9 37.1 49.7 49.2 25.7

Cphrase = {NQ, SQuAD}

7 28.9 18.9 34.9 31.9 33.2
3 40.9 37.5 51.0 50.7 38.0

Table 7: Effect of query-side fine-tuning in
DensePhrases on each test set. We report EM of
each model before (QS = 7) and after (QS = 3) the
query-side fine-tuning.

10 Conclusion

In this study, we show that we can learn dense repre-
sentations of phrases at the Wikipedia scale, which
are readily retrievable for open-domain QA and
other knowledge-intensive NLP tasks. We learn
both phrase and question encoders from the supervi-
sion of reading comprehension tasks and introduce
two batch-negative techniques to better discrimi-
nate phrases at scale. We also introduce query-side
fine-tuning that adapts our model to different types
of queries. We achieve strong performance on five
popular open-domain QA datasets, while reducing
the storage footprint and improving latency signif-
icantly. We also achieve strong performance on
two slot filling datasets using only a small number
of training examples, showing the possibility of
utilizing our DensePhrases as a knowledge base.
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Ethical Considerations

Our work builds on standard reading comprehen-
sion datasets such as SQuAD to build phrase rep-
resentations. SQuAD, in particular, is created
from a small number of Wikipedia articles sampled
from top-10,000 most popular articles (measured
by PageRanks), hence some of our models trained
only on SQuAD could be easily biased towards the
small number of topics that SQuAD contains. We
hope that excluding such datasets during training or
inventing an alternative pre-training procedure for
learning phrase representations could mitigate this
problem. Although most of our efforts have been
made to reduce the computational complexity of
previous phrase retrieval models (further detailed
in Appendices A and E), leveraging our phrase re-
trieval model as a knowledge base will inevitably
increase the minimum requirement for the addi-
tional experiments. We plan to apply vector quanti-
zation techniques to reduce the additional cost of
using our model as a KB.
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A Computational Cost

We describe the resources and time spent dur-
ing inference (Table 1 and A.1) and indexing (Ta-
ble A.1). With our limited GPU resources (24GB
× 4), it takes about 20 hours for indexing the entire
phrase representations. We also largely reduced the
storage from 1,547GB to 320GB by (1) removing
sparse representations and (2) using our sharing and
split strategy. See Appendix E for the details on the
reduction of storage footprint and Appendix B for
the specification of our server for the benchmark.

Indexing Resources Storage Time

DPR 32GB GPU × 8 76GB 17h
DenSPI + Sparc 24GB GPU × 4 1,547GB 85h
DensePhrases 24GB GPU × 4 320GB 20h

Inference RAM / GPU #Q/sec (GPU, CPU)

DPR 86GB / 17GB 0.9, 0.04
DenSPI + Sparc 27GB / 2GB 2.1, 1.7
DensePhrases 12GB / 2GB 20.6, 13.6

Table A.1: Complexity analysis of three open-domain
QA models during indexing and inference. For infer-
ence, we also report the minimum requirement of RAM
and GPU memory for running each model with GPU.
For computing #Q/s for CPU, we do not use GPUs but
load all models on the RAM.

B Server Specifications for Benchmark

To compare the complexity of open-domain QA
models, we install all models in Table 1 on the
same server using their public open-source code.
Our server has the following specifications:

Hardware

Intel Xeon CPU E5-2630 v4 @ 2.20GHz
128GB RAM
12GB GPU (TITAN Xp) × 2
2TB 970 EVO Plus NVMe M.2 SSD × 1

Table B.2: Server specification for the benchmark

For DPR, due to its large memory consumption,
we use a similar server with a 24GB GPU (TITAN
RTX). For all models, we use 1,000 randomly sam-
pled questions from the Natural Questions devel-
opment set for the speed benchmark and measure
#Q/sec. We set the batch size to 64 for all models
except BERTSerini, ORQA and REALM, which
do not allow a batch size of more than 1 in their
open-source implementations. #Q/sec for DPR in-
cludes retrieving passages and running a reader

Dataset Train Dev Test

Natural Questions 79,168 8,757 3,610
WebQuestions 3,417 361 2,032
CuratedTrec 1,353 133 694
TriviaQA 78,785 8,837 11,313
SQuAD 78,713 8,886 10,570

T-REx 2,284,168 5,000 5,000
Zero-Shot RE 147,909 3,724 4,966

Table C.3: Statistics of five open-domain QA datasets
and two slot filling datasets. We follow the same splits
in open-domain QA for the two reading comprehension
datasets (SQuAD and Natural Questions).

model and the batch size for the reader model is set
to 8 to fit in the 24GB GPU (retriever batch size
is still 64). For other hyperparameters, we use the
default settings of each model. We also exclude the
time and the number of questions in the first five
iterations for warming up each model. Note that
despite our effort to match the environment of each
model, their latency can be affected by various dif-
ferent settings in their implementations such as the
choice of library (PyTorch vs. Tensorflow).

C Data Statistics and Pre-processing

In Table C.3, we show the statistics of five open-
domain QA datasets and two slot filling datasets.
Pre-processed open-domain QA datasets are pro-
vided by Chen et al. (2017) except Natural Ques-
tions and TriviaQA. We use a version of Natural
Questions and TriviaQA provided by Min et al.
(2019); Lee et al. (2019), which are pre-processed
for the open-domain QA setting. Slot filling
datasets are provided by Petroni et al. (2021). We
use two reading comprehension datasets (SQuAD
and Natural Questions) for training our model on
Eq. (9). For SQuAD, we use the original dataset
provided by the authors (Rajpurkar et al., 2016).
For Natural Questions (Kwiatkowski et al., 2019),
we use the pre-processed version provided by Asai
et al. (2020).9 We use the short answer as a ground
truth answer a∗ and its long answer as a gold pas-
sage p. We also match the gold passages in Natural
Questions to the paragraphs in Wikipedia whenever
possible. Since we want to check the performance
changes of our model with the growing number
of tokens, we follow the same split (train/dev/test)
used in Natural Questions-Open for the reading
comprehension setting as well. During the valida-

9https://github.com/AkariAsai/
learning_to_retrieve_reasoning_paths

https://github.com/AkariAsai/learning_to_retrieve_reasoning_paths
https://github.com/AkariAsai/learning_to_retrieve_reasoning_paths
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tion of our model and baseline models, we exclude
samples whose answers lie in a list or a table from
a Wikipedia article.

D Hyperparameters

We use the Adam optimizer (Kingma and Ba, 2015)
in all our experiments. For training our phrase and
question encoders with Eq. (9), we use a learning
rate of 3e-5 and the norm of the gradient is clipped
at 1. We use a batch size of B =84 and train each
model for 4 epochs for all datasets, where the loss
of pre-batch negatives is applied in the last two
epochs. We use SQuAD to train our QG model10

and use spaCy11 for extracting named entities in
each training passage, which are used to generate
questions. The number of generated questions is
327,302 and 1,126,354 for SQuAD and Natural
Questions, respectively. The number of preceding
batches C is set to 2.

For the query-side fine-tuning with Eq. (11), we
use a learning rate of 3e-5 and the norm of the gra-
dient is clipped at 1. We use a batch size of 12
and train each model for 10 epochs for all datasets.
The top k for the Eq. (11) is set to 100. While we
use a single 24GB GPU (TITAN RTX) for train-
ing the phrase encoders with Eq. (9), query-side
fine-tuning is relatively cheap and uses a single
12GB GPU (TITAN Xp). Using the development
set, we select the best performing model (based on
EM) for each dataset, which are then evaluated on
each test set. Since SpanBERT only supports cased
models, we also truecase the questions (Lita et al.,
2003) that are originally provided in the lowercase
(Natural Questions and WebQuestions).

E Reducing Storage Footprint

As shown in Table 1, we have reduced the stor-
age footprint from 1,547GB (Lee et al., 2020) to
320GB. We detail how we can reduce the storage
footprint in addition to the several techniques intro-
duced by Seo et al. (2019).

First, following Seo et al. (2019), we apply a
linear transformation on the passage token repre-
sentations to obtain a set of filter logits, which can
be used to filter many token representations from
W(D). This filter layer is supervised by applying
the binary cross entropy with the gold start/end

10The quality of generated questions from a QG model
trained on Natural Questions is worse due to the ambiguity of
information-seeking questions.

11https://spacy.io/

positions (trained together with Eq. (9)). We tune
the threshold for the filter logits on the reading
comprehension development set to the point where
the performance does not drop significantly while
maximally filtering tokens. In the full Wikipedia
setting, we filter about 75% of tokens and store
770M token representations.

Second, in our architecture, we use a base model
(SpanBERT-base) for a smaller dimension of token
representations (d = 768) and does not use any
sparse representations including tf-idf or contex-
tualized sparse representations (Lee et al., 2020).
We also use the scalar quantization for storing
float32 vectors as int4 during indexing.

Lastly, since the inference in Eq. (10) is purely
based on MIPS, we do not have to keep the original
start and end vectors which takes about 500GB.
However, when we perform query-side fine-tuning,
we need the original start and end vectors for re-
constructing them to compute Eq. (11) since (the
on-disk version of) MIPS index only returns the
top-k scores and their indices, but not the vectors.

https://spacy.io/

