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Abstract

Recent studies on neural networks with pre-
trained weights (i.e., BERT) have mainly fo-
cused on a low-dimensional subspace, where
the embedding vectors computed from input
words (or their contexts) are located. In this
work, we propose a new approach, called
OoMMix, to finding and regularizing the re-
mainder of the space, referred to as out-of-
manifold, which cannot be accessed through
the words. Specifically, we synthesize the out-
of-manifold embeddings based on two embed-
dings obtained from actually-observed words,
to utilize them for fine-tuning the network. A
discriminator is trained to detect whether an in-
put embedding is located inside the manifold
or not, and simultaneously, a generator is opti-
mized to produce new embeddings that can be
easily identified as out-of-manifold by the dis-
criminator. These two modules successfully
collaborate in a unified and end-to-end manner
for regularizing the out-of-manifold. Our ex-
tensive evaluation on various text classification
benchmarks demonstrates the effectiveness of
our approach, as well as its good compatibil-
ity with existing data augmentation techniques
which aim to enhance the manifold.

1 Introduction

Neural networks with a word embedding table
have been the most popular approach to a wide
range of NLP applications. The great success of
transformer-based contextual embeddings as well
as masked language models (Devlin et al., 2019;
Liu et al., 2019b; Raffel et al., 2020) makes it pos-
sible to exploit the pre-trained weights, fully opti-
mized by using large-scale corpora, and it brought
a major breakthrough to many problems. For this
reason, most recent work on text classification
has achieved state-of-the-art performances by fine-
tuning the network initialized with the pre-trained
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weight (Devlin et al., 2019). However, they suf-
fer from extreme over-parameterization due to the
large pre-trained weight, which allows them to be
easily overfitted to its relatively small training data.

Along with outstanding performances of the pre-
trained weight, researchers have tried to reveal
the underlying structure encoded in its embedding
space (Rogers et al., 2021). One of the important
findings is that the contextual embeddings com-
puted from words usually form a low-dimensional
manifold (Ethayarajh, 2019). In particular, a quan-
titative analysis on the space (Cai et al., 2021),
which measured the effective dimension size of
BERT after applying PCA on its contextual em-
bedding vectors, showed that 33% of dimensions
covers 80% of the variance. In other words, only
the low-dimensional subspace is utilized for fine-
tuning BERT, although a high-dimensional space
(i.e., model weights with a high capacity) is pro-
vided for training. Based on this finding on contex-
tual embedding space, we aim to regularize the con-
textual embedding space for addressing the prob-
lem of over-parameterization, while focusing on
the outside of the manifold (i.e., out-of-manifold)
that cannot be accessed through the words.

In this work, we propose a novel approach to
discovering and leveraging the out-of-manifold for
contextual embedding regularization. The key idea
of our out-of-manifold regularization is to produce
the embeddings that are located outside the mani-
fold and utilize them to fine-tune the network for a
target task. To effectively interact with the contex-
tual embedding of BERT, we adopt two additional
modules, named as embedding generator and man-
ifold discriminator. Specifically, 1) the generator
synthesizes the out-of-manifold embeddings by lin-
early interpolating two input embeddings computed
from actually-observed words, and 2) the discrimi-
nator identifies whether an input embedding comes
from the generator (i.e., the synthesized embed-
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ding) or the sequence of words (i.e., the actual
embedding). The joint optimization encourages
the generator to output the out-of-manifold em-
beddings that can be easily distinguished from the
actual embeddings by the discriminator, and the
discriminator to learn the decision boundary be-
tween the in-manifold and out-of-manifold embed-
dings. In the end, the fine-tuning on the synthesized
out-of-manifold embeddings tightly regularizes the
contextual embedding space of BERT.

The experimental results on several text classifi-
cation benchmarks validate the effectiveness of our
approach. In particular, our approach using a pa-
rameterized generator significantly outperforms the
state-of-the-art mixup approach whose mixing strat-
egy needs to be manually given by a programmer.
Furthermore, our approach shows good compati-
bility with various data augmentation techniques,
since the target space we focus on for regularization
(i.e., out-of-manifold) does not overlap with the
space the data augmentation techniques have paid
attention to (i.e., in-manifold). The in-depth anal-
yses on our modules provide an insight into how
the out-of-manifold regularization manipulates the
contextual embedding space of BERT.

2 Related Work

In this section, we briefly review two approaches
to regularizing over-parameterized network based
on auxiliary tasks and auxiliary data.

2.1 Regularization using Auxiliary Tasks

Regularization is an essential tool for good general-
ization capability of neural networks. One represen-
tative regularization approach relies on designing
auxiliary tasks. Liu et al. (2019a) firstly showed
promising results by unifying a bunch of hetero-
geneous tasks and training a single unified model
for all the tasks. In particular, the synthesized task
that encodes desirable features or removes unde-
sirable features turns out to be helpful for network
regularization. Devlin et al. (2019) introduced the
task which restores masked sentences, termed as
masked language model, to encode the distribu-
tional semantic in the network; this considerably
boosts the overall performance of NLP applications.
In addition, Clark et al. (2020) regularized the net-
work by discriminating generated tokens from a
language model, and Gong et al. (2018) utilized an
additional discriminator to remove the information
about word frequency implicitly encoded in the

word embeddings.

2.2 Regularization using Auxiliary Data

Another approach to network regularization is to
take advantage of auxiliary data, mainly obtained
by data augmentation, which eventually supple-
ments the input data space. Inspired by (Bengio
et al., 2011) that additionally trained the network
with noised (i.e., augmented) images in computer
vision, Wei and Zou (2019) simply augmented
sentences by adding a small perturbation to the
original sentences, such as adding, deleting, and
swapping words within the sentences. Recent work
tried to further exploit the knowledge from a pre-
trained model for augmenting the sentences: sen-
tence back translation by using a pre-trained trans-
lation model (Xie et al., 2019), and masked sen-
tence reconstruction by using a pre-trained masked
language model (Ng et al., 2020).

Mixup (Zhang et al., 2018) is also a kind of data
augmentation but differs in that it performs linear
interpolation on multiple input sentences and their
corresponding labels. Verma et al. (2019) validated
that mixup in the hidden space (instead of the in-
put space) is also effective for regularization, and
Guo et al. (2019b) found that mixup of images
can regularize the out-of-manifold in image repre-
sentations. In the case of NLP domain, Guo et al.
(2019a) and Guo (2020) firstly adopted mixup to
text data for text classification, using the traditional
networks such as CNN and LSTM; they sample
their mixing coefficients from the beta distribution
at the sentence-level and at the word-level, respec-
tively. To fully utilize the contextual embedding
of transformer-based networks, Chen et al. (2020)
applied mixup in the word-level contextual em-
bedding space using a pre-trained language model
(i.e., BERT), whereas Sun et al. (2020) focused
on mixup in the sentence-level embedding space
specifically for improving GLUE score.

3 Method

In this section, we propose a novel mixup ap-
proach, termed as OoMMix, to regularize the out-
of-manifold in contextual embedding space for text
classification. We first briefly remind the architec-
ture of BERT, then introduce two modules used for
out-of-manifold regularization, which are embed-
ding generator and manifold discriminator.
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Figure 1: The overview of OoMMix for fine-tuning BERT (Left) and the structure of our embedding generator and
manifold discriminator (Right).

3.1 Preliminary
BERT is a stack of M transformer encoders pre-
trained on the objective of the masked language
model (Devlin et al., 2019). First, a raw sentence is
split into the sequence of tokens x ∈ {0, ..., |V |}L
using a tokenizer with the vocabulary V , where
L is the sequence length. Each token is mapped
into a D-dimensional vector based on the embed-
ding table. The sequence of embedding vectors
h(0) ∈ RL×D is transformed into the m-th contex-
tual embedding h(m) ∈ RL×D by m transformer
layers (Vaswani et al., 2017).

We fine-tune the pre-trained weight to classify
input texts into C classes. A classifier produces
the classification probability vector o ∈ RC using
the last contextual embedding h(M). Then, the
optimization problem is defined based on a labeled
dataset D = {(x1, y1) , ..., (xN , yN )}.

minimize
wf

E
(x,y)∈D

[
LC (x, y)

]
LC (x, y) := Lkl (f (x) , ey)

where Lkl is the Kullback-Leibler divergence and
ey ∈ RC is a one-hot vector representing the label
y. The function f is the whole process from h(0)

to o, called a target model, and wf is the trainable
parameters for the function f , including the pre-
trained weight of BERT and the parameters in the
classifier. For notation, f can be split into several
sub-processes f(x) = (fm′ ◦ hm

′
m ◦ hm0 )(x) where

hm
′

m (x) maps the m-th contextual embedding into
the m′-th contextual embedding through the layers.

3.2 Embedding Generator
The goal of our generator network G is to synthe-
size an artificial contextual embedding by taking

two contextual embeddings (obtained from layer
mg) as its input. We use linear interpolation so that
the new embedding belongs to the line segment de-
fined by the two input embeddings. Since we limit
the search space, the generator produces a single
scalar value λ ∈ [0, 1], called a mixing coefficient.

G
(
h
(mg)
1 ,h

(mg)
2

)
= λ · h(mg)

1 + (1− λ) · h(mg)
2

λ = g
(
h
(mg)
1 ,h

(mg)
2

)
We introduce the distribution of the mixing coef-
ficient to model its uncertainty. To this end, our
generator network produces the lower bound α and
the interval ∆ by using h

(mg)
1 and h

(mg)
2 , so as to

sample the mixing coefficient from the uniform
distribution U (α, α+ ∆).

To avoid massive computational overhead in-
curred by the concatenation of two input se-
quences (Reimers and Gurevych, 2019), we adopt
the Siamese architecture that uses the shared
weights on two different inputs. The generator
first transforms each sequence of contextual em-
bedding vectors by using a single transformer
layer, then obtains the sentence-level embedding
by averaging all the embedding vectors in the se-
quence. From the two sentence-level embeddings
s1, s2 ∈ RD, the generator obtains the concate-
nated embedding s = s1 ⊕ s2 ∈ R2D and calcu-
lates α and ∆ by using a two-layer fully-connected
network with the softmax normalization. Specifi-
cally, the last fully-connected layer outputs a nor-
malized 3-dimensional vector, whose first and sec-
ond values become α and ∆, thereby the range
of sampling distribution (α, α + ∆) lies in [0, 1].
In this work, we consider the structure of the gen-
erator to efficiently process the sequential input,
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but any other structures focusing on different as-
pects (e.g. the network that enlarges the search
space) can be used as well. For effective optimiza-
tion of λ sampled from U (α, α+ ∆), we apply
the re-parameterization trick which decouples the
sampling process from the computational graph
(Kingma and Welling, 2014). That is, we compute
the mixing coefficient by using γ ∼ U (0, 1).

λ = α+ γ ×∆

The optimization problem for text classification
can be extended to the new embeddings and their
labels, provided by the generator network.

minimize
wfmg

,wg

E
(x1,y1)∈D

[
LG (x1, y1)

]
(1)

LG (x1, y1) := E
(x2,y2)∈D

[
Lkl(fmg(h̃), ỹ)

]
λ ∼ g

(
h
mg

0 (x1) , h
mg

0 (x2)
)

h̃ := λ · hmg

0 (x1) + (1− λ) · hmg

0 (x2)

ỹ := λ · ey1 + (1− λ) · ey2
where wfmg

is the trainable parameters of the func-
tion fmg (i.e., the process from h(mg) to o), and
wG is the ones for the generator. Similar to other
mixup techniques, we impose the mixed label on
the generated embedding.

3.3 Manifold Discriminator
We found that the supervision from the objective (1)
is not enough to train the generator. The objective
optimizes the generator to produce the embeddings
that are helpful for the target classification. How-
ever, since the over-parameterized network tends
to memorize all training data, the target model also
simply memorizes the original data to minimize
Equation (1). In this situation, the generator is
more likely to mimic the embeddings seen in the
training set (memorized by the target model) rather
than generate novel embeddings. For this reason,
we need more useful supervision for the generator,
to make it output the out-of-manifold embeddings.

To tackle this challenge, we define an additional
task that identifies whether a contextual embedding
comes from the generator or actual words. The
purpose of this task is to learn the discriminative
features between actual embeddings and generated
embeddings, in order that we can easily discover
the subspace which cannot be accessed through the
actually-observed words. For this task, we intro-
duce a discriminator network D that serves as a

binary classifier in the contextual embedding space
of the md-th transformer layer.

The discriminator takes a contextual embedding
h(md) and calculates the score s ∈ [0, 1] which
indicates the probability that h(md) comes from an
actual sentence (i.e., h(md) is located inside the
manifold). Its network structure is similar to that
of the generator, except that the concatenation is
not needed and the output of the two-layer fully
connected network produces a single scalar value.
As discussed in Section 3.2, any network structures
for focusing on different aspects can be employed.

The optimization of the generator and discrimi-
nator for this task is described as follows.

minimize
wg ,wd

E
(x1,y1)∈D

[
LD (x1)

]
(2)

LD (x1) := E
(x2,y2)∈D

[
Lbce(D(hmd

mg
(h̃)), 0)

+Lbce (D (hmd
0 (x)) , 1)

]
whereLbce is the binary cross entropy loss. By min-
imizing this objective, our generator can produce
the out-of-manifold embeddings that are clearly dis-
tinguished from the actual (in-manifold) contextual
embeddings by the discriminator.

3.4 Training
We jointly optimize the two objectives to train the
embedding generator. Equation (1) encourages
the generator to produce the embeddings which
are helpful for the target task, while Equation (2)
makes the generator produce the new embeddings
different from the contextual embeddings obtained
from the words. The final objective is defined by

E
(x,y)∼D

[LC (x, y) + LG (x, y) + eLD(x)]

where e regulates the two objectives. The generator
and discriminator collaboratively search out infor-
mative out-of-manifold embeddings for the target
task while being optimized with the target model,
thereby the generated embeddings can effectively
regularize the out-of-manifold.

4 Experiments

In this section, we present the experimental re-
sults supporting the superiority of OoMMix among
the recent mixup approaches in text classification.
Also, we investigate its compatibility with other
data augmentation techniques. Finally, we provide
in-depth analyses on our approach to further vali-
date the effect of out-of-manifold regularization.
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Dataset Input sentence Class Valid size Valid length Test size Test length

AG News content 4 7.6K 43.49 7.6K 43.21
Amazon Review review text 2 8K 95.94 400K 95.62
Yahoo Answer title, question, answer 10 50K 109.81 60K 110.74

DBpedia content 14 28K 63.62 70K 63.61

Table 1: Statistics of datasets

Dataset Train Original NonlinearMix mixup-transformer TMix OoMMix TMix† MixText†

AG News
0.5K 88.22± 0.02 88.24± 0.05 88.58± 0.02 88.45± 0.02 88.41± 0.05 - -
2.5K 89.92± 0.15 88.75± 0.36 89.62± 0.09 90.07± 0.09 90.25± 0.05* - -
10K 91.50± 0.05 88.86± 0.12 91.37± 0.21 91.51± 0.08 91.83± 0.09** 91.0 91.5 (+20K)

Amazon Review
0.5K 89.17± 0.35 89.02± 0.21 89.31± 0.14 89.57± 0.02 89.66± 0.01 - -
2.5K 90.96± 0.05 91.04± 0.11 90.70± 0.05 91.24± 0.13 91.28± 0.12 - -
10K 92.81± 0.05 91.15± 0.42 92.12± 0.28 92.79± 0.07 92.94± 0.06 - -

Yahoo Answer
0.5K 67.24± 0.07 67.56± 0.37 67.62± 0.06 67.57± 0.11 67.95± 0.16 - -
2K 70.41± 0.04 69.17± 0.11 70.29± 0.14 70.68± 0.15 71.08± 0.10* 69.8 71.3 (+50K)
25K 73.68± 0.03 69.31± 0.37 73.52± 0.05 73.84± 0.00 74.13± 0.06* 73.5 74.1 (+50K)

DBpedia
0.5K 97.86± 0.07 97.50± 0.25 98.06± 0.05 98.15± 0.10 98.26± 0.04 - -
2.8K 98.83± 0.03 98.74± 0.09 98.76± 0.01 98.82± 0.04 98.83± 0.05 98.7 98.9 (+70K)
35K 98.96± 0.07 98.89± 0.01 98.91± 0.03 98.97± 0.03 99.03± 0.03* 99.0 99.2 (+70K)

Table 2: Classification accuracy on sentence classification benchmarks. * and ** respectively indicate p ≤ 0.05
and p ≤ 0.01 for the paired t-test of OoMMix vs. the best competitor. TMix† and MixText† report the scores
presented in (Chen et al., 2020), where the sizes of domain-related unlabeled data are described in the parenthesis.

4.1 Experimental setup

Our experiments consider 4 sentence classification
benchmarks (Zhang et al., 2015) of various scales.
The statistics of the datasets are summarized in
Table 1. We follow the experimental setup used
in (Chen et al., 2020) to directly compare the results
with ours. Specifically, we split the whole train-
ing set into training/validation sets, while leaving
out the official test set for evaluation. We choose
the classification accuracy as the evaluation metric,
considering the datasets are already class-balanced.
For the various sizes of training set from 0.5K to
35K, we apply stratified sampling to preserve the
balanced class distributions.

In terms of optimization, we use BERT provided
by huggingface for the classification tasks.1 The
Adam optimizer is used to fine-tune BERT with
the linear warm-up for the first 1000 iterations, and
the initial learning rates for the pre-trained weight
and the target classifier are set to 2e-5 and 1e-3,
respectively. We set the batch size to 12 and the
dropout probability to 0.1. We attach the generator
and discriminator at the third layer (mg = 3) and
the last layer (md = 12), respectively. The two
objectives equally contribute to training the gen-
erator, e = 1, but we increase the e value if the

1In our experiments, we use the checkpoint bert-base-
uncased as the pre-trained weight.

discriminator fails to discriminate the embeddings.
The accuracy is evaluated on validation set every
200 iterations, and stop training when the accuracy
does not increase for 10 consecutive evaluations.
We report the classification accuracy on the test
set at the best validation checkpoint and repeat the
experiment three times with different random seeds
to report the average with its standard deviation.
We implement the code using PyTorch and use
NVIDIA Titan Xp for parallel computation. In our
environment, the training spends about 30 minutes
to 3 hours depending on the dataset.

4.2 Comparision with Mixup Approaches

We compare OoMMix with existing mixup tech-
niques. All the existing methods manually set the
mixing coefficient, whereas we parameterize the
linear interpolation by the embedding generator,
optimized to produce out-of-manifold embeddings.

• NonlinearMix (Guo, 2020) samples mixing
coefficients for each word from the beta dis-
tribution, while using neural networks to pro-
duce the mixing coefficient for the label. We
apply this approach to BERT.

• mixup-transformer (Sun et al., 2020) lin-
early interpolates the sentence-level embed-
ding with a fixed mixing coefficient. The mix-
ing coefficient is 0.5 as the paper suggested.
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Figure 2: Average classification accuracy and their standard deviation when OoMMix is applied with various data
augmentation techniques.

• TMix (Chen et al., 2020) performs linear in-
terpolation on the word-level contextual em-
bedding space and samples a mixing coeffi-
cient from the beta distribution. We select the
best accuracy among different alpha configu-
rations {0.05, 0.1} for the beta distribution.

• MixText (Chen et al., 2020) additionally uti-
lizes unlabeled data by combining TMix with
its pseudo-labeling technique.

Table 2 reports the accuracy on various sentence
classification benchmarks. In most cases, OoM-
Mix achieves the best performance among all the
competing mixup approaches. In the case of Non-
linearMix, it sometimes shows worse performance
than the baseline (i.e., fine-tuning only on original
data), because its mixup strategy introduces a large
degree of freedom in the search space, which loses
useful semantic encoded in the pre-trained weight.
The state-of-the-art mixup approaches, TMix and
mixup-transformer, slightly improves the accuracy
over the baseline, while showing the effectiveness
of the mixup approach. Finally, OoMMix beats
all the previous mixup approaches, which strongly
indicates that the embeddings mixed by the gen-
erator are more effective for regularization, com-
pared to the embeddings manually mixed by the
existing approaches. It is worth noting that OoM-
Mix obtains a comparable performance to MixText,
even without utilizing additional unlabeled data. In
conclusion, discovering the out-of-manifold and
applying mixup for such subspace are beneficial in

contextual embedding space.

4.3 Compatibility with Data Augmentations
To demonstrate that the regularization effect of
OoMMix does not conflict with that of existing
data augmentation techniques, we investigate the
performance of BERT that adopts both OoMMix
and other data augmentations together. Using three
popular data augmentation approaches in the NLP
community, we replicate the dataset as large as the
original one to use them for fine-tuning.

• EDA (Wei and Zou, 2019) is a simple augmen-
tation approach that randomly inserts/deletes
words or swaps two words in a sentence. We
used the official codes2 with the default inser-
tion/deletion/swap ratio the author provided.

• BT (Xie et al., 2019) uses the back-translation
for data augmentation. A sentence is trans-
lated into another language, then translated
back into the original one. We use the code
implemented in the MixText repository3 with
the checkpoint fairseq provided.4

• SSMBA (Ng et al., 2020) makes use of the
pre-trained masked language model. They
mask the original sentence and reconstruct it
by filling in the masked portion. We use the
codes provided by the authors5 with default

2https://github.com/jasonwei20/eda_nlp
3https://github.com/GT-SALT/MixText
4transformer.wmt19.{en-ru,ru-en}.single

model are provided through the official torch hub.
5https://github.com/nng555/ssmba

https://github.com/jasonwei20/eda_nlp
https://github.com/GT-SALT/MixText
https://github.com/nng555/ssmba
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Figure 3: Count of mixing coefficients without the dis-
criminator (Upper) and with the discriminator (Lower).

masked proportion and the pre-trained weight.

Figure 2 shows the effectiveness of OoMMix
when being used with the data augmentation tech-
niques. For all the cases, OoMMix shows consis-
tent improvement. Especially for the Amazon Re-
view dataset, the data augmentation and our mixup
strategy independently bring the improvement of
the accuracy, because the subspaces targeted by
the data augmentation and OoMMix do not over-
lap with each other. That is, OoMMix finds out
out-of-manifold embedding, which cannot be gen-
erated from the actual sentences, whereas the data
augmentations (i.e., EDA, BT, and SSMBA) focus
on augmenting the sentences whose embeddings
are located inside the manifold. Therefore, jointly
applying the two techniques allows to tightly regu-
larize the contextual embedding space, including
both in-manifold and out-of-manifold.

Moreover, OoMMix has additional advantages
over the data augmentations. First, OoMMix is
still effective in the case that large training data
are available. The data augmentation techniques
result in less performance gain as the size of train-
ing data becomes larger, because there is less room
for enhancing the manifold constructed by enough
training data. Second, the class label of the aug-
mented sentences given by the data augmentation
techniques (i.e., the same label with the original
sentences) can be noisy for sentence classification,
compared to the label of out-of-manifold embed-
dings generated by OoMMix. This is because the
assumption that the augmented sentences have the

Figure 4: Performance changes with respect to differ-
ent layers for the generator and discriminator. Dataset:
Amazon Review 0.5K, Layer 0: word embedding.

same label with their original sentences is not al-
ways valid. On the contrary, there do not exist
actual (or ground truth) labels for out-of-manifold
embeddings, as they do not correspond to actual
sentences; this allows our mixup label to be less
noisy for text classification.

4.4 Effect of the Manifold Discriminator
We also investigate how the manifold discrimina-
tor affects the training of the embedding generator.
Precisely, we compare the distributions of mixing
coefficients, obtained from two different genera-
tors; they are optimized with/without the manifold
discriminator, respectively (Figure 3 Upper/Lower).
We partition the training process into two phases
(i.e., the first and second half), and plot a histogram
of the mixing coefficients in each phase.

The embedding generator without the discrimi-
nator gradually moves the distribution of the mix-
ing coefficients toward zero, which means that the
generated embedding becomes similar to the ac-
tual embedding. Therefore, training the generator
without the discriminator fails to produce novel
embeddings, which cannot be seen in the original
data. In contrast, in the case of the generator with
the discriminator, most of the mixing coefficients
are located around 0.5, which implies that the gen-
erator produces the embeddings which are far from
both the two actual embeddings to some extent. We
also observe that the average objective value for
our discrimination task (Equation (2)) is 0.208 for
the last 20 mini-batches; this is much lower than
0.693 at the initial point. It indicates that the gen-
erated embeddings are quite clearly distinguished
from the ones computed from actual sentences.
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Figure 5: Isomap visualization of the sentence-level embeddings. The embedding vectors are projected into 3-
dimensional space and rendered in two different views (xy, and yz-plane). For each view, we colorize the out-of-
manifold embeddings with black and their predicted class.

4.5 Effect of Different Embedding Layers
We further examine the effect of the location of
our generator and discriminator (i.e., mg and md)
on the final classification performance. Figure 4 il-
lustrates the changes of the classification accuracy
with respect to the target contextual embedding
layers the modules are attached to. To sum up,
BERT achieves high accuracy when the genera-
tor is attached to the contextual embedding lower
than the sixth layer while the discriminator works
for a higher layer. It makes our out-of-manifold
regularization affect more parameters in overall
layers, which eventually leads to higher accuracy.
On the other hand, in case that we use both the
generator and discriminator in the same layer, the
gradient of the loss for manifold discrimination can-
not guide the generator to output out-of-manifold
embeddings, and as a result, the generator is not
able to generate useful embeddings.

4.6 Manifold Visualization
Finally, we visualize our contextual embedding
space to qualitatively show that OoMMix discovers
and leverages the space outside the manifold for
regularization. We apply Isomap (Tenenbaum et al.,
2000), a neighborhood-based kernel PCA for di-
mensionality reduction, to both the actual sentence
embeddings and generated embeddings. We simply
use the Isomap function provided by scikit-learn,
and set the number of the neighbors to 15. Figure 5
shows the yz-plane and xy-plane of our embedding
space, whose dimensionality is reduced to 3 (i.e.,
x, y, and z). We use different colors to represent
the class of the actual embeddings as well as the
predicted class of the generated embeddings.

In the yz-plane, the actual sentence embeddings
form multiple clusters, optimized for the text clas-

sification task. At the same time, the generated em-
beddings are located in the different region from the
space enclosing most of the actual embeddings. In
the second plot, we colorize the generated embed-
dings with their predicted class. The predicted class
of out-of-manifold embeddings are well-aligned
with that of the actual embeddings, which means
that OoMMix imposes the classification capability
on the out-of-manifold region as well. We change
the camera view to xy-plane and repeat the same
process to show the alignment of class distribu-
tion clearly (in the third/fourth plots). By impos-
ing the classification capability on the extended
dimension/subspace (i.e., out-of-manifold), OoM-
Mix significantly improves the classification per-
formance for the original dimension/subspace (i.e.,
in-manifold).

5 Conclusion

This paper proposes OoMMix to regularize out-of-
manifold in the contextual embedding space. Our
main motivation is that the embeddings computed
from the words only utilize a low-dimensional man-
ifold while a high-dimensional space is available
for the model capacity. Therefore, OoMMix discov-
ers the embeddings that are useful for the target task
but cannot be accessed through the words. With the
help of the manifold discriminator, the embedding
generator successfully produces out-of-manifold
embeddings with their labels. We demonstrate
the effectiveness of OoMMix and its compatibility
with the existing data augmentation techniques.

Our approach is a bit counter-intuitive in that the
embeddings that cannot be accessed through the ac-
tual words are helpful for the target model. As the
discrete features from texts (i.e., words), embedded
into the high-dimensional continuous space where
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their contexts are encoded, cannot cover the whole
space, the uncovered space also should be carefully
considered for any target tasks. In this sense, we
need to regularize the out-of-manifold to prevent
anomalous behavior in that space, which is espe-
cially important for a large pre-trained contextual
embedding space.
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A Preprocessing decisions, model
parameters and other details

We list the minor implementation details but useful
for reproducing our experiments.

• The train/validation split is implemented us-
ing train_test_split function in scikit-
learn with seed 42.

• The bert-base-uncased tokenizer pro-
vided by huggingface is used to split the sen-
tence.

• We take the first 256 tokens for the sentence
which length is longer than 256.

• The embedding table in the pre-trained weight
is frozen for all experiments.

• The data cleaning process in EDA deteriorates
the performance, so we omit that process.

• Due to the different optimization variables for
the two objectives, we perform the backward
process twice and update the parameter.

B Hyper-parameter search

Since performing grid search on all datasets is intol-
erable due to the lack of computational resources,
we perform different configurations on one small
dataset. The candidate for the embedding layer
for the generator (mg) is [0, 2, 4, 6, 8, 10] and the
candidate for the embedding layer for the discrimi-
nator (md) is [0, 2, 4, 6, 8, 10, 12]. For the case the
discriminator could not be trained well, e.g. the
discriminator loss does not decrease at all, we in-
crease e to give more weight to the discriminator
loss. For all the experiments, we fix themg andmd

and manually change the e to make the discrimina-
tor classify the embedding. The hyper-parameter
choices are summarized in Table 3.

Hyper-parameter Value

Embedding space for the generator (mg) 3
Embedding space for the discriminator (md) 12

Coefficient for two objectives (e) 1 (or 1.5)

Table 3: Hyper-parameter configuration for the experi-
ment
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