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Abstract

Despite transformers’ impressive accuracy,
their computational cost is often prohibitive
to use with limited computational resources.
Most previous approaches to improve infer-
ence efficiency require a separate model for
each possible computational budget. In this
paper, we extend POWER-BERT (Goyal et al.,
2020) and propose Length-Adaptive Trans-
former that can be used for various infer-
ence scenarios after one-shot training. We
train a transformer with LengthDrop, a struc-
tural variant of dropout, which stochastically
determines a sequence length at each layer.
We then conduct a multi-objective evolution-
ary search to find a length configuration that
maximizes the accuracy and minimizes the
efficiency metric under any given computa-
tional budget. Additionally, we significantly
extend the applicability of POWER-BERT be-
yond sequence-level classification into token-
level classification with Drop-and-Restore pro-
cess that drops word-vectors temporarily in in-
termediate layers and restores at the last layer
if necessary. We empirically verify the util-
ity of the proposed approach by demonstrating
the superior accuracy-efficiency trade-off un-
der various setups, including span-based ques-
tion answering and text classification. Code is
available at https://github.com/clovaai/length-
adaptive-transformer.

1 Introduction

Pre-trained language models (Peters et al., 2018;
Devlin et al., 2018; Radford et al., 2019; Yang
et al., 2019; He et al., 2020) have achieved notable
improvements in various natural language process-
ing (NLP) tasks. Most of them rely on transform-
ers (Vaswani et al., 2017), and the number of model
parameters ranges from hundreds of millions to bil-
lions (Shoeybi et al., 2019; Raffel et al., 2019; Ka-
plan et al., 2020; Brown et al., 2020). Despite this
high accuracy, excessive computational overhead
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during inference, both in terms of time and memory,
has hindered its use in real applications. This level
of excessive computation has further raised the con-
cern over energy consumption as well (Schwartz
et al., 2019; Strubell et al., 2019; Cao et al., 2020).

Recent studies have attempted to address these
concerns regarding large-scale transformers’ com-
putational and energy efficiency (see §7 for a more
extensive discussion.) Among these, we focus on
PoWER-BERT (Goyal et al., 2020) which pro-
gressively reduces sequence length by eliminat-
ing word-vectors based on the attention values as
passing layers. POWER-BERT establishes the su-
periority of accuracy-time trade-off over earlier
approaches (Sanh et al., 2019; Sun et al., 2019;
Michel et al., 2019). However, it requires us to
train a separate model for each efficiency constraint.
In this paper, we thus develop a framework based
on POWER-BERT such that we can train a single
model that can be adapted in the inference time to
meet any given efficiency target.

In order to train a transformer to cope with a di-
verse set of computational budgets in the inference
time, we propose to train once while reducing the
sequence length with a random proportion at each
layer. We refer to this procedure as LengthDrop,
which was motivated by the nested dropout (Rip-
pel et al., 2014). We can extract sub-models of
shared weights with any length configuration with-
out requiring extra post-processing nor additional
fine-tuning.

It is not trivial to find an optimal length con-
figuration given the inference-time computational
budget, although it is extremely important in order
to deploy these large-scale transformers in practice.
Once a transformer is trained with the proposed
LengthDrop, we search for the length configuration
that maximizes the accuracy given a computational
budget. Because this search is combinatorial and
has multiple objectives (accuracy and efficiency),
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in this work, we propose to use an evolutionary
search algorithm, which further allows us to ob-
tain a full Pareto frontier of accuracy-efficiency
trade-off of each model.

PoWER-BERT, which forms the foundation of
the proposed two-stage procedure, is only appli-
cable to sequence-level classification, because it
eliminates some of the word vectors at each layer
by design. In other words, it cannot be used for
token-level tasks such as span-based question an-
swering (Rajpurkar et al., 2016) because these tasks
require hidden representations of the entire input se-
quence at the final layer. We thus propose to extend
PoWER-BERT with a novel Drop-and-Restore pro-
cess (§3.3), which eliminates this inherent limita-
tion. Word vectors are dropped and set aside, rather
than eliminated, in intermediate layers to maintain
the saving of computational cost, as was with the
original POWER-BERT. These set-aside vectors are
then restored at the final hidden layer and provided
as an input to a subsequent task-specific layer, un-
like the original POWER-BERT.

The main contributions of this work are two-
fold. First, we introduce LengthDrop, a structured
variant of dropout for training a single Length-
Adaptive Transformer model that allows us to au-
tomatically derive multiple sub-models with dif-
ferent length configurations in the inference time
using evolutionary search, without requiring any
re-training. Second, we design Drop-and-Restore
process that makes POWER-BERT applicable be-
yond classification, which enables POWER-BERT
to be applicable to a wider range of NLP tasks such
as span-based question answering. We empirically
verify Length-Adaptive Transformer works quite
well using the variants of BERT on a diverse set of
NLP tasks, including SQuAD 1.1 (Rajpurkar et al.,
2016) and two sequence-level classification tasks
in GLUE benchmark (Wang et al., 2018). Our ex-
periments reveal that the proposed approach grants
us fine-grained control of computational efficiency
and a superior accuracy-efficiency trade-off in the
inference time compared to existing approaches.

2 Background

In this section, we review some of the building
blocks of our main approach. In particular, we re-
view transformers, which are a standard backbone
used in natural language processing these days, and
PoWER-BERT, which was recently proposed as an
effective way to train a large-scale, but highly effi-

cient transformer for sequence-level classification.

2.1 Transformers and BERT

A transformer is a particular neural network that
has been designed to work with a variable-length
sequence input and is implemented as a stack of
self-attention and fully connected layers (Vaswani
et al., 2017). It has recently become one of the
most widely used models for natural language pro-
cessing. Here, we give a brief overview of the
transformer which is the basic building block of
the proposed approach.

Each token z; in a sequence of tokens z =
(z1,...,xN), representing input text, is first turned
into a continuous vector hY € RH which is the
sum of the token and position embedding vec-
tors. This sequence is fed into the first transformer
layer which returns another sequence of the same
length h' € RV*H_ We repeat this procedure L
times, for a transformer with L layers, to obtain
ht = (b, ..., hK). We refer to each vector in the
hidden sequence at each layer as a word vector to
emphasize that there exists a correspondence be-
tween each such vector and one of the input words.

Although the transformer was first introduced
for the problem of machine translation, Devlin
et al. (2018) demonstrated that the transformer can
be trained and used as a sentence encoder. More
specifically, Devlin et al. (2018) showed that the
transformer-based masked language model, called
BERT, learns a universally useful parameter set that
can be fine-tuned for any downstream task, includ-
ing sequence-level and token-level classification.

In the case of sequence-level classification, a
softmax classifier is attached to the word vector h¥
associated with the special token [CLS], and the
entire network, including the softmax classifier and
BERT, is fine-tuned. For token-level classification,
we use each h} as the final hidden representation of
the associated ¢-th word in the input sequence. This
strategy of pre-training followed by fine-tuning, of-
ten referred to as transfer learning, is a dominant
approach to classification in natural language pro-
cessing.

2.2 PoWER-BERT

PoWER-BERT keeps only the topmost /; word
vectors at each layer j by eliminating redundant
ones based on the significance score which is the
total amount of attention imposed by a word on the
other words (Goyal et al., 2020). [; is the hyper-
parameter that determines how many vectors to
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keep at layer j. POWER-BERT has the same model
parameters as BERT, but the extraction layers are
interspersed after the self-attention layer in every
transformer block (Vaswani et al., 2017).

PoWER-BERT reduces inference time success-
fully, achieving better accuracy-time trade-off than
DistilBERT (Sanh et al., 2019), BERT-PKD (Sun
et al., 2019), and Head-Prune (Michel et al., 2019).
Despite the original intention of maximizing the
inference efficiency with the minimal loss in accu-
racy, it is possible to set up POWER-BERT to be
both more efficient and more accurate compared to
the original BERT, which was observed but largely
overlooked by Goyal et al. (2020).

Training a POWER-BERT model consists of
three steps: (1) fine-tuning, (2) length configura-
tion search, and (3) re-training. The fine-tuning
step is just like the standard fine-tuning step of
BERT given a target task. A length configuration
is a sequence of retention parameters (l1,-- 1),
each of which corresponds to the number of word
vectors that are kept at each layer. These retention
parameters are learned along with all the other pa-
rameters to minimize the original task loss together
with an extra term that approximately measures the
number of retained word vectors across layers. In
the re-training step, POWER-BERT is fine-tuned
with the length configuration fixed to its learned
one.

For each computational budget, we must train
a separate model going through all three steps de-
scribed above. Moreover, the length configuration
search step above is only approximate, as it relies
on the relaxation of retention parameters which are
inherently discrete. This leads to the lack of guar-
anteed correlation between the success of this stage
and true run-time. Even worse, it is a delicate act
to tune the length configuration given a target com-
putational budget because the trade-off is implicitly
made via a regularization coefficient. Furthermore,
PoWER-BERT has an inherent limitation in that
it only applies to sequence-level classification be-
cause it eliminates word vectors in intermediate
layers.

3 Length-Adaptive Transformer

In this section, we explain our proposed frame-
work which results in a transformer that reduces
the length of a sequence at each layer with an ar-
bitrary rate. We call such a resulting transformer
a Length-Adaptive Transformer. We train Length-

Adaptive Transformer with LengthDrop which ran-
domly samples the number of hidden vectors to
be dropped at each layer with the goal of making
the final model robust to such drop in the infer-
ence time. Once the model is trained, we search
for the optimal trade-off between accuracy and ef-
ficiency using multi-objective evolutionary search,
which allows us to use the model for any given
computational budget without fine-tuning nor re-
training. At the end of this section, we describe
Drop-and-Restore process as a way to greatly in-
crease the applicability of POWER-BERT which
forms a building block of the proposed framework.

In short, we train a Length-Adaptive Trans-
former once with LengthDrop and Drop-and-
Restore, and use it with an automatically deter-
mined length configuration for inference with any
target computational budget, on both sequence-
level and token-level tasks.

3.1 LengthDrop

Earlier approaches to efficient inference with trans-
formers have focused on a scenario where the target
computational budget for inference is known in ad-
vance (Sanh et al., 2019; Goyal et al., 2020). This
greatly increases the cost of deploying transform-
ers, as it requires us to train a separate transformer
for each scenario. Instead, we propose to train one
model that could be used for a diverse set of target
computational budgets without re-training.

Before each SGD update, LengthDrop ran-
domly generates a length configuration by se-
quentially sampling a sequence length /;; at the
(i + 1)-th layer based on the previous layer’s se-
quence length [;, following the uniform distribu-
tion U((1 — p)l;, 1;), where [ is set to the length
of the input sequence, and p is the LengthDrop
probability. This sequential sampling results in a
length configuration (I1, - - -, [y ). Length-Adaptive
Transformer can be thought of as consisting of a
full model and many sub-models corresponding to
different length configurations, similarly to a neu-
ral network trained with different dropout masks
(Srivastava et al., 2014).

LayerDrop From the perspective of each word
vector, the proposed LengthDrop could be thought
of as skipping the layers between when it was set
aside and the final layer where it was restored. The
word vector however does not have any informa-
tion based on which it can determine whether it
would be dropped at any particular layer. In our
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preliminary experiments, we found that this greatly
hinders optimization. We address this issue by us-
ing LayerDrop (Fan et al., 2019) which skips each
layer of a transformer uniformly at random. The
LayerDrop encourages each word vector to be ag-
nostic to skipping any number of layers between
when it is dropped and when it is restored, just
like dropout (Srivastava et al., 2014) prevents hid-
den neurons from co-adapting with each other by
randomly dropping them.

Sandwich Rule and Inplace Distillation We
observed that standard supervised training with
LengthDrop does not work well in the preliminary
experiments. We instead borrow a pair of train-
ing techniques developed by Yu and Huang (2019)
which are sandwich rule and inplace distillation,
for better optimization as well as final generaliza-
tion. At each update, we update the full model
without LengthDrop as usual to minimize the super-
vised loss function. We simultaneously update ng
randomly-sampled sub-models (which are called
sandwiches) and the smallest-possible sub-model,
which corresponds to keeping only (1 — p)l; word
vectors at each layer ¢, using knowledge distilla-
tion (Hinton et al., 2015) from the full model. Here,
sub-models mean models with length reduction.
They are trained to their prediction close to the full
model’s prediction (inplace distillation).

3.2 Evolutionary Search of Length
Configurations

After training a Length-Adaptive Transformer with
LengthDrop, we search for appropriate length con-
figurations for possible target computational bud-
gets that will be given at inference time. The length
configuration determines the model performance
in terms of both accuracy and efficiency. In order
to search for the optimal length configuration, we
propose to use evolutionary search, similarly to
Cai et al. (2019) and Wang et al. (2020a). This
procedure is efficient, as it only requires a single
pass through the relatively small validation set for
each length configuration, unlike re-training for a
new computational budget which requires multiple
passes through a significantly larger training set for
each budget.

We initialize the population with constant-ratio
configurations. Each configuration is created by
li+1 = (1 — r)l; for each layer 7 with r so that the
amount of computation within the initial population
is uniformly distributed between those of the small-

est and full models. At each iteration, we evolve
the population to consist only of configurations
lie on a newly updated efficiency-accuracy Pareto
frontier by mutation and crossover. Mutation al-
ters an original length configuration (ly,---,11)
to (I},---,1}) by sampling I/ from the uniform
distribution U (I;_,1;+1) with the probability p,,
or keeping the original length I/ = [;, sweeping
the layers from ¢ = 1 to? = L. A crossover
takes two length configurations and averages the
lengths at each layer. Both of these operations are
performed while ensuring the monotonicity of the
lengths over the layers. We repeat this iteration
G times while maintaining n,, mutated configura-
tions and n. crossover’d configurations. Repeating
this procedure pushes the Pareto frontier further
to identify the best trade-off between two objec-
tives, efficiency and accuracy, without requiring
any continuous relaxation of length configurations
nor using a proxy objective function.

3.3 Drop-and-Restore Process

The applicability of the POWER-BERT, based on
which our main contribution above was made, is
limited to sequence-level classification because it
eliminates word vectors at each layer. In addition
to our main contribution above, we thus propose to
extend the POWER-BERT so that it is applicable
to token-level classification, such as span-based
question-answering. Our proposal, to which we re-
fer as Drop-and-Restore, does not eliminate word
vectors at each layer according to the length con-
figuration but instead sets them aside until the final
hidden layer. At the final hidden layer, these word
vectors are brought back to form the full hidden
sequence, as illustrated graphically in Figure 1.

4 Experiment Setup

Datasets We test the proposed approach on both
sequence-level and token-level tasks, the latter of
which could not have been done with the original
PoWER-BERT unless for the proposed Drop-and-
Restore. We use MNLI-m and SST-2 from GLUE
benchmark (Wang et al., 2018), as was done to test
PoWER-BERT earlier, for sequence-level classi-
fication. We choose them because consistent ac-
curacy scores from standard training on them due
to their sufficiently large training set imply that
they are reliable to verify our approach. We use
SQuAD 1.1 (Rajpurkar et al., 2016) for token-level
classification.
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Figure 1: Illustration of (a) word-vector elimination process in POWER-BERT (Goyal et al., 2020) and (b) Drop-
and-Restore process in Length-Adaptive Transformer. Yellow box and blue boxes imply the output of embedding
layer and transformer layers, respectively. Green boxes mean vectors dropped in lower layers and restored at the
last layer. Red box is the task-specific layer. Though word-vectors in the middle could be eliminated (or dropped),
remaining vectors are left-aligned for the better illustration. In this case, the number of transformer layers is four.

Evaluation metrics We use the number of float-
ing operations (FLOPs) as a main metric to mea-
sure the inference efficiency given any length con-
figuration, as it is agnostic to the choice of the
underlying hardware, unlike other alternatives such
as hardware-aware latency (Wang et al., 2020a)
or energy consumption (Henderson et al., 2020).
We later demonstrate that FLOPs and wall-clock
time on GPU and CPU correlate well with the pro-
posed approach, which is not necessarily the case
for other approaches, such as unstructured weight
pruning (Han et al., 2015; See et al., 2016).

Pre-trained transformers Since BERT was in-
troduced by Devlin et al. (2018), it has become
a standard practice to start from a pre-trained
(masked) language model and fine-tune it for each
downstream task. We follow the same strategy
in this paper and test two pre-trained transformer-
based language models; BERTg,s. (Devlin et al.,
2018) and DistilBERT (Sanh et al., 2019), which
allows us to demonstrate that the usefulness and
applicability of our approach are not tied to any
specific architectural choice, such as the number of
layers and the maximum input sequence length. Al-
though we focus on BERT-based masked language
models here, the proposed approach is readily ap-
plicable to any transformer-based models.

Learning We train a Length-Adaptive Trans-
former with LengthDrop probability and Layer-
Drop probability both set to 0.2. We use ng = 2
randomly sampled intermediate sub-models in ad-
dition to the full model and smallest model for
applying the sandwich learning rule.

We start fine-tuning the pre-trained transformer
without Drop-and-Restore first, just as Goyal et al.
(2020) did with POWER-BERT. We then continue
fine-tuning it for another five epochs with Drop-
and-Restore. This is unlike the recommended three

epochs by Devlin et al. (2018), as learning pro-
gresses slower due to a higher level of stochasticity
introduced by LengthDrop and LayerDrop. We use
the batch size of 32, the learning rate of 5e — 5 for
SQuAD 1.1 and 2e¢ — 5 for MNLI-m and SST, and
the maximum sequence length of 384 for SQuAD
1.1 and 128 for MNLI-m and SST.

Search We run up to G = 30 iterations of evo-
lutionary search, using n,, = 30 mutated config-
urations with mutation probability p,, = 0.5 and
n. = 30 crossover’d configurations, to find the
Pareto frontier of accuracy and efficiency.

5 Results and Analysis

Efficiency-accuracy trade-off We use SQuAD
1.1 to examine the effect of the proposed approach
on the efficiency-accuracy trade-off. When the
underlying classifier was not trained with Length-
Drop, as proposed in this paper, the accuracy drops
even more dramatically as more word vectors are
dropped at each layer. The difference between stan-
dard transformer and Length-Adaptive Transformer
is stark in Figure 2. This verifies the importance
of training a transformer in a way that makes it
malleable for inference-time re-configuration.

When the model was trained with the proposed
LengthDrop, we notice the efficacy of the proposed
approach of using evolutionary search to find the
optimal trade-off between inference efficiency and
accuracy. The trade-off curve from the proposed
search strategy has a larger area-under-curve (AUC)
than when constant-rate length reduction was used
to meet a target computational budget. It demon-
strates the importance of using both LengthDrop
and evolutionary search.

We make a minor observation that the proposed
approach ends up with a significantly higher accu-
racy than DistillBERT when enough computational
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2016). We apply the proposed method to BERTg,. (solid lines) and DistilBERT

(dotted lines). For each model, we draw three curves using (1) standard fine-tuned
transformer with constant-rate length reduction, (2) Length-Adaptive Transformer
with constant-rate length reduction, and (3) Length-Adaptive Transformer with
length configurations obtained from the evolutionary search.

budget is allowed for inference (log FLOPs > 10).
This makes our approach desirable in a wide array
of scenarios, as it does not require any additional
pre-training stage, as does DistilBERT. With a se-
vere constraint on the computational budget, the
proposed approach could be used on DistilBERT to
significantly improve the efficiency without com-
promising the accuracy.

Maximizing inference efficiency We consider
all three tasks, SQuAD 1.1, MNLI-m, and SST-2,
and investigate how much efficiency can be gained
by the proposed approach with minimal sacrifice
of accuracy. First, we look at how much efficiency
could be gained without losing accuracy. That is,
we use the length configuration that maximizes
the inference efficiency (i.e., minimize the FLOPs)
while ensuring that the accuracy is above or the
same as the accuracy of the standard approach with-
out any drop of word vectors. The results are pre-
sented in the rows marked with Length-Adaptive'
from Table 1. For example, in the case of BERTg g,
the proposed approach reduces FLOPs by more
than half across all three tasks.

From Figure 2, we have observed that the pro-
posed Length-Adaptive Transformer generalizes
better than the standard, base model in some cases.
Thus, we try to maximize both the inference ef-

Figure 3:  Correlation
between FLOPs and
latency with different
length configurations.

ficiency and accuracy in order to see whether it
is possible for the proposed algorithm to find a
length configuration that both maximizes inference
efficiency and improves accuracy. We present the
results in the rows marked with Length-Adaptive*
from Table 1. For all cases, Length-Adaptive Trans-
former achieves higher accuracy than a standard
transformer does while reducing FLOPs signifi-
cantly. Although it is not apparent from the table,
tor MNLI-m and SST-2, the accuracy of the small-
est sub-model is already greater than or equal to
that of a standard transformer.

FLOPs vs. Latency As has been discussed in
recent literature (see, e.g., Li et al. (2020); Chin
et al. (2020)), the number of FLOPs is not a perfect
indicator of the real latency measured in wall-clock
time, as the latter is affected by the combination of
hardware choice and network architecture. To un-
derstand the real-world impact of the proposed ap-
proach, we study the relationship between FLOPs,
obtained by the proposed procedure, and wall-clock
time measured on both CPU and GPU by measur-
ing them while varying length configurations. As
shown in Figure 3, FLOPs and latency exhibit near-
linear correlation on GPU, when the minibatch size
is > 16, and regardless of the minibatch size, on
CPU. In other words, the reduction in FLOPs with
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Model SQuAD 1.1 MNLI-m SST-2 892 -
Pretrained 1 i
Method F1 FLOPs Acc FLOPs Acc FLOPs 891 ¢
Transformer |
ot
Standard 885 1.00x 844 1.00x 928 100x g | F
BERTgase Length-Adaptive*  89.6 0.89x 85.0 0.58x 93.1 0.36x <ot |
Length-Adaptive! 887  0.45x 844 035x  92.8  0.35x e | d
“Te
Standard 858 1.00x 809 1.00x 906  1.00x 4
DistilBERT  Length-Adaptive* 863  0.81x 815 056x 920 0.55x BT ; ‘ ;
Length-Adaptive 859  059x 813  0.54x 917  0.54x S e
eration
Table 1: Comparison results of standard Transformer and Length-Adaptive Trans- ~ Figure 4: Example

former. Among length configurations on the Pareto frontier of Length-Adaptive
Transformer, we pick two representative points: Length-Adaptive* and Length-
Adaptive' as the most efficient one while having the highest accuracy and the ac-
curacy higher than (or equal to) standard Transformer, respectively.

the proposed approach directly implies the reduc-
tion in wall-clock time.

Convergence of search Although the proposed
approach is efficient in that it requires only one
round of training, it needs a separate search stage
for each target budget. It is important for evolution-
ary search to converge quickly in the number of
forward sweeps of a validation set. As exemplified
in Figure 4, evolutionary search converges after
about fifteen iterations.

6 Comparison with Other Works

Our framework allows a novel method for anytime
prediction with adaptive sequence length given any
transformers. Thus, our goal is not state-of-the-art
classification accuracy, although our experimen-
tal results (§5) demonstrate that our method still
attains a good accuracy level.

We emphasize that other adaptive computation
works (§7) are orthogonal with ours, meaning
that various adaptive dimensions (sequence length,
depth, attention head, hidden dimension, etc.) can
be jointly used. In other words, even if other adap-
tive methods show better curves than ours, our
method and theirs can boost each other when com-
bined. We provide some comparison results with
PoWER-BERT (not anytime prediction method)
and DynaBERT (Hou et al., 2020) (concurrent
adaptive computation method) as follows.

Comparison with POWER-BERT According
to Goyal et al. (2020), POWER-BERT achieves
2.6x speedup for MNLI-m and 2.4x speedup for
SST-2 by losing 1% of their accuracy. Length-
Adaptive Transformer obtains a 2.9x speedup in
terms of FLOPs without losing accuracy on MNLI-
m and SST-2. Considering Figure 3, our speedup in

of area under Pareto
curve as the evolutionary
search of length configu-
rations proceeds.

execution time would be close to 2.9x in the same
setting of POWER-BERT where the time measure-
ment is done with a batch size of 128 on GPU. It
indicates that our model offers a better trade-off
than POWER-BERT, even with a single model.

Comparison with DynaBERT According to
Hou et al. (2020), DyanBERT obtains a gain of
+1.0, +0.1, 0.4 for the best accuracy in SQuAD
1.1, MNLI-m, and SST-2, respectively, while
Length-Adaptive Transformer achieves a gain of
+1.1, 40.6, +0.3. These results imply that Length-
Adaptive Transformer can give a comparable (or
better) performance with DynaBERT.

7 Related Work

The main purpose of the proposed algorithm is to
improve the inference efficiency of a large-scale
transformer. This goal has been pursued from
various directions, and here we provide a brief
overview of these earlier and some concurrent at-
tempts in the context of the proposed approach.

Weight pruning Weight pruning (Han et al.,
2015) focuses on reducing the number of parame-
ters that directly reflects the memory footprint of
a model and indirectly correlates with inference
speed. However, their actual speed-up in runtime
is usually not significant, especially while execut-
ing a model with parallel computation using GPU
devices (Tang et al., 2018; Li et al., 2020).

Adaptive architecture There are three major
axes along which computation can be reduced in
a neural network; (1) input size/length, (2) net-
work depth, and (3) network width. The proposed
approach, based on POWER-BERT, adaptively re-
duces the input length as the input sequence is pro-
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cessed by the transformer layers. In our knowledge,
Goyal et al. (2020) is the first work in this direction
for transformers. Funnel-Transformer (Dai et al.,
2020) and multi-scale transformer language mod-
els (Subramanian et al., 2020) also successfully
reduce sequence length in the middle and rescale
to full length for the final computation. However,
their inference complexity is fixed differently with
PoWER-BERT because they are not designed to
control efficiency. More recently, TR-BERT (Ye
et al., 2021) introduces a policy network trained
via reinforcement learning to decide which vectors
to skip.

LayerDrop (Fan et al., 2019) drops random lay-
ers during the training to be robust to pruning in-
spired by Huang et al. (2016). Word-level adaptive
depth in Elbayad et al. (2019) and Liu et al. (2020b)
might seemingly resemble with length reduction,
but word vectors that reached the maximal layer
are used for self-attention computation without up-
dating themselves. Escaping a network early (Teer-
apittayanon et al., 2016; Huang et al., 2017) based
on the confidence of the prediction (Xin et al., 2020,
2021; Schwartz et al., 2020; Liu et al., 2020a; Li
et al., 2021) also offers a control over accuracy-
efficiency trade-off by changing a threshold, but it
is difficult to tune a threshold for a desired computa-
tional budget because of the example-wise adaptive
computation.

Slimmable neural networks (Yu et al., 2018; Lee
and Shin, 2018) reduce the hidden dimension for
the any-time prediction. DynaBERT (Hou et al.,
2020) can run at adaptive width (the number of at-
tention heads and intermediate hidden dimension)
and depth. Hardware-aware Transformers (Wang
et al., 2020a) construct a design space with arbi-
trary encoder-decoder attention and heterogeneous
layers in terms of different numbers of layers, at-
tention heads, hidden dimension, and embedding
dimension. SpAtten (Wang et al., 2020b) performs
cascade token and head pruning for an efficient
algorithm-architecture co-design.

Structured dropout A major innovation we in-
troduce over the existing POWER-BERT is the use
of stochastic, structured regularization to make a
transformer robust to the choice of length config-
uration in the inference time. Rippel et al. (2014)
proposes a nested dropout to learn ordered repre-
sentations. Similar to LengthDrop, it samples an
index from a prior distribution and drops all units
with a larger index than the sampled one.

Search There have been a series of attempts at
finding the optimal network configuration by solv-
ing a combinatorial optimization problem. In com-
puter vision, Once-for-All (Cai et al., 2019) use an
evolutionary search (Real et al., 2019) to find a bet-
ter configuration in dimensions of depth, width, ker-
nel size, and resolution given computational budget.
Similarly but differently, our evolutionary search
is mutli-objective to find length configurations on
the Pareto accuracy-efficiency frontier to cope with
any possible computational budgets. Moreover, we
only change the sequence length of hidden vectors
instead of architectural model size like dimensions.

Sequence Length Shortformer (Press et al.,
2020) initially trained on shorter subsequences and
then moved to longer ones achieves improved per-
plexity than a standard transformer with normal
training while reducing overall training time. Novel
architectures with the efficient attention mechanism
(Kitaev et al., 2020; Beltagy et al., 2020; Zaheer
et al., 2020; Ainslie et al., 2020; Choromanski et al.,
2020; Peng et al., 2021) are suggested to reduce the
transformer’s quadratic computational complexity
in the input sequence length. Tay et al. (2020b)
and Tay et al. (2020a) provide a survey of these
efficient transformers and their benchmark compar-
ison, respectively.

8 Conclusion and Future Work

In this work, we propose a new framework for train-
ing a transformer once and using it for efficient
inference under any computational budget. With
the help of training with LengthDrop and Drop-
and-Restore process followed by the evolutionary
search, our proposed Length-Adaptive Transformer
allows any given transformer models to be used
with any inference-time computational budget for
both sequence-level and token-level classification
tasks. Our experiments, on SQuAD 1.1, MNLI-
m and SST-2, have revealed that the proposed al-
gorithmic framework significantly pushes a better
Pareto frontier on the trade-off between inference
efficiency and accuracy. Furthermore, we have
observed that the proposed Length-Adaptive Trans-
former could achieve up to 3x speed-up over the
standard transformer without sacrificing accuracy,
both in terms of FLOPs and wallclock time.
Although our approach finds an optimal length
configuration of a trained classifier per computa-
tional budget, it leaves a open question whether
the proposed approach could be further extended
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to support per-instance length configuration by for
instance training a small, auxiliary neural network
for each computational budget. Yet another aspect
we have not investigated in this paper is the ap-
plicability of the proposed approach to sequence
generation, such as machine translation. We leave
both of these research directions for the future.

Our approach is effective, as we have shown in
this paper, and also quite simple to implement on
top of existing language models. We release our im-
plementation at https://github.com/clovaai/length-
adaptive-transformer, which is based on Hugging-
Face’s Transformers library (Wolf et al., 2019), and
plan to adapt it for a broader set of transformer-
based models and downstream tasks, including
other modalities (Dosovitskiy et al., 2020; Touvron
et al., 2020; Gulati et al., 2020).
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