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Abstract

Transformer-based pre-trained language mod-
els like BERT, though powerful in many tasks,
are expensive in both memory and computa-
tion, due to their large number of parameters.
Previous works show that some parameters in
these models can be pruned away without se-
vere accuracy drop. However, these redun-
dant features contribute to a comprehensive
understanding of the training data and remov-
ing them weakens the model’s representation
ability. In this paper, we propose GhostBERT,
which generates more features with very cheap
operations from the remaining features. In
this way, GhostBERT has similar memory and
computational cost as the pruned model, but
enjoys much larger representation power. The
proposed ghost module can also be applied to
unpruned BERT models to enhance their per-
formance with negligible additional parame-
ters and computation. Empirical results on the
GLUE benchmark on three backbone models
(i.e., BERT, RoBERTa and ELECTRA) verify
the efficacy of our proposed method.

1 Introduction

Recently, there is a surge of research interests in
compressing the transformer-based pre-trained lan-
guage models like BERT into smaller ones using
various compression methods, i.e., knowledge dis-
tillation (Sanh et al., 2019; Sun et al., 2019; Jiao
et al., 2020), pruning (Michel et al., 2019; Fan
et al., 2019), low-rank approximation (Lan et al.,
2020), weight-sharing (Lan et al., 2020), dynamic
networks with adaptive depth and/or width (Liu
et al., 2020; Hou et al., 2020; Xin et al., 2020;
Zhou et al., 2020), and quantization (Shen et al.,
2020; Fan et al., 2020; Zhang et al., 2020; Bai et al.,
2021).

Previous works show that there are some redun-
dant features in the BERT model, and unimportant
attention heads or neurons can be pruned away
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Figure 1: Average GLUE development accuracy versus
#params and FLOPs with the (pruned) BERT and our
GhostBERT. m is the width multiplier of the model.

without severe accuracy degradation (Michel et al.,
2019; Hou et al., 2020). However, for computer
vision (CV) tasks, it is shown in (Han et al., 2020)
that redundant features in convolutional neural net-
works also contribute positively to the performance,
and using cheap linear operations to generate more
ghost feature maps enhances the performance with
few additional parameters. On the other hand, it is
shown in (Voita et al., 2019; Kovaleva et al., 2019;
Rogers et al., 2020) that many attention maps in
pre-trained language models exhibit typical posi-
tional patterns, e.g., diagonal or vertical, which can
be easily generated from other similar ones using
operations like convolution.

Based on the above two aspects, in this paper,
we propose to use cheap ghost modules on top of
the remaining important attention heads and neu-
rons to generate more features, so as to compensate
for the pruned ones. Considering that the convo-
lution operation (1) encodes local context depen-
dency, as a complement of the global self-attention
in Transformer models (Wu et al., 2020); and (2)
can generate some BERT features like positional
attention maps from similar others, in this work, we
propose to use the efficient 1-Dimensional Depth-
wise Separable Convolution (Wu et al., 2019) as
the basic operation in the ghost module. To ensure
the generated ghost features have similar scales
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[SEP]
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[SEP]
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[SEP]
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(b) Ghost Module Gf,h.

Figure 2: Using ghost modules to generate more features in BERT. G-MHA/FFN stands for Ghost-MHA/FFN.

as the original ones, we use a softmax function to
normalize the convolution kernel.

Afterwards, we fine-tune the parameters in both
the BERT backbone model and the added ghost
modules. Note that the ghost modules are not nec-
essarily applied to pruned models. They can also be
directly applied to pre-trained language models for
better performance while with negligible additional
parameters and floating-point operations (FLOPs).
Figure 1 summarizes the average accuracy versus
parameter size and FLOPs on the GLUE bench-
mark, where adding ghost modules to both the
unpruned (m = 12/12) and pruned (m < 1)
BERT models perform better than the counterparts
without ghost modules. More experiments on the
GLUE benchmark show that with only 0.4% more
parameters and 0.9% more FLOPs, the proposed
ghost modules improve the average accuracy of
BERT-base, RoBERTa-base and ELECTRA-small
by 0.9, 0.6, 2.4 points, respectively. When apply-
ing ghost modules to small or pruned models, the
resultant models outperform other BERT compres-
sion methods.

2 Approach

In this section, we first introduce where to add
ghost modules in a BERT model (Section 2.1), and
then discuss the components and optimization de-
tails of the ghost module (Section 2.2).

2.1 Adding Ghost Modules to BERT

The BERT model is built with Transformer lay-
ers, each of which contains a Multi-Head Attention
(MHA) layer and a Feed-Forward Network (FFN),
as well as skip connections and layer normaliza-
tions. Hou et al. (2020) show that the computations

for attention heads of MHA and neurons in the
intermediate layer of FFN can be performed in par-
allel. Thus the BERT model can be compressed
in a structured manner by pruning parameters as-
sociated with these heads and neurons (Hou et al.,
2020). In this paper, after pruning the unimpor-
tant heads and neurons, we employ cheap ghost
modules upon the remaining ones to generate more
ghost features to compensate for the pruned ones.

For simplicity of notation, we omit the bias terms
in linear and convolution operations where applica-
ble in the rest of this work.

2.1.1 Ghost Module on MHA
Following (Hou et al., 2020), we divide the com-
putation of MHA into the computation of each
attention head. Specifically, suppose the sequence
length and hidden state size are n and d, respec-
tively. Each transformer layer consists ofNH atten-
tion heads. For input matrix X ∈ Rn×d, the h-th
attention head computes its output as Hh(X) =
Softmax(1/

√
d · XWQ

h W
K>
h X>)XWV

h W
O>
h ,

where WQ
h ,W

K
h ,W

V
h ,W

O
h ∈ Rd×dh with dh =

d/NH are the projection matrices associated with
it. In multi-head attention, NH heads are computed
in parallel to get the final output:

MHA(X) =

NH∑
h=1

Hh(X). (1)

Given a width multiplier m ≤ 1, we keep M =
bNhmc heads and use them to generate F ghost
features. The f th ghost feature is generated by

Gf (X)=Nonlinear

(
M∑
h=1

Gf,h (Hh(X))

)
. (2)
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where Gf,h is the proposed cheap ghost mod-
ule which generates features from the hth atten-
tion head’s representation to the f th ghost feature.
ReLU is used as the nonlinearity function. Thus
the computation of MHA in the GhostBERT is:

Ghost-MHA(X)=

M∑
h=1

Hh(X)+

F∑
f=1

Gf (X). (3)

Besides being added to the output of MHA, the
ghost modules can also be added to other positions
in MHA. Detailed discussions are in Section 4.2.

2.1.2 Ghost Module on FFN
Similar to the attention heads in MHA, the com-
putation of FFN can also be divided into computa-
tions for each neuron in the intermediate layer of
FFN (Hou et al., 2020). With a slight abuse of no-
tation, we still use X ∈ Rn×d as the input to FFN.
Denote the number of neurons in the intermediate
layer as dff , the computation of FFN can be writ-

ten as: FFN(X) =
∑dff

i=1 GeLU
(
XW1

:,i

)
W2

i,:,

where W1,W2 are the weights in FFN.
For simplicity, we also use width multiplier m

for FFN as MHA, and divide these neurons into
NH folds, where each fold contains df = dff/NH

neurons. For the h-th fold, its output can be com-
puted as Hh(X) = GeLU

(
XW1

h

)
W2

h where
W1

h =W1
:,(h−1)df :hdf and W2

h =W2
(h−1)df :hdf ,:

are the parameters associated with it. In FFN, NH

folds are computed in parallel to get the output:

FFN(X) =

NH∑
h=1

Hh(X). (4)

For width multiplier m, we keep M folds of
neurons and use ghost modules to generate F ghost
features as in Equation (2). Thus the computation
of FFN in the GhostBERT can be written as:

Ghost-FFN(X)=

M∑
h=1

Hh(X)+

F∑
f=1

Gf (X). (5)

2.2 Ghost Module
In the previous section, we discussed where we
insert the ghost modules in the Transformer layer.
In this section, we elaborate on the components
and normalization of the ghost modules.

Generally speaking, any function can be used as
the ghost module G in Equation (2). Considering
that (i) convolution operation can encode local con-
text dependency, as a compensation for the global

self-attention (Wu et al., 2020; Jiang et al., 2020);
and (ii) features like diagonal or vertical attention
maps (Kovaleva et al., 2019; Rogers et al., 2020)
can be easily generated by convolving similar oth-
ers, we consider using convolution as the basic
operation in the ghost module.

2.2.1 Convolution Type
With a slight abuse of notation, here we still use
X ∈ Rn×d as the input to the convolution, i.e.,
the output Hh of hth head in MHA or hth fold of
neurons in FFN. Denote O ∈ Rn×d as the output
of the convolution in the ghost module.

1-Dimensional convolution (Conv1D) over the
sequence direction encodes local dependency over
contexts, and has shown remarkable performance
for NLP tasks (Wu et al., 2019, 2020). To utilize the
representation power of Conv1D without too much
additional memory and computation, we choose
1-Dimensional Depthwise Separable Convolution
(DWConv) (Wu et al., 2019) for the ghost mod-
ule. Compared with Conv1D, DWConv performs a
convolution independently over every channel, and
reduces the number of parameters from d2k to dk
(where k is the convolution kernel size). Denote the
weight of the DWConv operation as W ∈ Rd×k.
After applying DWConv, the output for the ith to-
ken and cth channel can be written as:

Oi,c = DWConv(X:,c,Wc,:, i, c)

=

k∑
m=1

Wc,m ·Xi−d k+1
2
e+m,c.

2.2.2 Normalization
Since the parameters of the BERT backbone model
and the ghost modules can have quite differ-
ent scales and optimization behaviors, we use a
softmax function to normalize each convolution
kernel Wc,: across the sequence dimension as
Softmax(Wc,:) before convolution as Wu et al.
(2019). By softmax normalization, the weights in
one kernel are summed up to 1, ensuring that the
convolved output has a similar scale as the input.
Thus after applying the ghost module, the output
for the ith token and cth channel can be written as:

Ôi,c=DWConv(X:,c,Softmax(Wc,:), i, c).

2.3 Training Details
To turn a pre-trained BERT model into a smaller-
sized GhostBERT, we do the following three steps:
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Model-Size FLOPs(G) #params(M) MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.

BERT-base (Devlin et al., 2019) 22.5 110 84.5 92.0 90.9 71.1 92.9 87.8 58.1 89.8 83.4
GhostBERT (m = 12/12) 22.5 110 84.7 92.3 91.1 71.8 93.0 88.0 63.6 89.7 84.3
GhostBERT (m = 9/12) 16.9 88 84.8 92.1 91.2 72.6 92.6 87.5 61.1 89.8 84.0
GhostBERT (m = 6/12) 11.3 67 84.7 92.2 91.2 72.2 92.9 87.3 58.1 89.2 83.5
GhostBERT (m = 3/12) 5.8 46 84.3 91.6 91.4 72.9 94.6 86.5 53.9 89.2 83.1
GhostBERT (m = 1/12) 2.0 32 82.8 90.0 90.5 66.1 92.8 86.0 46.1 87.8 80.3

RoBERTa-base (Liu et al., 2019) 22.5 125 87.6 92.8 91.9 78.7 94.8 90.2 63.6 91.2 86.4
GhostRoBERTa (m = 12/12) 22.5 125 88.0 93.1 91.9 80.5 95.3 90.7 65.0 91.3 87.0
GhostRoBERTa (m = 9/12) 16.9 103 87.6 92.9 91.9 79.4 95.4 89.0 60.8 90.7 86.0
GhostRoBERTa (m = 6/12) 11.3 82 86.8 92.6 91.6 77.6 94.4 89.7 57.6 90.3 85.1
GhostRoBERTa (m = 3/12) 5.8 61 86.1 91.7 91.2 73.6 94.5 88.0 52.4 89.2 83.3
GhostRoBERTa (m = 1/12) 2.0 47 82.1 89.2 90.5 66.1 93.7 83.3 39.8 87.4 79.0

ELECTRA-small (Clark et al., 2020) 1.7 14 78.9 87.9 88.3 68.5 88.3 87.4 56.8 86.8 80.4
GhostELECTRA-small (m = 4/4) 1.7 14 82.5 89.3 90.7 71.5 92.0 88.7 59.6 88.4 82.8

Table 1: Development set results of the baseline pre-trained language models and our proposed method on the
GLUE benchmark. Both pruned and unpruned BERT-base (resp. RoBERTa-base) are used as the backbone mod-
els for GhostBERT (resp. GhostRoBERTa). The unpruned ELECTRA-small is used as the backbone model for the
GhostELECTRA-small. m is the width multiplier written in the form of proportion, whose numerator and denom-
inator represent the remaining attention heads/folds of neurons and the total number of heads/folds, respectively.

Pruning. For a certain width multiplier m, we
prune the attention heads in MHA and neurons in
the intermediate layer of FFN from a pre-trained
BERT-based model following (Hou et al., 2020).

Distillation. Then we add ghost modules to the
pruned model as in Section 2.1. Suppose there
are L Transformer layers. We distill the knowl-
edge from the embedding (i.e., the output of the
embedding layer) E, hidden states Ml after MHA
and Fl after FFN (where l = 1, 2, · · · , L) from
the full-sized teacher model to Em,Mm

l ,F
m
l of

the student GhostBERT. Following (Jiao et al.,
2020), we use the augmented data for distilla-
tion. Denote MSE as the mean squared error,
the three loss terms are `emb = MSE(Em,E),
`mha =

∑L
l=1 MSE(Mm

l ,Ml), and `ffn =∑L
l=1 MSE(Fm

l ,Fl), respectively. Thus, the distil-
lation loss function is:

Ldistill = `emb + `mha + `ffn.

Fine-tuning. Denote y as the predicted logits,
we finally fine-tune the GhostBERT with ground-
truth labels ŷ as:

Lfinetune = CrossEntropy(ŷ,y).

Note that instead of being applied to pruned mod-
els, the cheap ghost modules can also be directly
applied to a pre-trained model for better perfor-
mance while with negligible additional parameters

and FLOPs. In this case, the training procedure
contains only the distillation and fine-tuning steps.

Empirically, to save memory and computation,
we generate one ghost feature for each MHA or
FFN (i.e., F = 1 in Equations (3) and (5)), and
let all ghost modules Gf,h share the same param-
eters with each other. As will be shown in Sec-
tion 3, adding these simplified ghost modules al-
ready achieve clear performance gain empirically.

3 Experiment

In this section, we show the efficacy of the pro-
posed method with (pruned) BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and ELEC-
TRA (Clark et al., 2020) as backbone models.

3.1 Setup

Experiments are performed on the GLUE bench-
mark (Wang et al., 2019), which consists of various
natural language understanding tasks. More statis-
tics about the GLUE datasets are in Appendix A.1.
Following (Clark et al., 2020), we report Spear-
man correlation for STS-B, Matthews correlation
for CoLA and accuracy for the other tasks. For
MNLI, we report the results on the matched section.
The convolution kernel size in the ghost module
is set as 3 unless otherwise stated. The detailed
hyperparameters for training the GhostBERT are
in Appendix A.2. The model with the best develop-
ment set performance is used for testing. For each
method, we also report the number of parameters
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Model FLOPs(G) #params(M) MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.

BERT-base (Devlin et al., 2019) 22.5 110 84.6 90.5 89.2 66.4 93.5 84.8 52.1 85.8 80.9
RoBERTa-base (Liu et al., 2019) 22.5 125 86.0 92.5 88.7 73.0 94.6 86.5 50.5 88.1 82.5
ELECTRA-small (Clark et al., 2020) 1.7 14 79.7 87.7 88.0 60.8 89.1 83.7 54.6 80.3 78.0

TinyBERT6 (Jiao et al., 2020) 11.3 67 84.6 90.4 89.1 70.0 93.1 87.3 51.1 83.7 81.2
TinyBERT4 (Jiao et al., 2020) 1.2 15 82.5 87.7 89.2 66.6 92.6 86.4 44.1 80.4 78.7
ConvBERT-medium (Jiang et al., 2020) 4.7 17 82.1 88.7 88.4 65.3 89.2 84.6 56.4 82.9 79.7
ConvBERT-small (Jiang et al., 2020) 2.0 14 81.5 88.5 88.0 62.2 89.2 83.3 54.8 83.4 78.9
MobileBERT w/o OPT (Sun et al., 2020) 5.7 25 84.3 91.6 88.3 70.4 92.6 84.5 51.1 84.8 81.0
MobileBERT (Sun et al., 2020) 5.7 25 83.3 90.6 - 66.2 92.8 - 50.5 84.4 -
MobileBERT-tiny (Sun et al., 2020) 3.1 15 81.5 89.5 - 65.1 91.7 - 46.7 80.1 -

GhostBERT (m = 12/12) 22.5 110 84.6 91.1 89.3 70.2 93.1 86.9 54.6 83.8 81.7
GhostBERT (m = 9/12) 16.9 88 84.9 91.0 88.6 69.2 92.9 86.1 53.7 84.0 81.3
GhostBERT (m = 6/12) 11.3 67 84.2 90.8 89.1 69.6 93.1 84.0 53.4 83.1 80.9
GhostBERT (m = 3/12) 5.8 46 83.8 90.7 89 68.6 93.2 82.5 51.3 82.5 80.2
GhostBERT (m = 1/12) 2.0 32 82.5 89.3 88.7 65.0 92.9 81.0 41.3 80.0 77.6
GhostRoBERTa (m = 12/12) 22.5 125 87.9 93.0 89.6 74.6 95.1 88.0 52.4 88.3 83.6
GhostRoBERTa (m = 9/12) 16.9 103 87.7 92.6 89.5 73.0 94.5 85.7 51.9 87.1 82.8
GhostRoBERTa (m = 6/12) 11.3 82 86.3 92.1 89.5 71.5 94.5 86.8 51.2 87.0 82.4
GhostRoBERTa (m = 3/12) 5.8 61 85.5 91.2 89.1 68.5 93.4 85.3 48.9 84.7 80.8
GhostRoBERTa (m = 1/12) 2.0 47 81.3 88.6 88.5 62.8 92.1 82.8 39.7 81.8 77.2
GhostELECTRA-small (m = 4/4) 1.7 14 82.3 88.3 88.5 64.7 91.9 88.4 55.8 83.5 80.4

Table 2: Test set results of the baseline pre-trained language models, BERT compression methods and our proposed
method on the GLUE benchmark.

and FLOPs at inference (Details can be found in
Appendix A.3).

We compare our proposed method against the
following methods: (i) baseline pre-trained lan-
guage models: BERT-base (Devlin et al., 2019),
RoBERTa-base (Liu et al., 2019) and ELECTRA-
small (Clark et al., 2020); (ii) BERT compres-
sion methods: TinyBERT (Jiao et al., 2020), Con-
vBERT (Jiang et al., 2020), and MobileBERT (Sun
et al., 2020). The development set results of
RoBERTa-base are from Hou et al. (2020). The
test set results of ELECTRA, BERT-base and Con-
vBERT are from Jiang et al. (2020). The others are
from their original papers or repositories.

3.2 Main Results

3.2.1 Ghost Modules on Unpruned Models

Table 1 shows the GLUE development set results
of the baseline pre-trained language models and
our proposed method. When the cheap ghost mod-
ules are directly applied to these unpruned pre-
trained models, better performances are achieved
with only negligible additional parameters and
FLOPs. Specifically, adding ghost modules to
BERT-base, RoBERTa-base and ELECTRA-small
increases the average development accuracy by
0.9, 0.6, 2.4 points with only 55.3K more parame-
ters, and 14.2M more FLOPs. For the test set, the

average performance gains are 0.8, 1.1, 2.4 points.

3.2.2 Ghost Modules on Pruned Models
Comparison with Baseline Models. From Ta-
ble 1, when the ghost modules are applied to the
pruned BERT (or RoBERTa) model with m < 1,
the proposed GhostBERT or GhostRoBERTa also
achieves comparable performances as BERT-base
or RoBERTa-base with fewer FLOPs. Specifically,
GhostBERT (m = 6/12) and GhostRoBERTa (m =
9/12) perform similarly or even better than BERT-
base and RoBERTa-base with only 50% and 75%
FLOPs, respectively. In particular, when the com-
pression ratio increases (i.e., m = 3/12, 1/12), we
still achieve 99.6% performance (resp. 96.3%) with
only 25% FLOPs (resp. 8%) of BERT-base model.

Comparison with Other Compression Meth-
ods. Table 2 shows the comparison between
the proposed method and other popular BERT
compression methods. Under similar parameter
sizes or FLOPs, the proposed GhostBERT per-
forms comparably as the other BERT compression
methods, while GhostRoBERTa often outperforms
them. In particular, GhostELECTRA-small has
over 1.5 points or higher accuracy gain than other
similar-sized small models like ELECTRA-small,
TinyBERT4 and ConvBERT-small.

In Table 3 and Figure 1, we also compare the
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pruned BERT with and without ghost modules.
For fair comparison, for the pruned model without
ghost module, we use the same training procedure
as Section 2.3. As can be seen, adding the ghost
modules achieves considerable improvement with
negligible additional memory and computation.

m
Pruned BERT GhostBERT

FLOPs
(G)

#params
(M)

Avg.
acc

FLOPs
(G)

#params
(M)

Avg.
acc

1/12 2.0 32 78.2 2.0 32 80.3
3/12 5.8 46 81.8 5.8 46 83.1
6/12 11.3 67 82.2 11.3 67 83.5
9/12 16.9 88 83.2 16.9 88 84.0

Table 3: Comparison of GhostBERT and pruned BERT.
m stands for the width multiplier.

3.3 Ablation Study
In this section, we perform ablation study in the (i)
training procedure: including data augmentation
(DA) and knowledge distillation (KD); (ii) ghost
module: including convolution kernel size, soft-
max normalization over the convolution kernel and
nonlinearity for each ghost feature in Equation (2).

Training Procedure. Table 4 verifies the ef-
fectiveness of the Data Augmentation (DA) and
Knowledge Distillation (KD) upon the GhostBERT
model with width multiplier m ∈ {3/12, 1/12}.
The GhostBERT incurs severe accuracy drop with-
out DA and KD. with a drop of 3.5 and 6.4 points
on average, for m = 3/12 and 1/12, respectively.

Ghost Module. Table 4 also shows the effective-
ness of the softmax normalization over the convolu-
tion kernel and ReLU nonlinearity in Equation (2).
As can be seen, dropping the softmax normalization
or ReLU nonlinearity reduces the average accuracy
by 0.8 and 1.6 points respectively for m = 3/12,
and 0.9 and 2.2 points respectively for m = 1/12.

Further, we explore whether the kernel size plays
an important role in the DWConv in the ghost mod-
ule. Figure 3 shows the results of GhostBERT with
width multipliers m ∈ {3/12, 1/12}, with various
convolution kernel sizes in DWConv. Average ac-
curacy over five tasks is reported. Detailed results
for each task can be found in Table 9 in Appendix
B.1. As can be seen, the performance of Ghost-
BERT increases first and then decreases gradually
as the kernel size increases. For both width multi-
pliers, kernel size 3 performs best and is used as
the default kernel size in other experiments unless
otherwise stated.

4 Discussion

In this section, we discuss about different choices
of which type of convolution to use in the ghost
module (Section 4.1), and where to posit the ghost
modules in a BERT model (Section 4.2).

4.1 Ghost Module Types
Besides the DWConv in Section 2.2, in this sec-
tion, we discuss more options for the convolution
in the ghost module. We follow the notation in Sec-
tion 2.2 and denote the input, output, kernel size of
the convolution as X,W and k, respectively.

1-Dimensional Convolution. If the kernel con-
volves input over the sequence direction (abbre-
viated as Conv1D S), the number of input and
output channel is d, and the weight W has shape
W ∈ Rd×d×k. After applying Conv1D S, the out-
put for the ith token and cth channel is:

Oi,c = Conv1D S(X,Wc,:,:, i, c)

=

d∑
j=1

k∑
m=1

Wc,j,k ·Xi−d k+1
2
e+m,j .

If the kernel convolves input over the feature di-
rection (abbreviated as Conv1D F), the number of
input and output channel is n, and the weight has
shape W ∈ Rn×n×k. After applying Conv1D F,
the output for the ith token and cth channel is:

Oi,c = Conv1D F(X,Wi,:,:, i, c)

=
n∑

j=1

k∑
m=1

Wi,j,m ·Xj,c−d k+1
2
e+m.

2-Dimensional Convolution (Conv2D). For
Conv2D, the number of input and output channels
are both 1, and thus the weight W has shape
W ∈ R1×1×k×k. After applying Conv2D, the
output for the ith token and cth channel is:

Oi,c = Conv2D(X,W, i, c)

=

k∑
w=1

k∑
h=1

W:,:,h,w ·Xi−d k+1
2
e+h,c−d k+1

2
e+w.

4.1.1 Comparison of Different Convolutions
Table 5 shows the comparison of using differ-
ent convolutions for the ghost module. For 1-
Dimensional convolution, Conv1D S performs bet-
ter Conv1D F. This may because that convolving
over the sequence urges the model to learn the de-
pendencies among tokens.
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m Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.

3/12

GhostBERT 84.3 91.6 91.4 72.9 94.6 86.5 53.9 89.2 83.1
- DA & KD 80.2 88.5 90.0 63.2 91.6 83.8 52.5 86.7 79.6
- Softmax 84.3 91.5 90.9 71.8 92.3 85.5 52.6 89.1 82.3
- ReLU 84.0 91.7 91.0 70.8 92.3 85.8 47.6 88.6 81.5

1/12

GhostBERT 82.8 90.0 90.5 66.1 92.8 86.0 46.1 87.8 80.3
- DA & KD 76.0 83.4 86.6 58.1 86.6 80.6 35.8 84.4 73.9
- Softmax 82.6 90.0 90.4 65.3 92.1 85.5 40.8 88.1 79.4
- ReLU 82.7 89.8 90.6 60.3 92.0 84.8 37.8 87.1 78.1

Table 4: Ablation study of data augmentation (DA), knowledge distilla-
tion (KD), softmax normalization over the convolution kernel, and non-
linearity. Results on the GLUE development set are reported.

Figure 3: Average score over five tasks
with various kernel sizes of DWConv
in the ghost module.

m Convolution Type FLOPs(G) #params(M) MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.

3/12

Conv1D S 16.6 88 83.6 91.3 91.1 70.0 92.5 86.5 52.3 89.3 82.1
Conv1D F 7.6 47 84.0 91.5 91.0 61.7 92.2 87.0 48.9 89.0 80.7
Conv2D 5.8 46 83.7 91.7 91.0 68.2 92.5 86.5 50.4 89.3 81.7
ours: DWConv 5.8 46 84.3 91.6 91.4 72.9 94.6 86.5 53.9 89.2 83.1

1/12

Conv1D S 12.9 74 82.6 90.1 90.4 66.1 92.0 85.5 47.5 88.2 80.3
Conv1D F 3.9 33 82.2 86.6 90.0 54.9 92.3 72.8 31.2 87.3 74.7
Conv2D 2.1 32 81.7 89.2 90.1 63.2 91.7 83.8 37.9 88.0 78.2
ours: DWConv 2.0 32 82.8 90.0 90.5 66.1 92.8 86.0 46.1 87.8 80.3

Table 5: Comparison of different convolutions in the ghost module. The convolution kernel size is 3. The backbone
model is BERT-base. Results on the GLUE development set are reported.

Though 2-Dimensional convolution (Conv2D)
is quite successful in CV tasks, it performs much
worse than Conv1D S here. This may because the
two dimensions of feature maps in CV tasks encode
similar information, while those of hidden states
in Transformers encode quite different informa-
tion (i.e., feature and sequence). Thus Conv2D re-
sults in worse performance than Conv1D S, though
much fewer parameters and FLOPs are required.

On the other hand, DWConv achieves compara-
ble performance as Conv1D S, while being much
more efficient in terms of number of parameters
and FLOPs, by performing the convolution inde-
pendently over every feature dimension.

4.2 Ghost Module Positions

In this section, we explore more possible positions
of adding the ghost module. For MHA, besides
adding ghost module after the projection layer
(After O in Figure 4(c)) as in Section 2.1.1,
we can also add it right after calculating the at-
tention score (After QK in Figure 4(a)), or af-
ter multiplying the attention score and the value
layer (After V in Figure 4(b)). For FFN, be-
sides adding the ghost module after the second
linear layer (After FFN2 in Figure 4(e)) as in
Section 2.1.1, we can also add it after the intermedi-
ate layer (After FFN1 in Figure 4(d)). Note that

we use Conv2D as the ghost module for After
QK because the attention map encodes attention
probabilities in both dimensions. For After QK
and After V, to match the dimension of other pa-
rameters, the number of input and output channels
are M and NH −M , respectively.

Table 6 shows the results of adding one ghost
module to the same position for each Transformer
layer. As can be seen, adding ghost module upon
the attention maps (After QK) performs best.
However, since the parameters in the value and
projection layer of MHA are left unpruned, After
QK has much more parameters and FLOPs than
the other positions. Adding ghost modules to
the other four positions has similar average accu-
racy. Thus in this work, for MHA, we choose the
most memory- and computation-efficient strategy
After O. Similarly, for FFN, we also add ghost
modules to the final output (After FFN2). From
Table 6, our way of adding ghost modules has com-
parable performance as After QK, while being
much more efficient in parameter size and FLOPs.

5 Related Work

5.1 Network Pruning in Transformer

Pruning removes unimportant connections or neu-
rons in the network. Compared with pruning con-
nections (Yu et al., 2019; Gordon et al., 2020; Sanh
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Figure 4: Candidate positions to add the ghost module in the Transformer layer.

Position
Convolution

Type
FLOPs

(G)
#params

(M)
Avg.
acc

After QK Conv2D 5.4 45 75.9
After V DWConv 3.6 39 74.3
After O DWConv 2.0 32 74.4
After FFN1 DWConv 2.0 32 74.3
After FFN2 DWConv 2.0 32 74.3

Ours: After O&FFN2 DWConv 2.0 32 75.8

Table 6: Comparison of different positions to add the
ghost module. Average development set accuracy on
five GLUE tasks (RTE, SST-2, MRPC, CoLA and STS-
B) are reported. The pruned BERT with width multi-
plier 1/12 is used as backbone model .

et al., 2020), structured pruning prunes away a
group of parameters without changing the model
topology and is more favored for hardware and real
inference speedup.

In the width direction, Michel et al. (2019); Voita
et al. (2019) retain the performance after pruning a
large percentage of attention heads in a structured
manner. Besides attention heads, McCarley et al.
(2019) also prune the neurons and the embeddings.
In the depth direction, pruning Transformer lay-
ers is proposed in LayerDrop (Fan et al., 2019)
via structured dropout. Efficient choice of Trans-
former layers at inference via early exit are also
proposed in (Liu et al., 2020; Xin et al., 2020; Zhou
et al., 2020). Hou et al. (2020) perform structured
pruning in both width and depth directions. The
importance of attention heads and neurons in the
intermediate layer of Feed-forward network is mea-
sured by their impact on the loss, and the least
important heads and neurons are pruned away.

5.2 Enhanced Representation in
Transformer-based Models

Various methods have been proposed to use linear
or convolution operations to enhance the represen-
tation of the Transformer layers.

The first group of research works replaces the

self-attention mechanism or feed-forward networks
with simpler and more efficient convolution oper-
ations, while maintaining comparable results. Wu
et al. (2019) introduce the token-based dynamic
depth-wise convolution to compute the importance
of context elements, and achieve better results in
various NLP tasks. Iandola et al. (2020) replace
all the feed-forward networks with grouped con-
volution. AdaBERT (Chen et al., 2020) uses dif-
ferentiable neural architecture to search for more
efficient convolution-based NLP models.

The second group uses linear or convolutional
module along with the self-attention mechanism
for more powerful representation. The new module
can be incorporated though serial connection to
the original self-attention mechanism (Mehta et al.,
2020), or be used in parallel with the original self-
attention mechanism (Wu et al., 2020; Jiang et al.,
2020) to capture both local and global context de-
pendency. Serial and parallel connections of these
linear or convolution operations to Transformer
layers are also extended to multi-task (Houlsby
et al., 2019; Stickland and Murray, 2019) and multi-
lingual tasks (Pfeiffer et al., 2020).

Note that the proposed ghost modules are orthog-
onal to the above methods in that these modules are
used to generate more features for the Transformer
models and can be easily integrated into existing
methods to boost their performance.

6 Conclusion

In this paper, we propose GhostBERT to gener-
ate more features in pre-trained model with cheap
operations. We use the softmax-normalized 1-
Dimensional Convolutions as ghost modules and
add them to the output of the MHA and FFN of
each Transformer layer. Empirical results on BERT,
RoBERTa and ELECTRA demonstrate that adding
the proposed ghost modules enhances the repre-
sentation power and boosts the performance of the
original model by supplying more features.
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A Experiment Settings

A.1 Statistics of GLUE datasets

The GLUE benchmark (Wang et al., 2019) consists
of various sentence understanding tasks, includ-
ing two single-sentence classification tasks (CoLA
and SST-2), three similarity and paraphrase tasks
(MRPC, STS-B and QQP), and four inference tasks
(MNLI, QNLI, RTE and WMLI). For MNLI task,
we report the result on the matched section. For
Winograd Schema (WNLI), it is a small natural
inference dataset while even a majority baseline
outperforms many methods on it. As is noted
in the GLUE official website1, there are some is-
sues with the construction of it. Like previous
work (Hou et al., 2020; Jiang et al., 2020), we
do not experiment on WNLI. We use the default
train/development/test splits from the official web-
site.

Corpus Train Test Task Metrics

Single-Sentence Tasks

CoLA 8.5k 1k acceptability Matthews corr.
SST-2 67k 1.8k sentiment acc.

Similarity and Paraphrase Tasks

MRPC 3.7k 1.7k paraphrase acc.
STS-B 7k 1.4k sentence similarity Spearman corr.
QQP 364k 391k paraphrase acc.

Inference Tasks

MNLI 393k 20k NLI matched acc.
QNLI 105k 5.4k QA/NLI acc.
RTE 2.5k 3k NLI acc.
WNLI 634 146 coreference/NLI acc.

Table 7: Statistics of the GLUE datasets. All tasks are
single-sentence or sentence-pair classification tasks, ex-
cept STS-B, which is a regression task. MNLI has three
classes while all other classification tasks have two.

A.2 Hyperparameters

We show the detailed hyperparameters for the dis-
tillation and fine-tuning stages in Section 2.3 of
the proposed method on the GLUE benchmark in
Table 8.

A.3 FLOPs

Floating-point operations (FLOPs) measures the
number of floating-point operations that the model
performs for a single process and can be used as a
measure of the computational complexity of deep
neural network models. To count the FLOPs, we

1https://gluebenchmark.com/faq

Distillation Fine-tuning

Batch Size 32 32
Learning Rate 2e− 5 2e− 5

Adam β1 0.9 0.9
Adam β2 0.999 0.999

Warmup Steps 0 0
Learning Rate Decay Linear Linear

Weight Decay 0 0
Gradient Clipping 1 1

Dropout 0.1 0.1
Attention Dropout 0.1 0.1

Distillation Y Y
λ1, λ2, λ3 0, 1, 1 1, 0, 0

Training Epochs (MNLI, QQP) 1 3
Training Epochs (Other datasets) 3 3

Table 8: Hyperparameters for the distillation and fine-
tuning stages in training GhostBERT on the GLUE
benchmark.

follow the setting in (Hou et al., 2020) and in-
fer FLOPs with batch size 1 and sequence length
128. Since the operations in the embedding lookup
are relatively cheap compared to those in Trans-
former layers, following (Hou et al., 2020; Sun
et al., 2020), we do not count them. Note that the
reported FLOPs for ELECTRA (Clark et al., 2020)
and ConvBERT(Jiang et al., 2020) in their origi-
nal papers include those for the embedding lookup,
and are slightly different from the numbers in this
paper.

B More Experiment Results

B.1 Full Results of Different Convolution
Kernel Sizes

In Table 9, we show the detailed results of different
convolutions kernel sizes for each of the five tasks
(SST-2, MRPC, CoLA, STS-B and RTE). As can
be seen, for each task, DWConv with kernel size 3
has the best performance.

m Kernel Size SST-2 MRPC CoLA STS-B RTE Avg.

3/12

1 92.5 85.3 54.8 89.1 70.8 78.5
3 94.6 86.5 53.9 89.2 72.9 79.4
5 92.7 86.5 53.5 89.0 70.4 78.4
9 92.6 85.5 53.4 89.0 69.3 78.0

17 92.4 84.8 53.3 88.9 68.2 77.5

1/12

1 92.1 85.3 41.7 87.6 64.3 74.2
3 92.8 86.0 46.1 87.8 66.1 75.8
5 92.2 85.3 41.1 87.5 64.6 74.2
9 92.1 84.8 41.4 87.5 63.9 73.9

17 92.0 84.3 40.9 87.5 63.5 73.7

Table 9: Comparison of different kernel sizes on the
development set on five tasks of GLUE. m stands for
the width multiplier.



6523

m Model FLOPs(G) #params(M) MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.

1/12
Prune 2.0 32 82.0 88.9 90.4 60.7 91.2 83.1 42.6 86.4 78.2
Ghost 2.0 32 82.8 90.0 90.5 66.1 92.8 86.0 46.1 87.8 80.3

3/12
Prune 5.8 46 83.6 91.1 90.9 68.6 92.6 85.1 53.7 88.5 81.8
Ghost 5.8 46 84.3 91.6 91.4 72.9 94.6 86.5 53.9 89.2 83.1

6/12
Prune 11.3 67 82.9 90.6 90.9 71.8 92.1 86.8 54.2 88.4 82.2
Ghost 11.3 67 84.7 92.2 91.2 72.2 92.9 87.3 58.1 89.2 83.5

9/12
Prune 16.9 88 84.2 91.5 91.0 72.2 92.4 86.8 58.4 89.4 83.2
Ghost 16.9 88 84.8 92.1 91.2 72.6 92.6 87.5 61.1 89.8 84.0

Table 10: Development set results of the pruned BERT and GhostBERT. m is the width multiplier of the model.

Position Convolution Type FLOPs(G) #params(M) RTE SST-2 MRPC CoLA STS-B Avg.

After QK Conv2D 5.4 45 65.3 91.9 85.8 48.5 87.9 75.9
After V DWConv 3.6 39 62.1 91.6 86 7 44.3 87.7 74.3
After O DWConv 2.0 32 63.2 91.7 85.5 43.8 87.8 74.4
After FFN1 DWConv 2.0 32 64.6 91.2 84.6 43.3 87.7 74.3
After FFN2 DWConv 2.0 32 62.5 91.5 84.8 44.9 87.7 74.3

Ours: After O&FFN2 DWConv 2.0 32 66.1 92.8 86.0 46.1 87.8 75.8

Table 11: Comparison of different ghost positions on the development set on five tasks of GLUE. BERT-base is set
as backbone model with the width multiplier 1/12.

B.2 Full Results of Pruned BERT

In Table 10, we show the detailed results of the
pruned BERT and the GhostBERT for each task.
We can see that under the same training procedure,
the GhostBERT outperforms the pruned BERT over
all compared sizes.

B.3 Full Results of Different Positions

Table 11 shows the detailed results of adding ghost
modules to different positions of the model.

B.4 Generating More Features

As is mentioned at the end of Section 2.3, we gen-
erate only one ghost feature for each MHA and
FFN, i.e., F = 1 to save computation and memory.
Indeed, our framework has no limitation on F , and
also allows the model to generate more features
(i.e., F > 1). In this section, we discuss the rela-
tionship between generating more ghost features
and the computation/memory requirements.

Following the notation in Section 2 and omitting
the cheap computation of ReLU and softmax, gen-
erating F ghost features from M features for all
L layers requires 2LMFdk additional parameters
and 4LMFndk additional FLOPs. Both of them
scale linearly as F , and can be large when F is
large. For instance, for BERT-base with d = 768,
when n = 128, k = 3, M = 12 and F = 12,
the additional #parameters and FLOPs are 8M and

2.0G respectively, accounting for 7.2% and 9.1%
of the backbone model.

When F increases, the accuracy of GhostBERT
first increases slowly and soon begins to saturate
or decrease. E.g., for GhostBERT (m = 1/12),
the average development accuracy on GLUE only
increases from 80.3 to 80.6 when F increases from
1 to 4, and then saturates when F > 4. For Ghost-
BERT (m = 3/12), the highest accuracy 83.1 is
achieved when F = 1 or 2, and then the accuracy
begins to decrease.

Thus in the paper, we simply choose F=1 which
is cheap, but already achieves good performance
on most tasks.


