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Abstract

Behavior of deep neural networks can be
inconsistent between different versions. Re-
gressions1during model update are a common
cause of concern that often over-weigh the
benefits in accuracy or efficiency gain. This
work focuses on quantifying, reducing and
analyzing regression errors in the NLP model
updates. Using negative flip rate as regres-
sion measure, we show that regression has a
prevalent presence across tasks in the GLUE
benchmark. We formulate the regression-free
model updates into a constrained optimiza-
tion problem, and further reduce it into a
relaxed form which can be approximately op-
timized through knowledge distillation train-
ing method. We empirically analyze how
model ensemble reduces regression. Finally,
we conduct CHECKLIST behavioral testing
to understand the distribution of regressions
across linguistic phenomena, and the efficacy
of ensemble and distillation methods.

1 Introduction

Regression-free model update is a desirable system
property which guarantees interoperability of a
new system with a legacy version, also known as
backward compatibility. Regression occurs when
the newly updated system stops functioning as
intended.

As advances in deep learning spark industrial
applications in AI areas such as natural language
processing, the long-term maintenance of such
systems is becoming ever more challenging. While
models with complex neural architectures and
huge parameter space continue to reach higher
accuracy, the lack of interpretability and functional
decomposibility in these models make it infeasible
to apply traditional software regression testing

∗∗ Work done while at Amazon AWS AI.
1Here regression refers to bugs in software testing instead

of the statistical estimation method.
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Figure 1: Prediction flip scenarios on NLP classifi-
cation tasks when updating from old to new models.
Examples from paraphrase classification task.

methods such as unit tests. As result, validating
and mitigating regressions during model update is
often a long and painful engineering process, which
often over-shadows the benefits of a new model.

The model regression issue in deep learning
first comes into sight in Shen et al. (2020), where
they inspect compatible representation learning
for image retrieval. Yan et al. (2020) proposed
the positive-congruent training (PCT) for image
classification that minimizes prediction errors and
model regression at the same time. To our best
knowledge, the model update regression has not
been studied on NLP tasks.

Following Yan et al. (2020), in this work we
measure the model update regression in NLP
by negative flips. In Figure 1, we demonstrate
prediction flip scenarios. Negative flips are shown
in the upper-right quadrant where the old model
makes correct predictions and the new model
predictions are wrong. As we will show in
Section 2, regression are prevalent in NLU model
updates even with the slightest changes in the new
model training process.

To develop a model with minimum regres-
sion, we first formulate the learning task into a
constrained optimization problem by taking the
regression-free conditions as constraints. We apply
the Lagrangian relaxation to bring the regression-
free constraint into the optimization objective as an
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additional penalty loss, and provide approximate
solution via knowledge distillation. Yan et al.
(2020) also observed that model ensemble can also
reduce negative flips without explicit input from
the old model. We evaluate both distillation and
ensemble based methods on a diverse set of NLP
tasks.

To further understand how the above methods
contribute to reducing it, we utilize CHECKLIST

(Ribeiro et al., 2020) to quantify linguistic behav-
ioral changes before and after applying proposed
methods. We find that regressions are prevalent in
NLP tasks, and their distribution correlates with
different linguistic phenomena.

Our main contributions are as follows:

• We provide empirical evidence to show that
the model update regression occurs across text
classification tasks in NLP;

• We formulate the regression-free model up-
dates into a constrained optimization problem,
and further reduce into a relaxed form which
can be approximately optimized through
knowledge distillation training method;

• We also explore the model ensemble as
another method to reduce regression, and
analyzed its efficacy;

• We analyze the source of the regressions
in NLP tasks through linguistic behavioural
testing, compare reduction in both distillation
and ensemble methods.

2 Measuring Regression in NLP Model
Update

In this section, we first formulate the measure of
model update regression on classification tasks.
Then we benchmark on GLUE tasks (Wang et al.,
2018) and show that there is a prevalent presence
of regression when updating models in NLP.

2.1 Regression Measurement on
Classification Tasks

Similar to software regression testing, we need
to collect a group of test cases when measuring
regression. We start from a regression set: Dreg =
{xi, yi}Ni=1, yi ∈ {l1, l2, ..., lC}, where li is the
i-th label and C is the number of classes. In
practice, we can use the development set or compile
a collection of critical use cases as Dreg.

In a classification task, given a input xi, a
neural network model f , parameterized by φ,

approximates the posterior probabilistic distribu-
tion p(yi|xi) over all possible labels: ~fφ(xi) =
(pφ(y = l1|xi), ..., pφ(y = lC |xi))>. To simplify,
we denote the final prediction of a model to be
fφ(x) = argmaxlj pφ(lj |x).

The regressionRNF between two models fφold
and fφnew on Dreg can be defined as the portion of
negative flip cases:

RNF (Dreg, ~fφold
, ~fφnew

)

=
|{x|fφold

= y, fφnew
6= y}|

|Dreg|
.

We use negative flip RNF as our regression
measurement for classification tasks. LowerRNF
for a new models means better compatibility with
the old model.

2.2 Benchmark Severity of Regression
The success of Transformer (Vaswani et al., 2017)
and BERT (Devlin et al., 2019) have made pre-
training then fine-tuning a standard paradigm in
NLP systems. When updating these systems,
differences can come from various aspects:

• Changes in the fine-tuning hyperparameters
(e.g. random seed, learning rate schedule,
epoch, etc.)

• Changes in model size or architecture (e.g.
from BERTbase to BERTlarge)

• Changes in pre-training procedure or objective
(e.g. BERT to ROBERTA (Liu et al., 2020),
to BERTwhole-word-masking or to ELECTRA
(Clark et al., 2020))

• Changes in pre-trained model architecture
(e.g. BERT to ALBERT (Lan et al., 2020))

While accuracy or efficient improvements are
strong motivations for these model updates, they
could also introduce behavioral incongruence when
compared to the previous model. To benchmark
the severity of regression, we apply a general setup:
Fine-tune various pre-trained language models
(LM) on GLUE and calculateRNF when updating
from BERTbase to other LMs . We use dev sets as
Dreg. Results in Table 1 show that:

1. Model update regression is prevalent on NLU
tasks. A minimum of 1.98%RNF is observed
across diverse classification tasks and model
update scenarios, while the average accuracy
gain is only 1.4%.

2. Minor changes such as random seeds can
introduce significant regression. Shown in
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CoLA MRPC QQP MNLI-m

Train size 8.6k 3.7k 360k 390k
Dev size 1k 0.4k 40k 9.8k

Old: BERTbase Acc 82.84% 86.03% 90.76% 83.82%

→ BERTbase Acc 83.80%(+0.96%) 86.03%(-0.00%) 90.56%(-0.20%) 83.55%(-0.27%)
RNF ←↩3.36% ←↩ 4.17% ←↩2.32% ←↩ 3.56%

→ BERTlarge Acc 85.43%(+2.59%) 87.75%(+1.72%) 91.11%(+0.35%) 86.10%(+1.97%)
RNF ←↩ 3.16% ←↩ 5.88% ←↩2.82% ←↩ 3.95%

→ ROBERTAbase Acc 84.85%(+2.01%) 89.22%(+3.19%) 91.25%(+0.52%) 87.58% (+4.42%)
RNF ←↩4.67% ←↩ 4.66% ←↩1.98% ←↩ 2.64%

→ ELECTRAbase Acc 85.81%(+2.97%) 86.03%(+0.00%) 91.35%(+0.59%) 88.87%(5.05%)
RNF ←↩ 5.18% ←↩ 5.39% ←↩ 3.20% ←↩3.50%

→ALBERTbase Acc 76.51%(-6.33%) 86.27%(+0.24%) 90.73%(-0.03%) 85.26%(+1.44%)
RNF ←↩10.74% ←↩ 6.86% ←↩ 3.78% ←↩ 5.22%

Table 1: Regression measurement when performing different model updates on GLUE benchmark. Old: BERTbase
is our base version of model and we update it to other new models. We also show the accuracy gain in the
parenthesis. All numbers are 5-seed average.2

→BERTbase, even when we only alter the
initialization random seed, this can lead to up
to 3.56% negative flip.

3. Negative flip rates are often much higher
than the accuracy gains. When updating to
BERTlarge on QQP, RNF is about 8X the
accuracy gain. This implies reducing error
rate alone does not ensure the decrease in
regression.

4. Pre-training objective or architecture updates
often lead to higher regressions than those
caused by model size or random seeds. The
regressions are higher when updating to
ALBERTA, compared with updating to a
larger model BERTlarge or a different random
seed. This implies systematic regression could
be introduced if the backbone models are
different.

3 Reducing Regression in Model Update

In this section, we first formulate regression-
free model update as a constrained optimization
problem, then further reducing it to a joint
optimization objective combining the training loss
on the original task and a distillation loss with
respect to the old model’s behavior.

Unlike typical optimizations in neural model
training where we minimizes a loss function on
a training set, the regression-free model update
requires the model to learn the target task as well
as comply with conditions posed by the old model.

2Full results on GLUE can be found in Appendix A

We can cast the regression-free model update as a
constrained optimization problem by writing down
the classification loss as the optimization objective
and the regression-free conditions as constraints:

min
φnew

∑
x∈Dtrain

LCE(x, φnew)

s.t.RNF (fφold , fφnew ,Dreg) = 0.

(1)

where Dtrain,Dreg represent the training and
regression sets, respectively.

The constraint in Equation 1 asks for zero
regression on Dreg. It would be difficult to ensure
the constraint is satisfied along the model training.
We instead relax the hard constraint into a soft
inequality condition that allows the regression
measure to be less than a constant C:

min
φnew

∑
x∈Dtrain

LCE(x, φnew)

s.t. C −RNF (fφold , fφnew ,Dreg) ≥ 0.

(2)

Training a model directly with the regression-
free constraint still remains difficult in that signals
from old predictions are sparse and RNF is non-
differentiable. Here, we propose two proxies of
RNF to measure regression in continuous space.

Proxy from Prediction Probabilities. We use the
KL divergence between the predicted probabilities
of both models as one soft regression measure:

RKL-div(fφold , fφnew ,Dreg)

=
∑

x∈Dreg

DKL(pφold(y|x)||pφnew(y|x)). (3)
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Proxy from Deep Representations. We can also
use the l2 distance between models’ sentence
representations, e.g. [CLS] embedding in BERT
as another soft regression measure:

Rl2(fφold , fφnew ,Dreg)

=
∑

x∈Dreg

l2(~fφold(x),
~fφnew(x)).

(4)

A linear projection is used to align the representa-
tions if they initially lie in different spaces.

Reduce to Knowledge Distillation. Finally, we
apply the Lagrangian relaxation to bring the
regression-free constraint into the optimization
objective as an additional penalty loss:

min
φnew

∑
x∈Dtrain

LCE(x, φnew)

− α ∗ (C −Rsoft(fφold , fφnew ,Dreg)),
(5)

where α is a positive penalty scaling parameter
and Rsoft can be chosen from RKL-div or Rl2 .
Then, the above optimization problem can be cast
into a joint learning of the original target task and
knowledge distillation from the old model. The
distillation loss acts as a surrogate of the model
update regression measure. The joint learning
process minimizes this term as an approximation
of minimizing the overall model update regression.

4 Experiments

4.1 Implementation Details

Since we usually update models from elementary
ones to improved ones, in the experiments we
take origin BERTbase (12-layer, 768-hidden, 12-
heads, 110M parameters) (Devlin et al., 2019)
as the old model’s backbone and update it to
a homogeneous model, e.g. BERTbase with
different fine-tuning random seeds or parameters,
or a heterogeneous models with improvements
such as BERTlarge (24-layer, 1024-hidden, 16-
heads, 340M parameters). We fine-tune the pre-
trained LMs without any constraint as our baselines.
We use the GLUE datasets to benchmark the
effectiveness of proposed techniques. Details of
each GLUE task can be found in Appendix D. For
investigative experiments, we use the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan
and Brockett, 2005), a paraphrase identification
dataset that aims to classify whether two sentences
are the paraphrase of each other. Pre-trained

model artifacts and the GLUE dataset processing
procedures are brought from Hugging Face3 and
experiments are done in PyTorch (Paszke et al.,
2019) with Tesla V100 GPUs. Cross-entropy is
used for fine-tuning on target tasks with batch size
16 for 4 to 6 epochs. The learning rate is searched
among 2e−5, 3e−5 and 5e−5.

During joint training of classification and knowl-
edge distillation, we take the fine-tuned old models
as the teacher, and distill with batch size 16
for 6 to 8 epochs. We set Dreg = Dtrain
when training models with the constraint and use
Dreg = Ddev for reporting results. To encourage
constraint satisfaction and reduce regression, we
only include the distillation penalty into our loss
on the examples where the current model makes
negative flips.

4.2 Ensemble

Yan et al. (2020) reported an intriguing finding on
image classification tasks that model ensemble can
reduce model update regressions without explicit
regularization from the old model. This was
attributed to the reduction of variance in ensemble
model predictions, making it less prone to over-
fitting and indirectly reducing regressions. Here we
include model ensemble as an alternative approach
to reduce regression, with further analysis on how
ensemble reduces regression in Section 5.1.

4.3 Main Results

Table 2 shows the efficacy of distillation method
and model ensemble on reducing NLP classifica-
tion task model update regressions. On average,
the distillation method reduces RNF by 30.6%
and 36.3% while the ensemble method reduces
RNF by 55.9% and 20.6% when updating to
BERTbase and to BERTlarge, respectively. Both
distillation and ensemble methods can significantly
bring down negative flips across GLUE tasks
compared with the baselines. The ensemble seems
to work better when the old and new models
share the same underlying pre-trained LM. In
the update BERTbase→BERTbase, the ensemble
method outperforms the distillation on reducing
the regression. On the other hand, the distillation
method seems to be more effective on reducing
regression under the heterogeneous model update
setting. In the update BERTbase →BERTlarge,
distillation reduce more regression, with especially

3https://huggingface.co

https://huggingface.co
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CoLA SST-2 MRPC QQP MNLI-m QNLI RTE Average

Train size 8.6k 67k 3.7k 360k 390k 100k 2.5k
Dev size 1k 0.9k 0.4k 40k 9.8k 5.5k 0.3k

Old: BERTbase Acc 82.26% 91.17% 86.03% 90.76% 83.82% 91.07% 67.15% 84.61%

→BERTbase - Baseline Acc 82.93% 91.63% 86.03% 90.56% 83.55% 90.65% 63.18% 84.08%
RNF 4.41% 1.95% 4.17% 2.32% 3.56% 2.35% 11.43% 4.31%

→BERTbase - Distillation Acc 84.47% 92.09% 87.01% 91.14% 83.77% 91.16% 68.95% 85.81%
RNF 1.92% 0.80% 1.72% 1.69% 4.32% 2.47% 8.30% 2.99%

→BERTbase - Ensemble Acc 82.17% 91.63% 86.03% 91.06% 84.35% 91.62% 70.76% 85.37%
RNF 2.59% 0.92% 1.23% 1.18% 1.66% 1.06% 4.69% 1.90%

→BERTlarge - Baseline Acc 85.62% 92.89% 87.75% 91.11% 86.10% 92.53% 66.43% 86.06%
RNF 2.68% 1.72% 5.88% 2.82% 3.95% 2.64% 12.27% 4.57%

→BERTlarge - Distillation Acc 85.62% 92.89 % 88.73% 91.50% 86.73 % 92.15% 73.65% 87.33%
RNF 2.49% 1.26% 2.45% 2.46% 3.76% 2.54 % 5.42% 2.91%

→BERTlarge - Ensemble Acc 84.95% 93.12% 89.46% 91.66% 87.05% 93.08% 67.87% 86.74%
RNF 2.78% 1.61% 2.45% 2.20% 3.24% 2.27% 10.83% 3.63%

Table 2: Results of fine-tuning with distillation and ensemble on GLUE benchmark. Baseline denotes directly
fine-tuning new pre-trained models on target tasks. We show the distillation results withRKL-div, and the ensemble
results with 5 model majority vote. Due to page limitation, we only show the matched results on MNLI (Williams
et al., 2018).

large reductions on small datasets such as CoLA
and SST-2. We hypothesize that it’s because
the ensemble focuses on reducing the variance in
model predictions, while distillation enables the
explicit alignment in either probability distribution
or representation space between the old and the new
model. When the new model is very different from
the old one, it can implicitly align new model’s
behavior with the old one.

4.4 Variants in Distillation Objective

As introduced in Section 3, we can have several
variants of distillation loss to be used to constrain
new model training on the old model. We explore
and benchmark the following variants on the
MRPC task:

• Distillation - RKL-div, Logits calculates the
distillation loss as the KL divergence between
the two Bernoulli distributions set by the old
and new model prediction probabilities;

• Distillation - Rl2 , [CLS] uses the [CLS]
token embedding from the final layer as
sentence representations and calculates the
distillation loss as the Euclidean distance
between the two vectors;

• Distillation - Rl2 , All [CLS] also calculates
the Euclidean distance between the old and
new sentence representation vectors, but with
concatenated [CLS] token embeddings from
all layers instead of the final layer.

Pre-trained models could have different layers.
For BERTbase →BERTlarge in the All [CLS]
setup, we align representations from BERTlarge’s
even layers with the corresponding BERTbase
layers, e.g. 14-th layer in BERTlarge is aligned
with 7-th in BERTbase.

Table 3 shows the results. In the homogeneous
setup, the most effective variant is to align the
prediction probabilities via RKL-div, where it
achieves up to 58% RNF reduction, i.e. from
4.17% to 1.72%. For Rl2 setup, aligning at all
layers can further reduceRNF compared with only
aligning at the final layer. This implies a deeper
alignment can help the new model more effectively
learn to behave similarly as the old one when
fine-tuning the same architecture with a different
random seed.

In the heterogeneous setup, Rl2 , [CLS] works
the best for BERTlarge that achieves 62% RNF
reduction, with RKL-div having a comparable
performance. Overall,RKL-div produces consistent
regression reductions across different setups, which
we pick it as our default setting in the distillation
method.

From Table 3, we can also observe that the
deeper alignment seems to hurt RNF in the
heterogeneous update setup. The reason might
be that differences between pre-trained models
are too significant. The distillation with simple
all-layer alignment could mess up pre-trained
representations rather than effectively encourage
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Old: BERTbase Acc: 86.03%

New: →BERTbase →BERTlarge

Acc RNF Acc RNF

Baseline 86.03% 4.17% 87.75% 5.88%

Distillation -RKL-div, Logits 87.01% 1.72% 88.73% 2.45%
Distillation -Rl2 , [CLS] 85.54% 3.19% 88.73% 2.21%
Distillation -Rl2 , All [CLS] 85.54% 2.45% 87.99% 4.90%

Ensemble 86.0% 1.23% 89.46% 2.45%

Table 3: Accuracy and regression results on MRPC with BERTbase →BERTbase and BERTbase →BERTlarge
updates using variants of distillation and ensemble methods. Baseline is fine-tuning with different random seeds.
Model accuracy and negative flip rates are averaged across 5 seeds.

new models to learn where the old model performs
well.

Another interesting finding is that the sim-
ple model ensemble is a competitive solution
comparing to the distillation. In the BERTbase
→BERTbase setup, the ensemble even outperforms
all the other distillation variants. This is indeed a
bit counter-intuitive as the distillation explicitly
encourages the new model to pick up old models’
correct predictions while the ensemble does not
involve the old model in the process. We conduct
deeper analysis trying to understand on which
aspects that these methods work to reduce the
regression in the next section.

5 Analyzing Regression in Model
Updates

In this section, we first analyze the model ensemble
and present our hypothesis on how it reduces
regression. Next, we conduct behavioral testing
across diverse linguistic phenomena to see where
the reduced and remaining regressions reside.

5.1 Analysis of Updating to Model Ensemble
Similar to the findings of Yan et al. (2020), we
observe in Table 2 and 3 that a simple ensemble of
models trained with different random initialization
before finetuning can reduce regression in some
cases. We fine-tune BERTbase on MRPC with 20
random seeds as our old base models, and another
20 seeds as our new single models, and another 100
seeds for building 20 ensemble models. Next, we
calculateRNF on the dev set in each model update
setup, i.e. 400 update pairs. Figure 2 plots their
model update regression RNF distributions. We
observe that the ensemble can not only bring down
RNF but also reduce its variance.

From Figure 2, we conjecture that each single
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Figure 2: Pair-wise RNF distributions of update
BERTbase →BERTbase on MRPC, with new model
being single models fine-tuned with different seeds
(blue) or ensemble models (red). We train 20 old and
20 new models to calculate 400 pair-wiseRNF .

model could learn a subset of all possible patterns
in the data to achieve comparable accuracy on the
task. Models fine-tuned with different seeds could
rely on different sets of patterns for predictions,
leading to behavioral difference and regression. On
the other hand, ensemble aggregates distinct and
complementary behaviors from individual models,
leading to less eccentric behavior and increased
compatible with individual models on average. In
a parallel work, Zeyuan and Li (2020) provides
a theoretical framework of how ensemble works
from the multi-view perspective. They show that
single models can pick up multiple but different
views of the data, and the ensemble naturally
collects more view features, leading to a higher
accuracy. Our hypothesis concurs with their
findings.

However, ensemble is not required to achieve
moderate model behavior. To verify this, we
designed the following simple model selection
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Acc RNF

Old: BERTbase Single 85.81(±1.07)% -

Single 85.39(±1.43)% 4.30(±1.53)%
→BERTbase Ensemble 86.18(±1.12)% 3.08(±1.14)%

Centric 87.75% 2.79(±0.69)%

Single 86.32(±2.50)% 5.37(±2.69)%
→BERTlarge Ensemble 87.65(±1.34)% 3.64(±1.21)%

Centric 87.25% 4.24(±0.78)%

Table 4: The selected single model centric can achieve
similar accuracy and negative flip as ensemble.

4 3 2 1 0 1 2 3
2

1

0

1

2

3

4

Centric

Label

Old: BERT Base
New: BERT Base
New: BERT Ensemble
Ground Truth

Figure 3: 2D visualization by PCA of old, new single,
and new ensemble models based on dev set predictions.

procedure. We first train 20 new single models,
among which we compute for each model the
average RNF on the first half of dev set when
updating from the other 19 models. We then select
the single model with the lowest averageRNF as
the centric. Results in Table 4 show the accuracy
andRNF on the second half of the dev set. Indeed
the single centric model achieves substantial
reduction inRNF comparable to model ensemble.
We further plot all the BERTbase models based
on their class predictions down-projected by PCA
(Hotelling, 1933). Figure 3 shows that single
models tend to spread while ensembles are more
concentrated and close together. We can also
see that the centric indeed sits near the center
of single model cluster. In essence, the centric
model is a single model that requires much less
compute resource than the ensemble model during
inference, yet can achieve comparable performance
and reductions in regression.

5.2 Analyzing Regression with Linguistic
Behavioral Testing

To further understand where the regression happens
and how the above methods contribute to reducing
regression, we conduct qualitative analysis across
diverse linguistic phenomena. More precisely, we
leverage the CHECKLIST (Ribeiro et al., 2020)
behavioral testing and construct regression sets
for relevant linguistic capabilities and tests based
on perturbations and provided templates. For
example, to test the capability of dealing with
lexical taxonomy in the paraphrase detection task,
we replace adjectives in one sentence with their
synonyms with the label unchanged and expect the
model can still predict correctly. We manually set
the templates, apply CHECKLIST to automatically
generate testing sentence pairs, and calculate
RNF for each linguistic test. Detailed linguistic
behavioral testing setups with examples can be
found in Appendix C.

Table 5 shows the linguistic behavioral testing
results when updating from BERTbase - 1 Seed
to BERTlarge. Each row denotes one specific
behavioral test and 500 cases are sampled in
each test. We focus on negative flips where the
new model fails the test while the old model
passes. We can observe that the vanilla fine-
tuned BERTlarge has significant regressions on
switching with synonyms, asymmetric ordering,
and active-passive swap related to people names
(see Appendix C). Also, we observe that models
tend to either fail or pass almost all cases in a test,
which leads to high variances inRNF . This implies
that models fine-tuned with different seeds can have
different behavioral patterns, which could be one
source of regression.

Furthermore, Table 5 shows that the distillation
can effectively reduce regressions across almost
all types of behavioral tests. This demonstrates
that minimizing the surrogate regression measure,
formulated as a knowledge distillation objective,
reduces the regression through actually aligning
new model’s behavior with the old model.

For the ensemble, although it can reduce signifi-
cant regressions in the benchmark, we observe that
it can only improve the model update compatibility
on a handful of capabilities. We hypothesize that
the ensemble mostly improves the compatibility
with the underlying constituent models. Without an
explicit alignment, it cannot proactively reduce the
regression on certain behavior tests when updating
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Old: BERTbase

(Error %) New: BERTlarge (RNF )

1 Seed 1 Seed KD 1 Seed 5 Seeds KD 5 Seeds Centric Ensemble

Coref - He/She 0.0% 13.4% 22.4% 12.3(±16.1)% 41.2(±47.0)% 0.0 0.0(±0.0)%
Vocab - People 0.0% 13.8% 1.9% 59.5(±34.8)% 34.1(±47.1)% 89.0% 55.2(±50.8)%
Vocab - More/Less 100.0% 0.0% 0.0% 0.0(±0.0)% 0.0(±0.0)% 0.0% 0.0(±0.0)%
Taxonomy - Synonym 0.0% 42.3% 0.0% 77.0(±26.2)% 20.3(±44.5)% 73.1% 61.9(±54.1)%
SRL - Pharaphrase 0.0% 12.5% 99.9% 63.2(±43.4)% 42.0(±48.3)% 26.9% 61.9(±54.1))%
SRL - Asymmetric Order 0.0% 47.1% 0.0% 70.7(±20.0)% 22.3(±43.7)% 92.0% 58.6(±52.2)%
SRL - Active/Passive 1 0.1% 9.3% 65.2% 58.0(±43.2)% 52.7(±50.1)% 98.5% 42.4(±51.5)%
SRL - Active/Passive 2 0.1% 90.0% 0.7% 95.5(±4.8)% 23.8(±43.3)% 99.6% 65.2(±56.5)%
SRL - Active/Passive 3 99.9% 0.1% 0.0% 0.1(±0.0)% 0.0(±0.0)% 0.1% 0.1(±0.1)%
Temporal - Before/After 100.0% 0.0% 0.0% 0.0(±0.0)% 0.0(±0.0)% 0.0% 0.0%
Average 38.5% 19.9% 14.8% 38.2% 20.3% 43.8% 33.3%

Table 5: Behavioral tests with CHECKLIST. Second column shows the error rate of the old model. Remaining
columns areRNF compared with the old model. The columns with 1 Seed represent the results with random seed
equals to 0, while columns with 5 seeds represent 5 seed average. The columns with KD are the models after
distillation. The columns with Centric means the single selected with the method mentioned in Section 5.1.

from other distinct models.

6 Related work

6.1 Model Update Regression and Solutions
The backward compatibility representation learn-
ing first comes into sight in Shen et al. (2020)
on learning inter-operabile visual embeddings for
image retrieval tasks. Later, Yan et al. (2020)
formalize the model update regression problem in
machine learning and explore solutions on image
classification tasks. They suggest negative flip (NF)
as the empirical measurement of regression and
propose a specialized knowledge distillation loss
(Hinton et al., 2015) as a surrogate of regression
for joint optimizations. Our work investigates
the model update regression in NLP classification
tasks, which involve discrete signals and rich
linguistic structures. We formulate our solutions
from the perspective of constraint satisfaction and
verify their efficacy on scenarios including update
to distinct architectures.

6.2 Transfer Learning, Lifelong Learning
and Concept Drifting

Pre-training a model on large corpora and fine-
tuning on downstream tasks has emerged as a
standard paradigm in NLP (Devlin et al., 2019; Lan
et al., 2020; CONNEAU and Lample, 2019; Raffel
et al., 2020; Brown et al., 2020; Clark et al., 2020).
Our work follows this transfer learning paradigm
but our main focus is to investigate the regression
phenomenon when updating backbone pre-trained
models. Another related stream of research is
lifelong learning (Lopez-Paz and Ranzato, 2017;

Yoon et al., 2018; Delange et al., 2021; Sun
et al., 2019; Chuang et al., 2020), incremental
learning (Rebuffi et al., 2017; Chaudhry et al.,
2018; Prabhu et al., 2020), or concept drifting
(Schlimmer and Granger, 1986; Tsymbal, 2004;
Klinkenberg, 2005; Žliobaitė I., 2016) which aims
to accumulate knowledge learned either in previous
tasks or from data with changing distribution. The
model update regression problem differs in that
models are trained on the same task and dataset,
but we update from one model to another.

6.3 Behavioral Testing of NLP Models

To analyze whether a fine-tuned model can handle
linguistic phenomena for a specific end task,
perturbation techniques are often used (Belinkov
and Bisk, 2018; Ribeiro et al., 2018; Prabhakaran
et al., 2019; Wu et al., 2019; Talmor et al.,
2020). In particular, CHECKLIST (Ribeiro et al.,
2020) leverages and expands those techniques
to efficiently evaluate a wide range of linguistic
behavioral capabilities of NLP models. Our
work applies CHECKLIST to inspect where the
model update regressions come from and on which
linguistic phenomena our proposed solutions help
to reduce regressions.

7 Conclusion

In this work, we investigated the regression in NLP
model updates on classification tasks and show that
it has a prevalent presence across tasks and models.
We formulated the regression-free model update
problem as a constrained optimization problem and
reduce it into a joint learning objective on target
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task while distilling from the old model. Together
with the ensemble, these methods can cut down
the regression by 60% at best. Experiments on the
GLUE benchmark showed that ensemble can be
effective in reducing the regression when updating
to homogeneous models. On the other hand,
knowledge distillation produced more significant
regression reductions under the heterogeneous
setting. Through linguistic behavioral testing we
showed that distillation can reduce the regression
across a wider range of linguistic phenomena than
ensemble method. While the regression reduction
achieved by the discussed methods are promising,
they are far from reaching regression-free. We
leave the design of more advanced regression-
reduction methods as future works.
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A Full Results of Regression Between
SOTA Model Updates

Due to the page limitation, we present the full
regression update comparison between commonly
used pre-trained model pairs (Devlin et al., 2019;
Liu et al., 2020; Lan et al., 2020; Clark et al., 2020)
in Table 6.

We show regression in model updates
from BERTbase to the other common used
pre-trained models; we also show the
regression in updates from BERTlarge to
BERTlarge−whole−word−masking and updating
from ROBERTAbase to ELECTRAbase.

Other than the universal presence of the regres-
sion, Table 6 shows that:

1. The more difference in pre-training
method, the higher regression can be
observed. From the results of updating
from BERTbase experiment group we
can have this conclusion: The updating
factors can increase regression in ascending
order: hyperparameters (to BERTbase),
pre-train settings(to ROBERTAbase), model
size (to BERTlarge), pre-train objection
(to ELECTRAbase), model structure(to
ALBERTbase)

2. Similar updating factor results in simi-
lar level of regression. Updating from
BERTlarge to BERTlarge−wwm have sim-
ilar regression level as in updating from
BERTbase to ELECTRAbase, both are updat-
ing in the pre-training objective. Similarly,
Updating from ROBERTAbase to ELEC-
TRAbase have similar regression as in updat-
ing from BERTbase to ELECTRAbase.

B Selection of Regression Set During
Training

Here, we explore the difference of regressing set
selection during knowledge distillation.

For the regression set used in the model training
process, we propose several options:

1. Take the entire training set as our the regres-
sion set in training Dreg = Dtrain

2. Training examples where the old model makes
correct predictions Dreg = Dcorrect

3. Training examples where the old model gets
a higher predict probability on the ground-
truth class than the new model Dreg =

Dbetter, equivalent to adjusting α dynamically
according to the performance of the two
models, we set α to zero when pφold(y|x) <
pφnew(y|x)

4. Extra data from other tasks Dreg = Dextra
5. User-provided regression set, which includes

examples with high-stakes Dreg = Duser
We experiment with all options except for the user-
provided regression set, see Table 7.

Dynamically adapting the regression set accord-
ing to the current performance of the new model
in Distillation (RKL-div,Dbetter) offers the most
reduction in the regression without sacrificing the
accuracy. We conjecture that it’s because we apply
the soft regression-free constraint loss precisely on
examples where the new model’s performance is
behind.

C Linguistic Behaviour Test settings

In the linguistic behaviour tests, we go through
a variety range of linguistic aspects and design
test examples following CheckList(Ribeiro et al.,
2020).

In Table 8 we show the tests for linguistic
behaviour tests. Please find the example test cases
in the third column for each testing.

D GLUE Details

The GLUE datasets are described as follows(Jiao
et al., 2020):
MNLI. Multi-Genre Natural Language Inference
is a large-scale, crowd-sourced entailment clas-
sification task (Williams et al., 2018). Given
a pair of 〈premise, hypothesis〉, the goal is to
predict whether the hypothesis is an entailment,
contradiction, or neutral with respect to the
premise.
QQP. Quora Question Pairs is a collection of
question pairs from the website Quora. The
task is to determine whether two questions are
semantically equivalent (Chen et al., 2018).
QNLI. Question Natural Language Inference is
a version of the Stanford Question Answering
Dataset which has been converted to a binary
sentence pair classification task by Wang et al.
(2018). Given a pair 〈question, context〉. The
task is to determine whether the context contains
the answer to the question.
SST-2. The Stanford Sentiment Treebank is a
binary single-sentence classification task, where
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CoLA SST-2 MRPC QQP MNLI-m MNLI-mm QNLI RTE

Train size 8.6k 67k 3.7k 360k 390k 390k 100k 2.5k
Dev size 1k 0.9k 0.4k 40k 9.8k 9.8k 5.5k 0.3k

Old: BERTbase Acc 82.84% 92.20% 86.03% 90.76% 83.82% 84.13% 91.07% 67.15%

→BERTbase Acc 83.80% 91.93% 86.03% 90.56% 83.55% 83.94% 90.65% 63.18%
RNF 3.36% 2.10% 4.17% 2.32% 3.56% 3.67% 2.35% 11.43%

→BERTlarge Acc 85.43% 93.23% 87.75% 91.11% 86.10% 86.49% 92.53% 66.43%
RNF 3.16% 1.95% 5.88% 2.82% 3.95% 3.69% 2.64% 12.27%

→ROBERTAbase Acc 84.85% 94.11% 89.22% 91.25% 87.58% 87.74% 92.71% 63.17%
RNF 4.67% 1.22% 4.66% 1.98% 2.64% 2.38% 1.74% 13.1%

→ELECTRAbase Acc 85.81% 95.41% 86.03% 91.35% 88.87% 88.67% 93.30% 72.92%
RNF 5.18% 1.38% 5.39% 3.20% 3.50% 3.57% 2.65% 7.58%

→ALBERTAbase Acc 76.51% 91.86% 86.27% 90.73% 85.26% 85.14% 91.67% 74.73%
RNF 10.74% 3.67% 6.86% 3.78% 5.22% 5.24% 3.70% 9.03%

Old: BERTlarge Acc 85.43% 93.23% 87.75% 91.11% 86.10% 86.49% 92.53% 66.43%

→BERTlarge−wwm Acc 85.14% 94.15% 87.01% 91.52% 86.75% 87.24% 93.34% 70.76%
RNF 5.05% 1.60% 7.82% 3.03% 5.08% 4.67% 2.75% 15.22%

Old: ROBERTAbase Acc 84.85% 94.38% 87.25% 91.28% 88.24% 87.63% 92.51% 70.76%

→ELECTRAbase Acc 85.81% 95.41% 86.03% 91.35% 88.87% 88.67% 93.30% 72.92%
RNF 4.31% 1.49% 6.62% 2.77% 3.47% 3.48% 2.62% 7.58%

Table 6: Accuracy and regression measures of different model update variants on GLUE benchmark.
BERTlarge−wwm represents the whole-word-masking version.

Old: BERTbase Acc: 86.03%

New: →BERTbase →BERTlarge
Acc RNF Acc RNF

Baseline 86.03% 4.17% 87.75% 5.88%

Distillation(RKL-div,Dtrain) 87.25% 2.94% 88.73% 3.68%
Distillation(RKL-div,Dcorrect) 87.01% 3.92% 88.48% 4.90%
Distillation(RKL-div,Dbetter) 87.01% 1.72% 88.73% 2.45%

Distillation(Rl2 ,Dbetter) 85.29% 2.45% 88.73% 2.21%

Table 7: Results on MRPC of our proposed techniques towards regression-free model updates. The model is
updated fromBERTbase to BERTbase, e.g. change fine-tune setups, or BERTlarge. D(·) denotes the regression set
for joint training with distillation and classification.

the goal is to predict the sentiment of movie
reviews (Socher et al., 2013).
CoLA. The Corpus of Linguistic Acceptability is
a task to predict whether an English sentence is a
grammatically correct one (Warstadt et al., 2019).
STS-B. The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and many other domains (Cer et al.,
2017). The task aims to evaluate how similar two
pieces of texts are by a score from 1 to 5.
MRPC. Microsoft Research Paraphrase Corpus is

a paraphrase identification dataset where systems
aim to identify if two sentences are paraphrases of
each other (Dolan and Brockett, 2005).
RTE. Recognizing Textual Entailment is a binary
entailment task with a small training dataset (Ben-
tivogli et al., 2009).
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Category Description Example Label

Coref - He/She Reverse he or she. If Charles and Jessica were alone , do you think he
would reject her?

False

If Charles and Jessica were alone , do you think she
would reject him?

Vocab - People Add modifiers that preserve sentence Wendy is friendly to Kevin. True
semantics. Wendy is truely friendly to Kevin.

Vocab - More/Less Swap more with less. I can become more passive. True
I can become less passive.

Taxonomy - Synonym Replace synonym. I can become more courageous. True
I can become more brave.

SRL - Pharaphrase Somebody think→ According to Some-
body.

Who do conservatives think is the happiest surgeon
in the world ?

True

Who is the happiest surgeon in the world according
to conservatives ?

SRL - Asymmetric Order Order does matter for asymmetric Shannon is proposing to Samantha. False
relations. Samantha is proposing to Shannon.

SRL - Active/Passive 1 Traditional SRL: active / passive swap Jeremy missed the game. True
The game was missed by Jeremy.

SRL - Active/Passive 2 Traditional SRL: active / passive swap. Christian remembers Alyssa. True
with people. Alyssa is remembered by Christian.

SRL - Active/Passive 3 Traditional SRL: wrong active / passive Sara took the castle. False
swap. Sara was taken by the castle.

Temporal - Before/After Before becoming somebody → after
becoming somebody.

What was Noah Myers ’s life before becoming an
architect ?

False

What was Noah Myers ’s life after becoming an
architect ?

Table 8: Regression Tests details with CheckList.


